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Abstract. This work presents the design and analysis of a reconfigurable hardware accelerator
for solving a system of linear equations using Jacobi method, implemented on a reconfigurable
device, as well as a comparative study of software and hardware implementations. Recent
advancements in computing capabilities have been hindered by the so-called “walls”: memory,
power consumption and clock frequency limitations imposed by current technology. Solutions to
overcome these “walls” include reconfigurable computing and high-level synthesis. The system
under development and analysis was described in the C++ language and implemented using a
high-level synthesis method, which reduces design time and enables more efficient exploration of
different hardware architectures. The comparative analysis showed a performance increment over
the original implementation, with energy consumption comparable to that of a modern mid-class
MiCroprocessor.
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AnHorammsa. B maHHoOli pabore mpeacTaBiaeHbl pa3paboTKa M aHaIU3 PEeKOH(MUTYPUPYEMOTO
arnmnapaTHOTrO YCKOPUTEJIsl UISl PeIlieHUs] CUCTeMbl JMHEHHBIX ypaBHEHU MeToaoM SIkobu, pea-
JIN30BAaHHOTO Ha peKOH(pUTyprpyeMoM ycTpoiicTBe. [IpoBeaeHo CpaBHUTEIbHOE UCCIIEIOBaHUE
TPOM3BOIUTEILHOCTH aIllapaTHOUW M MPOrpaMMHOI peanu3alnii. B mociemHee BpeMsT pocT BBI-
YUCIUTEBHBIX BO3MOXHOCTE! BBICOKOITPOM3BOAUTEIBHBIX BBIYUCIUTEIBHBIX CUCTEM CICPIKU-
BaeTCsl TAKUMM IIperpagaMu, Kak IaMsTh, SHEPrornoTpeOeHne, TaKTOBas 4acToTa, HaKJIadbl-
BaeMbIMM COBPEMEHHBIMU TEXHOJOTHUSIMU. PellleHUsIMU [UIsl MPEONoJIeHUsT YKa3aHHBIX IIperpa
SIBJISTIOTCSI PEKOH(MUTypUpYyeMble BIUMCIICHUsI U BBICOKOYPOBHEBBIM cuHTe3. Pa3pabarbiBaeMast
¥ aHaJIu3upyemasl cucTema Oblja omnvcaHa Ha s3bike C++ U peasim3oBaHa ¢ UCIOJb30BaHUEM
METOIa BHICOKOYPOBHEBOTO CHHTE3a, UYTO ITO3BOJIMIIO COKPATUThL BPEeMsI IIPOCKTUPOBAHMS U 3] -
(ekTUBHEE MCCIemOBaTh Pa3IMIHBIC anIapaTHbe apXUTeKTyphl. CpaBHUTEIBHBIM aHAIN3 T10-
KazaJjl yBeJIWUYeHUE TIPON3BOIUTEIIFHOCTH II0 CPAaBHEHUIO ¢ TIEPBOHAYATIBHON pealn3alneii mpu
MOTPeOIIEHUH DHEPTUM, COITIOCTABUMOM C COBPEMEHHBIM MUKPOIIPOLIECCOPOM CPEIHEro Kiacca.

KiioueBblie ciioBa: CynepKOMMbIOTEPHBI BBIUMCAUTENb, PEKOH(UIYpUpPYEMBbIil armapaTHBI
YCKOpUTENb, MeTOI AKOOU, CBEpXOOJIbIIME MHTErpaJbHbIe CXEMbI TTIPOrPaMMUPYEMOI JIOTUKMU,
BBICOKOYPOBHEBBIN CUHTE3, s13bIK SystemVerilogHDL, pekxoHdurypupyembie BoIYMCICHUS

Jna murupoBannsa: Gonzalez M.E., Antonov A.P. Design and analysis of a reconfigurable hard-
ware accelerator for solving a system of linear equations using Jacobi method // Computing,
Telecommunications and Control. 2025. T. 18, Ne 4. C. 76—86. DOI: 10.18721/JCSTCS.18407

Introduction

The computing capabilities of microprocessors increased steadily for decades. However, this trend
has recently been significantly disrupted due to the so-called “walls”: memory, power consumption,
clock frequency/technology. As an alternative to general-purpose microprocessors for performance-crit-
ical tasks, application-specific integrated circuits (ASICs) can be used. However, they involve high com-
plexity, cost and design time on the one hand, and narrow specialization for the solution of a single task
or the implementation of one algorithm, on the other hand. The solution of general problems using
graphics processing units (GPGPUs), which fall into the single instruction, multiple data (SIMD) cat-
egory according to Flynn’s taxonomy, is not efficient in terms of performance and power consumption,
since GPGPU is optimized for vector and vectorizable problems [1—3].

This trend is evident, for example, in the analysis of the Top 500 list. On the one hand, performance
growth can be observed, achieved by increasing the number of cores and power consumption. On the
other hand, as showed in [4], using the conjugate gradient method instead of the “classical” Linpack
leads to performance degradation of two orders of magnitude.

Thus, there is a relationship between performance and computing architecture: existing architec-
tures, optimized for solving one task, are not efficient for solving similar tasks with different methods,
let alone tasks of different classes.
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A solution to this problem is the use of hardware reconfigurable accelerators, whose physical struc-
ture is adapted to the algorithm of the task to be solved [5, 6].

The base of reconfigurable accelerators is hardware reconfigurable devices, such as field-program-
mable gate arrays (FPGAs). Widely known FPGAs enable the implementation of hardware solutions
for computationally complex tasks with high performance, close to that of ASICs, but with significantly
lower time and resource consumption. However, the traditional approach to FPGA design, including
the use of hardware description languages, require specialized knowledge and skills, which has essen-
tially limited the practical adoption of FPGAs as reconfigurable accelerators.

A solution to this problem is the use of high-level synthesis methods [7], which enable an abstrac-
tion of the complexity of hardware development. Apart from the automatization of the design process,
high-level development environments enable the generation and analysis of a wide range of hardware
architectures, including parallel and pipelined variants.

The system of linear equations (SLE) models a broad spectrum of scientific problems, such as
weather forecasting or finite element methods. SLE is typically represented in the form of matrix-vec-
tor multiplication, which is efficiently processed by computers. There are different approaches to
solving SLE, mainly direct and iterative methods. This article focuses on the Jacobi iterative method.

Unlike other methods, such as Gauss—Seidel, the Jacobi method computes all equations before
updating the values of the unknown, meaning that hard dependencies between variables arise only be-
tween computations at different iterations. This characteristic gives the Jacobi method a high degree of
parallelization, which increases with the size of the problem [8]. For this reason, a massively parallel ar-
chitecture may represent an effective platform for solving SLE using the Jacobi iterative method. Thus,
reconfigurable devices appear particularly well-suited for this task.

Several authors have presented their contributions to this problem in recent years [9—11]. A general
formulation of the problem is presented at [12]. As in most hardware implementations, there are several
possible approaches, from completely parallel systems to fully sequential ones, as well as intermediate
levels of parallelism. In [12], both parallel and sequential approaches are proposed, while also outlining
the principles of pipelined processing systems. Considerations regarding system complexity are also
discussed.

In [13], the Jacobi method is applied to fractal calculations. According to the finite element meth-
od, each element in a mesh is most closely related to the neighboring nodes. These dependencies are
modeled by SLE, where each equation computes a new value for each node according to the values
of its four nearest neighbors. A convenient degree of parallelism is achieved by dividing the mesh into
sub-frames, which are computed in parallel.

In [14], a similar problem is addressed, related to solving a large SLE using the Jacobi iterative
method. In this case, the mathematical problem under investigation is solving Laplace’s equations
with Dirichlet boundary conditions, where standard (non-boundary) nodes are computed based on
their four neighbors. This structure is modeled by a computing system based on computing blocks
(nodes) interconnected by communication channels. The connections may be physical, correspond-
ing to channels of spatially parallel structures, or virtual, represented by the exchange of information
between iterations.

The computing architecture is also studied from different points of view: as fully parallel (spatial),
fully sequential (temporal) or as a combination of both approaches adapted to the computing resourc-
es available on the reconfigurable device. The elementary computing block may receive input data in
parallel, which in general corresponds to the values of neighboring nodes, or simpler but slower com-
puting blocks may receive this data sequentially, processing it using corresponding accumulators and
registers for storing the intermediate calculations between clock cycles. This reduction in the required
logical resources simultaneously allows to limit the number of communication channels to a small
fraction of the initially needed amount.
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The decision on which approach will be implemented depends on the ratio of required computing
resources, related to the size of the problem, to the resources available on the physical device. There-
fore, elementary blocks, whether based on accumulators or not, may be reproduced several times ac-
cording to the ratio of required to available resources, taking into account the achieved performance.
A computing structure pipelined in several stages allows achieving higher performance without a signif-
icant increase of required logical resources by their reuse once intermediate results are no longer need-
ed. The limited number of available communication channels also plays a key role, since the ratio of
external communication channels on reconfigurable devices to the increasing area of logical com-
puting elements has been observed to decrease constantly. The authors also studied the performance
advantage of using clusters of reconfigurable devices for solving large-scale problems.

It is commonly accepted that the traditional approach based on hardware description language
(HDL) design is excessively complex and time-consuming, especially for large systems of equations
that required to be adapted to the resources available on the target device. In [11], a design for a Max-
eler acceleration card is presented, using MaxCompiler, which allows system to be described in Java
language. The key proposal for pipelining the system is to compute as many equations as necessary
within the first iteration so that the second and successive iterations may start afterwards in a pipelined
fashion, overcoming the inter-iteration dependencies described above.

In [15], the Jacobi iterative method in a high-level language for hybrid reconfigurable platforms is
described. In [16], the Jacobi solver on a SCR heterogeneous supercomputer using the HLL-to-HDL
compiler is implemented. Mapping the floating-point units was identified as the main difficulty faced
by the authors. In [17], the use of Jacobi solvers is proposed, each solving one of the equations and
acting in parallel within the global system. Other related architectural aspects, aimed at increasing the
performance, are presented in [18], taking into account the use of accumulators for computing the
exit condition, as soon as a sufficiently precise result is achieved.

Materials and methods

The object of the research is a method for increasing the performance of solving SLE.
SLE is typically presented in the following way:

a, X, +ay,X, ++a,,x, =b;
Uy Xy + @y Xy +ooo+ @y X, = by
(1)
a, x,+a x,+--+a x =b.
An algebraic representation of SLE follows:

Ax = p. (2)

As mentioned above, SLE may be solved using either direct or iterative methods. Iterative methods
are particularly advantageous for computational solutions. A classical iterative method is the Jacobi
algorithm, based on the provision of an initial guessed approximate solution x°, typically expected to
be close to the exact solution, and on the computation of the value of each unknown assuming that
the remaining unknowns in the current equation have the value from the initial vector x°. For each
equation, the unknowns placed at the diagonal of the matrix 4 (2) are computed using the following
procedure:
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xi/m _ (bi _z;’;j ai,jxf). (3)

4a; ;

The obtained result is the approximation x' to the exact solution. A more accurate solution may be
obtained by another computation of the values of each unknown, this time based on the previously com-
puted vector x' for the remaining unknowns instead of vector x’. The process may be repeated iteratively
until a solution with an acceptably small error is found. The criteria of an admissible error are usually
expressed in relation to the norm of the right-hand vector b. The method converges if, for each row (or
column) of matrix A, the absolute value of the diagonal element is greater than that for each individual
element in the same row (or column).

Other iterative methods include the Gauss—Seidel method, which takes each newly computed value
of the unknowns and immediately uses it for computing the following equation within the same itera-
tion. This typically leads to a faster SLE solving than the Jacobi method. However, from the computa-
tional point of view, this approach introduces data dependencies between consecutive equations within
each iteration, instead of between consecutive iterations, as in the Jacobi method. Such tight dependen-
cies significantly reduce the degree of parallelism in the algorithm. For this reason, the Jacobi method
is often preferred for parallel implementations.

The subject of the research is the Jacobi algorithm for solving SLE. This algorithm was chosen due to
its wide use in many applications and its high potential for parallelism.

In this work, the specific case of SLE is examined with the matrix A containing five non-zero di-
agonals.

¢ d 6
b, ¢, d, )
by ¢ d; &
e b, ¢ d, - e | @
a; - b oo dy - e
g by ¢5 dg
4 b, ¢ 4,
ag by

The diagonals are arranged symmetrically with outer diagonals located at a distance L from three
central diagonals. Thus, SLE may be expressed in the following way:

cx,+dx, +ex, , =p, i=]

i7vi+l i7Vi+L

bx_,+cx +dx, +ex, , =p, i=2,..,L;

i7Vi+l iVi+L

ax,_,+bx  +cx +dx, +ex,, =p, i=L+1,...,N—-L; %)

i7Vi+l i
ax, , +bx,_+cx, +dx,  =p, i=N-L+1,...,N-1;

ax,, +bx ,+cx =p, i=N.

The approximate solution is found by assigning the initial guessed value of the unknowns and the
repeated iteration until the margin of error is acceptable.
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Each of five diagonals may be effectively represented computationally as vectors, considered as con-
stant data within the algorithm. The assumed values of the unknowns are variable data, updated grad-
ually through the instructions inside the main inner loop, but are not updated until the end of each
iteration.

This provides the possibility of massive parallelism for large systems of equations, due to the absence
of read-after-write (RAW) dependencies within the inner loop. Nevertheless, consecutive iterations do
present unsolvable RAW dependencies.

The algorithm stops when the solution error is sufficiently small. The following expression presents
the condition of acceptable error:

— < (6)

The algorithm consists of two basic cyclical steps: the update of the unknowns X and the computa-
tion of the error E. Fig. 1 presents the behavior of the algorithm.

This work carries out the analysis of existing implementations, aimed at achieving the best perfor-
mance, leading to the conclusion that a hardware implementation of the Jacobi iterative method using
reconfigurable accelerators is highly relevant.

This work employs the following research methods:

» simulation modeling of software and hardware implementations for solving SLE using the Jacobi
method;

* comparative analysis of hardware performance and hardware costs.

The goal of the analysis and synthesis of hardware implementation of the Jacobi iterative method is
to achieve higher performance mainly through the parallelization of the algorithm.

Fig. 2 shows the parallelism applied to the basic conceptual computing units. For high-level language
descriptions, each of the base blocks may be parallelized using the declaration of the type #pragma un-
roll applied to its loops.

The design may be additionally parallelized using the pipelined processing, i.e., dividing each com-
putationally intensive instruction within the loops into several stages. In this way, intermediate results
from each stage are stored in certain registers at each clock cycle, so that the next instruction may imme-
diately start the completion of the stage accomplished by the previous instruction. This concept, similar
to the pipelined processing in standard microprocessors, is shown in Fig. 3.

Considering the approximative character of the algorithm, it is possible to define asymmetric work-
loads, where E is not executed for each newly computed value of X, but only after a given X number of
X computations. Consequently, the implementation is more effective when hardware resources are
allocated more heavily to computing X than to computing E.

Solution

xK is acceptable
solution

Fig. 1. Behavior of the described algorithm
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Fig. 2. Parallel approach representation

1 iteration

_F
St1|st2|st3|®©®
AR
st1st2 st3/9 © ©siN
FEL-H
St1]st2st3/© © ©[siN

© ©
© ©
() ©

Fig. 3. Pipeline representation

An analysis of several approaches for the implementation of the elementary loops of the algorithm
was carried out, in particular, to computing X. Assuming a direct translation of the algorithm to hard-
ware resources, each equation may be represented by a line of code inside the inner loop of the al-
gorithm, each line synthesized into hardware resources performing the required multiplications, sub-
tractions, additions and divisions. Considering that for large problems the size /N of the Jacobi matrix
is usually much larger than the distance L of the outer diagonal, the central equations (5) dominate in
number and thus require more computation. For this reason, as shown in this work, this section benefits
most from the maximum achievable parallelism in order to achieve the best possible performance.

This work shows that data organization, the vectors storing the variables and constants of the algo-
rithm in particular, should support higher memory bandwidth in the computing process for the most
frequently accessed data. In particular, in order to increase memory bandwidth and the memory rep-
lication and adaptation of its structure were used, improving the performance of the implementation.

In order to achieve better performance, several additional optimizations were applied, including the
replication of memories storing the most frequently accessed unknowns to alleviate bottlenecks, the
parallelization of the accumulator and the preliminary computation of the floating-point divisions and
storage of their results into a separate memory.

The goal of the optimization of the hardware solution within this work is the best possible perfor-
mance considering the limitations imposed by the available resources on the target FPGA device.

The Xilinx Vitis HLS high-level synthesis tool was used for the hardware implementation. The soft-
ware implementation was executed on a standard computer microprocessor.

Fig. 4 shows a representation of an accumulator. Although its implementation may differ, its func-
tionality is identical to an adder, where the output is fed back to one of its inputs. Thus, its characteris-
tics may be considered identical to those of a standard adder. In particular, for the implementation using
the available digital signal processors (DSP), the typical case was considered with the initiation interval
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Fig. 4. Logical representation of an adder (left) and an accumulator (right)
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Fig. 5. Completely parallel accumulator

consisting of three cycles. Therefore, for SLE with N variables, the global delay for computing the error
norm, required for enabling early completion of the algorithm, is three NV cycles.

This computation time may become significantly longer than the actual computation of variables.
For this reason, a parallel version of the accumulator is proposed. Fig. 5 shows the necessary structure
of an accumulator for fully parallelizing the accumulation of eight values. It can be observed that the
structure requires in total N — 1 adders and provides a result within 3*|log V| cycles. Therefore, while
the performance improvement is considerable, the area requirements also increase substantially.

For this reason, employing a hybrid accumulator is advantageous, as shown in Fig. 6. A pipelined
implementation of this approach allows to obtain a result with a speed of 3*(|log2 K| + (N/K — 1)) cycles,
where K is the number of adders (i.e., the area) required by the implementation.

In this work, the accumulator was fully parametrized, and K becomes an arbitrary factor, determined
by design choice. In this context, it is advisable to maximize K within the area constraints, determined
by the maximum achievable parallelism of the remaining components of the accelerator.

For problems of large size and degrees of parallelism of several tens of computing units, the required
memory bandwidth may exceed the capabilities of the platform, which, in our case, is limited to 460 GB/s.
For this reason, efficient memory access becomes necessary.

Given the SLE under consideration, each instruction may involve up to five simultaneous accesses
to the vector of variables (in the case of the computation of the error, while for the update of the var-
iables up to four read accesses may be required at once).

Regarding the five-diagonal system under study, at each instruction two neighboring variables will be
accessed, as well as two distant variables, corresponding to the outer diagonals located at a distance L
from the central diagonal.

To the extent allowed by available resources, a window of relevant variables may be stored in internal
registers, including neighboring and distant variables for all instructions that may execute in parallel.
The variable from the left distant diagonal may be deleted from the registers when it is no longer needed
in subsequent computations, releasing resources for new variables from the right distant diagonal.
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Fig. 6. Hybrid implementation of an accumulator

In this way, the variables may be stored in a cache in a sliding window fashion, so that memory access
bandwidth to main memory is reduced: from five (or four) accesses to the memory of variables to one,
achieving an approximate 30% reduction in required main memory bandwidth.

In some cases, the problem is so large and the distance L so great, that it’s impossible to store all rel-
evant variables in registers. In this case, even the storage of immediate neighbors leads to the reduction
of memory bandwidth requirements by roughly 10%. A compromise solution is also possible, achieving
an approximate 20% reduction.

Results and discussion

Research on the efficiency of the software and hardware implementations was carried out. The per-
formance of the solution was taken as the criterion of efficiency when comparing results.

Considering that the achievable performance depends on the size of the problem, a number of matri-
ces of different sizes was generated for this research.

Another important factor influencing the performance of the system, considering the iterative na-
ture of the Jacobi method, is the precision required for the approximate solution. The more precise a
result should be in order to be considered as acceptable, the more iterations should be executed, with
a proportional increase in the processing time. In this work, values of epsilon (¢) within the range from
10! to 1073 were investigated.

The results obtained for the software and hardware implementations show that the hardware imple-
mentation generally achieves a performance increase of approximately one order of magnitude com-
pared to the software approach.

The system was described within the Vitis HLS of Xilinx environment!, and the target device was
the Alveo? [20] device: xcvuSp-fiva2104-1-e. Experimental results show that the time required to solve
large SLE is reduced by up to two orders of magnitude under given conditions, compared to the standard
software approach, based on a microprocessor.

Conclusion

The hardware implementation of SLE solver using the Jacobi iterative method, developed in this
work, targets reconfigurable hardware accelerators and provides better performance than the soft-
ware-based approach.

Using the resulting solution as a library component allows for increasing the efficiency of computing
systems, achieving the best performance, when solving problems requiring the solution of SLE.

! Vitis HLS User Guide, Available: https://docs.amd.com/viewer/book-attachment/4lwvWeCi9jb~DWzdfWuVQQ/xRd0KUy2XBYs6mDFn-
JOOYA-4lwvWeCi9jb~DWzdfWuVQQ (Accessed 13.01.2026)

2 Alveo U50 Data Center Accelerator Card Data Sheet: Alveo U50 Card Data Sheet (DS965), Available: https://docs.amd.com/r/en-US/
ds965-u50 (Accessed 13.01.2026)
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In the course of this work, a number of approaches to increasing the degree of parallelism were pro-
posed, including parallelization and pipelining, implemented using high-level synthesis tools.

A further direction of the work is related to the analysis of the efficiency of hardware implementation
for SLE solvers using other methods, considering their inherent parallelism.
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