Динамическое нормирование потребления энергоресурсов для задач нефтепереработки на основе алгоритмов машинного обучения

Интеллектуальные системы и технологии
Авторы:
Аннотация:

Нормирование потребления энергоресурсов необходимо для качественного планирования производства и позволяет рационализировать их использование. В статье приведен анализ различных подходов к построению модели потребления энергоресурсов, определены их недостатки и представлен новый подход к динамическому нормированию. В качестве объекта моделирования рассмотрен процесс суммарного потребления топлива для установки ЭЛОУ-АВТ-6, предназначенной для обессоливания и первичного фракционирования нефти. Сформированы функциональные требования к разрабатываемым алгоритмам, исходя из актуальных задач, диктуемых производством. В качестве решения рассмотрены модели на основе алгоритмов машинного обучения, такие как Catboost регрессор, Градиентный бустинг деревьев, Случайный лес, ElasticNet и искусственные нейронные сети. Проведен анализ результатов моделирования и сравнения точности моделей. Продемонстрирован сценарий использования модели динамического нормирования для анализа причин отклонения фактических значений потребления от плановых.