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Energy consumption rationing is necessary for high-quality production planning, and allows 
optimizing their use. This paper provides an analysis of various approaches to building a model 
of energy consumption, describes their limitations and new approaches to dynamic rationing. 
As the object of modeling the ELOU-AVT-6 (CDU/VDU-6) unit has been taken. Such units 
are intended for desalination and primary fractionation of oil. Functional requirements for the 
algorithms have been formed, based on real production needs. As the solution, models based on 
machine learning algorithms have been analyzed. These algorithms include CatBoost Regressor, 
Gradient tree boosting, Random Forest, ElasticNet and artificial neural networks. The analysis of 
the modeling results and comparison of the accuracy of the models is carried out. The paper also 
demonstrates a scenario of using a dynamic rationing model to analyze the causes of deviations of 
the actual consumption values from the planned ones.
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ЭНЕРГОРЕСУРСОВ ДЛЯ ЗАДАЧ НЕФТЕПЕРЕРАБОТКИ 
НА ОСНОВЕ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ
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Нормирование потребления энергоресурсов необходимо для качественного планиро-
вания производства и позволяет рационализировать их использование. В статье приведен 
анализ различных подходов к построению модели потребления энергоресурсов, опре-
делены их недостатки и представлен новый подход к динамическому нормированию. В 
качестве объекта моделирования рассмотрен процесс суммарного потребления топлива 
для установки ЭЛОУ-АВТ-6, предназначенной для обессоливания и первичного фрак-
ционирования нефти. Сформированы функциональные требования к разрабатываемым 
алгоритмам, исходя из актуальных задач, диктуемых производством. В качестве решения 
рассмотрены модели на основе алгоритмов машинного обучения, такие как Catboost ре-
грессор, Градиентный бустинг деревьев, Случайный лес, ElasticNet и искусственные ней-
ронные сети. Проведен анализ результатов моделирования и сравнения точности моделей. 
Продемонстрирован сценарий использования модели динамического нормирования для 
анализа причин отклонения фактических значений потребления от плановых.
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Introduction

High speed of technological growth and global trends towards the production digitalization and Indus-
try 4.0 concepts dictate an increasing volume of requirements for the industry. As an illustrative example, 
the oil refining industry poses a task of active integration of new technologies to optimize technological 
processes, increase the quality of the final product and reduce its production costs. Consequently, in the 
last 10 years engineers have begun developing so-called digital twins of technological processes. A digital 
twin is a complex program entity based on accurate process models, statistical data, regulatory values and 
machine learning algorithms [1, 2].

Rationing of energy consumption is not an exception of such digitization processes. On the one hand, 
a digital twin of production allows us to implement various scenarios, such as: forecasting, retrospective 
analysis, simulation of various operating conditions of equipment, etc. On the other hand, the consump-
tion rationing model should allow us to calculate the necessary and sufficient resource consumption for 
a particular scenario. The ability to analyze the actual deviations in energy consumption is a key feature, 
which can lead us to more rational cost management.

One of the key issues of building a model for the regulation of energy consumption, is a large number 
of influencing external and internal factors. Such factors impact often cannot be detected analytically. 
These factors include the parameters of the technological process, the parameters of raw input materials, 
meteorological conditions, time interval etc. All existing methods and algorithms for the regulation of en-
ergy consumption are often based on some sort of regulatory values and do not allow them to be effectively 
applied in such digitized scenarios, described previously [3].

The main goal of this work is to develop an approach and determine the methods of developing the 
models for dynamic rationing of energy consumption using the example of oil refining problems. For this 
case, the existing approaches to energy consumption rationing were analyzed and new methods, based 
on machine learning algorithms, were developed and approved. This new approach provides the ability 
to dynamically recalculate the rates of energy consumption within the process or environment changes.

Energy consumption rations

Energy consumption rations are the calculated values that characterize the maximum allowable ex-
penditure of certain resources. At the same time, during the calculation, the operating conditions of the 
technological equipment and the environment at a particular moment of time are taken into account. The 
norms determine the calculation basis for planning the consumption of fuel and energy resources, and also 
allow you to control their expenditure and identify any potential saving reserves [4].

For industrial consumers, ration is an indicator of the planned consumption of some resources for the 
production of a unit of final product. There are two key groups of resources used as a subject of rationing: 
the main resources and the operation of production facilities. 

In this paper, the rations of resources consumption, associated only with the provision of the main pro-
duction process (fuel and energy resources) were considered. Therefore, we focus our attention on them. 
These values are evaluated in a form of a generalized indicator, expressed in Tones of Equivalent Fuel 
(TEF) per unit of production.
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Let’s consider the key existing methods for calculating consumption rations [5]: 
•  Experienced method; 
•  Computational and analytical method; 
•  Computational and statistical method.
Experienced method is, as the name suggests, an experiment, the results of which are used to form 

individual rations. A significant disadvantage of this approach is that the object of modeling must perform 
its work exclusively within the regimes provided at the stage of its testing [6]. Also, the process of such 
development norms entails large labor costs. It consists of methodology development, testing, analysis of 
results, etc. All this makes it difficult to replicate the solution. Another disadvantage is that applying this 
method makes it impossible to quickly revise the existing consumption rations due to changes in the pro-
cess parameters.

Another common method, that allows us to ensure high accuracy of rationing, is the computational 
and analytical method. This method is based on a thorough study of technical regulations and design and 
engineering documentation [7]. During such process of rations calculation, a sequential division of the 
modeling object into separate aggregates is performed. After this, the engineer analyses such aggregates 
interaction. A significant disadvantage of this method is that the quality of the developed values is directly 
proportional to the quality and accuracy of the description of the object in the technical documentation. 
Thus, this approach may not take into account the real state of the object, which will entail a decrease in 
the quality of energy consumption rationing [8].

In turn, the computational and statistical method allows you to deal with the problem of inconsistency 
between the state of the object and its technical description. It provides the determination of rations, based 
on the reports data of the actual consumption of fuel and energy resources during the past periods. In other 
words, when applying this method, the values are interpolated by forming a function that characterizes the 
relationship between operating conditions and the amount of energy consumption [9]. 

For this work, during the building of the machine learning models, we employed the latter method first, 
and in particular the so-called analytical model. Mathematical formulation can be written as follows.

The process of energy consumption can be described as:

where          – interior industrial parameters values;            – outer parameters values; T – different times- 
tamps, depending on the parameter; τ – current datetime value;      – parameters, which are not kept in 
manufacture; ε – measurement error.

According to the amount of data we can use – our rationing model should have such mathematical 
description:

As we see, the main goal of such model development is decreasing of  the number of      and to minimize 
the difference between such model values. In this case the mathematical description of the model devel-
opment task will be as follow:

where J is an error function, more detailed description will be provided when it is referred to in the next 
paragraphs. 

Another task for the development is the approach of choosing the          and            according to the 
analytical model.
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Fig. 1. Simplified schematic of an oil refinery

One of the key advantages of this approach is its universality and applicability for various objects. Also, 
this approach is more flexible compared to its alternatives, described earlier.

This approach is based on the analytical construction of the energy consumption model. Therefore, 
its disadvantages include a high probability of a mistake in description of the nature of the function, the 
volume of which is directly proportional to the complexity of the modeled object. 

The idea of building an analytical model is consonant with the task of machine learning. In the clas-
sical approach, at the stage of exploratory data analysis, we can involve specialists in energy consumption 
to form a list of factors, based on their knowledge about the modeling object [10]. However, this approach 
entails high labor costs. Thus, we have set the goal of reducing the use of knowledge about the subject area 
with no loss in quality: it will serve as a guarantee of successful replication of the developed approach.

Modeling object – CDU/VDU-6 unit

As it has been already mentioned, in this paper we took the oil refinery process as the object for energy 
consumption modeling. Modern oil separation involves piping crude oil through a sequence of hot fur-
naces. The resulting liquids and vapors are discharged into distillation units. Such products of the plant 
operation include diesel fuel, tar, fuel oil, kerosene, gasoline, etc.

In particular, we analyzed the data from the unit built according to the standard design called CDU/
VDU-6. The feed-stock for the unit is crude oil coming from oil pumping stations. 

To illustrate the refinery process, including CDU and VDU, Fig. 1 presents a simplified oil refinery 
schematic [11].

As it is shown in the figure, CDU/VDU unit separates crude oil into different products by boiling 
point differences and prepares feed for secondary processing units. Two main units for the CDU/VDU 
are CDU, an electrical desalting and oil dehydration unit, and the VDU, an atmospheric and vacuum 
distillation of oil unit. 

During the process, the following products are obtained at this unit: fuel and liquefied gas, straight-run 
gasoline fractions, a fraction of straight-run diesel fuel, vacuum gas oil and tar. In addition, in the process 
of heat recovery, water vapor generates, which, looking ahead, is one of the targets predicted in this work. 

- fluidized catalytic cracking,

CDU	 - crude distillation unit,
VDU	 - vacuum distillation unit,
HDS	 - hydrodesulphurization unit,
HDC	 - heavy oil desulphurization unit,
FCC	 - fluidized catalytic cracking,
CR	 - catalytic reforming,
MX	 - merox sweetening,
LPG	 - liquefied petroleum gas,
Kero	 - kerosene,
LN/HN	 - light and heavy naphta,
AR	 - atmospheric residue,
VR	 - vacuum residue,
Gas	 - gasoline,
Jet	 - aviation jet fuel,
GO	 - commercial gasoil,
FO	 - fuel oil,
AS	 - asphalt.
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CDU/VDU-6 includes a gasoline stabilization unit and an intermediate tank farm for receiving, storing 
and dispensing raw materials of 6,000 cubic meters.

At the moment, for the modeled unit, an experimental method of rationing is used. The selection of 
norms is carried out from the corresponding reference book of norms with respect to the current mode of 
operation, month, and is multiplied by the actual load for raw materials. Such values are revised annually.

Such approach to rationing leads to ineffective plant management in terms of energy consumption. 
This is due to the low accuracy of the calculated consumption rates, since they do not take into account 
any real technological parameters, equipment degradation, environmental parameters, etc. Moreover, this 
approach does not allow us to analyze the factors and reasons of deviations in consumption from the cal-
culated consumption rates. Such process is called factor analysis and it requires a more interpretative and 
transparent process of energy consumption.

Rationing model and digital twin

One of the main goals of using the dynamic rationing model is to ensure correct, well-grounded man-
agement of the technological process. This, in turn, can be achieved by the timely identification of devi-
ations of the actual consumption from the planned one. Such approach would allow us to form operative 
corrective actions to improve the control quality.

To achieve this goal, it is necessary to establish a close interaction of the dynamic rationing model and a 
digital twin of the technological process [12]. Fig. 2 provides a more detailed description of such behavior.

In fact, there are two different scenarios of using the dynamic rationing models. The first one of them is 
the calculation of the planned y'' energy consumption rations, which are used as tasks for the plant opera-
tors. On the other hand, Fig. 2 shows a comparison between estimated consumption rations y' and actual 
consumption y''. After reaching the point in time for which the consumption rate was planned, we can 
calculate its actual model value. This value should be close to the actual consumption of fuel and energy 
resources, otherwise, this algorithm will not be effective.

The algorithm of the deviation causes analysis (factor analysis) should demonstrate the degree of influ-
ence of each parameter on the total difference between planned and actual consumption. This approach 
allows us to carry out the retrospective analysis. With the knowledge we get from such analysis, we can 
adjust the operating plan in order to minimize expenses and costs.

To implement the algorithm for analysis of the causes of deviations, the dynamic rationing model must 
be interpretable. We must be able to numerically assess the degree to which each parameter affects the re-
sult. Such coefficients should be normalized in relation to the difference in consumption. Resulting delta 
values will characterize the fraction of delta justified by this or that parameter [13].

Thus, the main functional requirements for the development of the dynamic consumption rationing 
model are:

Fig. 2. Rationing model for the factor analysis issues

Parameters calculated value x''

Energy consumption rations

Parameters real values x'

CDU/VDU-6
digital twin

CDU/VDU-6
unit

Dynamic rationing
model

Factor analisys
algorithm

Analysis of the causes of deviations

(factor analisys)

y'' – consumption rations evaluated 
on the parameters calculated values

y' – consumption rations evaluated  
on the parameters real values

y – real energy consumption value

x
n
 – the degree of contribution  

of every parameter value
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•  interpretability of models or the possibility of using algorithms for analyzing the causes of deviations;
•  the standardization error should not exceed 2 %, which is due to the absolute error of measuring 

devices for fuel and energy resources consumption;
•  adaptability of the solution: the ability to revise consumption rates when critical changes in the pro-

cess are detected;
•  the model should take into account the degree of inertia of the process, since some parameters can 

contribute to consumption with different delta over time.

Initial modeling data

To start the dynamic rationing model development, it is necessary to assess the quality of the existing 
data and prepare them for transfer to the algorithm. For machine learning algorithms bad quality can be 
crucial, so we need to preprocess the data. Collecting, storage and primary generalization of data for the 
CDU/VDU-6 unit is carried out by PI Systems utilities. At the first step, ETL procedure was set up to 
download the data from the server. 

For the analysis, a data interval of one and a half year was selected. Such choice is justified by the neces-
sity of having a volume of data covering the entire annual cycle of the installation, as well as some reserve of 
data for validation and testing. Downloaded data contains technological information (unit temperatures, 
pressures, etc.), production data (plant load, quality characteristics), as well as environmental parameters 
(temperature, wind directions, etc.). The total fuel consumption was taken as an energy resource for ra-
tioning modeling.

The process of the control and monitoring of energy consumption is implemented in the context of 
hourly averaged values. Thus, the dynamic rationing model should also form the hourly average indica-
tors of energy consumption. However, the data from the source were downloaded with a sampling rate of 
1 minute, cleaned and averaged within an hour. This is due to the fact, that the data can contain a large 
number of anomalies. Such anomalies can be related to some functional failures of measuring instruments, 
breakdowns and production interruptions. In this case, it is necessary to filter the data somehow. For these 
purposes, the EllipticEnvelope algorithms [14], a high-pass filter and a moving average filter, were applied 
to achieve the best anomaly detection efficiency:

where Ŷ – the resulting value of hourly consumption; θ – EllipticEnvelope operation giving [0, 1] values; 
ϑ – high-pass filter operation. 

Fig. 3 shows an example of the preprocessed fuel consumption data.
Also, during the preparation, the data were preprocessed in order to reduce their volume with minimal 

loss in quality. Unfortunately, the use of dimensionality reduction methods (Principal component analysis, 
tSNE, etc.) is not further allowed for data interpretability, otherwise it would significantly complicate such 
an algorithm.

In such situation, to reduce the amount of data, a correlation analysis was carried out. The Spearman 
and Pearson coefficients were analyzed and the values were discarded according to the following criteria:

•  parameters, the correlation coefficient of which with the target is more than 0.9, in order to avoid 
target leaks;

•  to combat multicollinearity, all values with cross-correlations greater than 0.9 were also discarded.
Finally, the initial data volume contained 1083 parameters with 780 thousand values each. However, 

after their preprocessing, they were reduced to 562 parameters of 3 thousand averaged hourly values. For 
this publication, the data have been anonymized and replaced with tag_n for parameters and y for con-
sumption not to violate the contribution rules. All the data were scaled from 0 to 1 for the same reason.

( ) ( )
60

1ˆ ,
60 i

i
Y Y Y−

=
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Fig. 3. The results of the consumption data preprocessing

Dynamic energy consumption rationing model

At the very beginning of the model development, the prepared dataset was divided into training, valida-
tion and test samples. The volume of the training dataset is 12 months of operation of the unit and the inner 
processes. Such dataset is used to train the model. The validation set serves to determine the generalizing 
ability of the model and is used to select its parameters. The validation process is based on the TimeSeries-
Split cross-validation method with a sliding window of 1 month [15]. A test dataset with the length equal 
to 1 month is used to evaluate the simulation results.

Also, one of the important features of the modeled process is that some parameters can affect pow-
er consumption with some time delta. To handle such time deltas, we inserted a time lag parameters 
               into our model. For this work, we have considered k value equal to 8, which implies that the 
maximum time lag can be 8 hours. Such delay is caused by the characteristics of the process, but have to 
be adjusted in future work.

In this research, the following machine learning approaches to the construction of a dynamic normal-
ization model were considered [16]: 

•  linear models;
•  models based on tree boosting algorithms;
•  one-dimensional convolutional neural networks.
The Linear Regression algorithm is the most obvious and simplest solution to such problems. It is usu-

ally applied to create the baseline solution of the machine learning tasks. This algorithm is mainly suitable 
for linearly separable data. Although, it still often gives a satisfactory result for solving many real-world 
problems. While the generalizing ability of the model is usually weak, a significant advantage of the algo-
rithm is its interpretability, which is crucial for the described task.

Simple Linear Regression was applied, but it showed low generalization ability. In this case, the Elas-
ticNet algorithm was tested, which is a linear model with L1 and L2 regularizations. Fig. 4 shows a gener-
alized diagram of the linear ElasticNet model and the result of forecasting consumption on a test sample.

The resulting vector of weights was pruned in case of finding the correct T (timestamp) for each param-
eter. After that, the model had been retrained. This operation can be described as follows.

From initial equation of Linear Regression:

tag_n tk

( ) ( ) ( ) ( )11 1 0 1 1 1 0 1... ... ... ,kn nn k knN W X t W X t W X t W X t b− −= + + + + + + +
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Fig. 4. Linear model of dynamic consumption rationing

where k is the number of parameters, n is the depth of time analysis, and b is a bias value. Model was 
transformed into:

where T refers to different timestamps depending on the chosen parameter X. The same approach has been 
applied in all the models.

Another tested group of machine learning algorithms for consumption prediction is a family of tree-
based boosting algorithms. Such algorithms are based on the concept of constructing a group of weak 
regressors to solve a more complex problem. In this work, a regressor model from the Catboost library was 
chosen. This algorithm has good generalization ability. Also, this algorithm has built-in functionality for 
analyzing the feature importance, based on the algorithm for analyzing and calculating trees (function 
get_feature_importance) [17]. 

Another realization of the boosting algorithms tested in this work is the classic Gradient bosting from 
scikit-learn library, which was applied to compare the results of modeling. However, the Random Forest 
algorithms were tested to compare the boosting to bagging approaches, but their further study was stopped 
due to the low accuracy. To solve the set task of analyzing lags in time, they are also added as parameters 
to the model. The resulting algorithm and mathematical description of the Catboost model development 
is described in Fig. 5.

An example of an element of the resulting tree and an assessment of the accuracy of the model on a test 
sample is shown in Fig. 6.

Another approach studied in this work is a family of artificial neural network (ANN) algorithms. Neu-
ral networks are accepted as more complex algorithms, due to huge number of parameters, that can be 
tuned for such models. In this way, ANNs have a high generalizing ability and are more flexible to use. 
Applying this group of algorithms provides us with a more elegant and appropriate approach of taking time 
lags into account due to the peculiarities of configuring the network architecture. In comparison with the 
previous approaches, the significant disadvantage of ANN is the considerable complexity and variability of 
its development process. At the same time, those models have a very complex structure, which complicates 
the process of interpreting the model. It entails the need of an analysis based on Shapley vectors, which van 
give us the appropriate information for the analysis of deviations cause [18].

In this work two architectures were tested as the solution of the research task. The first model is 
a simple sequential fully-connected neural network, for which all the time deltas were flattened into 
one input layer. The second tested model is the developed 1-dimentional convolutional neural network 
(CNN). The convolution is used to convolve timeseries data with several filters to define the time delta 
of the input-to-output dependency. It allows us to fold time intervals and transfer them to deeper layers 
of the neural network. Thus, the input to the model is not a vector of 562 × 8 values, but a matrix. Fig. 7 
describes the generalized structure of the developed neural network.

( ) ( ) ,i i i
n

N W W X T b= +∑
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Fig. 5. CatBoost ordered boosting and tree building

Fig. 6. CatBoost model of dynamic consumption rationing

Fig. 7. CNN-based model of dynamic consumption rationing

Only three of the developed models produced satisfactory results on the described datasets. For this rea-
son, only results of this three models consumption prediction was plotted in this publication.  The analysis 
of the modeling results for all models is described in the next part of this work.

yt  x X

t = 8,	 x = 562 n
2
 filters + ReLu

n
1
 filters + ReLu
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Modeling results analysis

During this research, a number of models of different nature have been developed. To test and validate 
those models, the mean absolute percentage error (MAPE) has been chosen.

The MAPE value calculation is similar to the absolute measurement error calculation [19]. Thus, we 
following formula was chosen to ensure the 2 % accuracy of developed algorithm:

where n – number of measurements (data points) in the dataset; At – measured value; Ft – predicted 
value. 

In this case, the task for the model development and evaluation can be rewritten as follows:

Table 1 shows the results of evaluating the tested models. The models that performed the best were 
highlighted in the table.

Table  1
Model performance evaluation

Model type Model name MAPE validation, % MAPE test, %

Linear
ElasticNet 1.484 1.372

Linear Regression 1.013 2.422 (–)

Ensemble learning  
(Trees)

CatBoost 1.304 1.282

Gradient Boosting 2.021 (–) 1.989

Random Forest 3.199 (–) 2.551 (–)

Artificial 
Neural Networks

MLPerceptron 2.621 (–) 2.305 (–)

Convolutional NN 1.476 1.503

Linear models performed well for this task. Classical linear regression shows the best generalizing abili-
ty on the validation set, however, the error increases dramatically on the test dataset. To solve this problem, 
L1 and L2 regularization was applied to the model, in the form of an ElasticNet model. This model per-
formed well on both samples. A significant advantage of this model is also the simplicity of its interpreta-
tion in the form of regression coefficients.

On another hand, most of the ensemble learning models based on decision trees (Random Forest and 
Gradient Boosting) showed a slightly worse result for this task. Thus, Gradient Boosting and Random For-
est showed a MAPE smaller than  2 %, which does not allow us to use them for efficient dynamic rationing.

As an exception, the model based on CatBoost Regressor showed the best result for all of the models. 
Also, this model can be easily interpreted by the tools of the CatBoost library itself. Further selection of 
hyperparameters and the use of other Gradient Boosting libraries can serve as possible ways of developing 
the model.

Models based on deep neural networks, generally, showed the worst prediction result among all models. 
The model developed on the basis of convolutional networks showed an acceptable result below 2 %. A 
feature of such models is a significantly larger number of parameters that can be configured. In this regard, 

1
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