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Abstract. Estimating Heterogeneous Treatment Effects (HTE) is crucial for personalized  
decision-making in medicine, economics and engineering. While machine learning models for  
Conditional Average Treatment Effect (CATE) estimation have become increasingly accurate,  
they often remain black boxes, providing little insight into why treatments affect individuals  
differently. This paper introduces CATE-Concept Bottleneck Model (CATE-CBM), a novel  
framework that integrates concept-based learning with CATE estimation to bridge this  
interpretability gap. Our approach enforces a concept bottleneck that forces the model to express  
treatment effects through understandable concepts, enabling transparent reasoning about which  
concepts drive heterogeneous effects. Through experiments on a modified MNIST dataset, we  
demonstrate that CATE-CBM maintains competitive accuracy while providing meaningful  
concept-based explanations of treatment effect heterogeneity. The model successfully identifies  
how both the presence and absence of specific concepts influence treatment outcomes,  
offering clinicians and engineers both accurate effect estimates and interpretable rationales  
for personalized interventions. This work represents the first unification of concept bottleneck  
models with causal effect estimation, advancing the frontier of explainable artificial intelligence  
in causal inference.
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Аннотация. Оценка условного эффекта лечения имеет решающее значение для пер-
сонализированного принятия решений в медицине, экономике и технике. Хотя модели  
машинного обучения для оценки условного среднего эффекта лечения (CATE) стано-
вятся все более точными, они часто остаются «черными ящиками», не давая понимания  
того, почему лечение по-разному влияет на различных людей. Данная работа представ-
ляет новую модель CATE-CBM, которая интегрирует обучение на основе концептов с  
оценкой CATE, чтобы преодолеть этот разрыв в интерпретируемости. Предлагаемый  
подход использует обучение на концептах, заставляя модель выражать эффекты лече-
ния через понятные для человека концепты, что позволяет прозрачно объяснять, какие  
именно концепты обуславливают эффекты. В экспериментах на модифицированном на-
боре данных MNIST демонстрируется, что CATE-CBM сохраняет конкурентоспособную  
точность, одновременно предоставляя содержательные объяснения предсказания эф-
фекта лечения на основе концептов. Модель успешно идентифицирует, как присутствие  
или отсутствие конкретных концептов влияет на результаты лечения, предлагая клини-
цистам и политикам как точные оценки эффекта, так и интерпретируемые обоснова-
ния для персонализированных вмешательств. Данная работа представляет собой первую  
унификацию моделей с обучением на концептах и оценкой причинно-следственных  
связей, продвигая границы объяснимого искусственного интеллекта.

Ключевые слова: машинное обучение, обучение на концептах, условный средний эффект 
лечения, интерпретируемость, нейронная сеть
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Introduction

The pursuit of explainability and the integration of human-centric reasoning into Machine Learn-
ing (ML) has catalyzed the development of Concept-Based Learning (CBL). Unlike conventional  
models that operate directly on raw, low-level features, CBL utilizes high-level, human-intelligible  
concepts as intermediate representations for making predictions [1]. This paradigm aims to bridge the  
gap between data-driven patterns and expert knowledge, leading to models that are not only more in-
terpretable but also more data-efficient and robust [2, 3]. A prominent instantiation of this approach  
is the Concept Bottleneck Model (CBM), which enforces a compressed, concept-based representa-
tion of the input, forcing the final classifier to rely solely on these concepts for prediction [4]. This  
architectural constraint ensures that the model’s decision-making process is intrinsically tied to a  
vocabulary of meaningful concepts, significantly enhancing its explainability [3].
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The application of CBL can extend beyond standard supervised learning into more complex do-
mains, such as estimating Heterogeneous Treatment Effects (HTE). HTE is the recognition that the  
effect of a treatment (e.g., a drug, a policy) varies across different individuals [5–7]. While HTE de-
scribes this general property, the Conditional Average Treatment Effect (CATE) quantifies it by meas-
uring the average treatment effect for a specific subpopulation with given characteristics. To estimate  
the treatment effect, patients are typically divided into treatment and control groups, and their average  
outcomes are compared. This comparison provides an estimate of the causal effect of the treatment.  
Various approaches to estimating this effect are considered in several surveys [5, 8–12].

The primary aim of combining HTE and CBL is to provide explanations for why a certain treat-
ment is predicted to be more effective for one individual than for another. For instance, in a medi-
cal context, a model might predict a stronger positive treatment effect for patients characterized by  
the concepts “high genetic marker expression” and “early disease stage”, providing clinicians with a  
clear, conceptual rationale for personalized treatment plans. Incorporating CBL into CATE estima-
tion moves us beyond simply knowing that a treatment effect is heterogeneous; it provides the crucial  
why, explaining this heterogeneity through the lens of understandable concepts. This can lead to more  
informed and personalized decisions in healthcare, economics and public policy. Moreover, to the  
best of our knowledge, no existing method combines CBL with HTE or CATE.

Motivated by the above reasoning, we propose a model called CATE-CBM, which integrates concept  
learning and CATE estimation into a single framework. The model consists of two main components:

1.  The first produces concept probabilities, which serve as a type of embedding.
2.  The second part solves the CATE estimation problem using these predicted concept probabilities  

for patients in the treatment and control groups.
An important characteristic of CBL is the interpretation of predictions in terms of human-intelligi-

ble concepts. Therefore, this paper demonstrates how to locally interpret the CATE predictions made  
by our model.

Numerical experiments conducted on a modified MNIST dataset demonstrate how the integration  
of CATE estimation and CBL can improve accuracy and provide explanations for the CATE-CBM  
predictions in terms of concepts.

Related work

Concept-based learning
The growing interest in CBL has led to a proliferation of models aimed at improving the inter-

pretability and explainability of ML predictions [1, 2]. These models leverage understandable concepts  
to make model reasoning more transparent and to align machine decisions with user intuition. The  
CBM [4] as a special case of CBL serves as a foundational architecture for many CBL approaches.  
Its efficient two-stage design in predicting concepts from inputs, then targets from concepts, has in-
spired numerous extensions. These include models that learn continuous concept embeddings [13],  
probabilistic variants to handle uncertainty [14] and investigations into concept independence and  
intervention [15, 16]. Further adaptations have integrated powerful pre-trained models like CLIP [17,  
18] and addressed performance disparities between different CBM formulations [19].

Survey papers [20–22] comprehensively discuss aspects of CBL, CBM and their applications.
Estimating CATE
Accurately estimating CATE is fundamental to various applications. Early statistical methods were  

ranged from LASSO-based estimators [23] to causal forests [24]. Subsequent research extended these  
ideas, developing methods for censored data [25] and anomaly detection [26].

A key development was the formalization of meta-learners, flexible estimation strategies like  
T-learners, S-learners and X-learners [27]. More recently, neural networks have emerged as a powerful 
framework for CATE estimation, leading to numerous specialized architectures [28–30].



Интеллектуальные системы и технологии, искусственный интеллект

10

Recent work has extended CATE estimation to transformer-based architectures, leveraging atten-
tion mechanisms to model complex dependencies [31–33]. While Nadaraya-Watson kernel regression  
provides a theoretically grounded approach to CATE estimation [34, 35], its practical application is  
often limited by data sparsity, particularly in the treatment group.

Background

Concept-based learning
The paradigm of CBL formalizes a ML problem where a model must reason using a set of under-

standable, high-level concepts in addition to, or instead of, raw input features [36]. Formally, this  

framework assumes the availability of a training dataset                                    where                          is  

a d-dimensional input feature vector;                        is a continuous-valued regression target;            

                                                in particular ci ∈ {0, 1}m is a vector of m binary concept annotations as- 

sociated with xi. Here,                indicates the presence of the j-th concept in the sample.
The core objective of CBL is twofold. The primary goal is to learn a hypothesis                              

that can accurately predict both the target variable and the underlying concepts for a new input. The  
secondary, and equally critical, goal is to achieve a high degree of model explainability. By leveraging  
concepts as intermediate representations, CBL provides a transparent interface through which a user  
can understand which concepts present in an input were most influential in arriving at a final prediction,  
and to what degree they influence the predicted value.

A seminal architecture that instantiates this paradigm is the CBM [4]. The CBM explicitly decom-
poses the function h into two distinct stages: a concept encoder                      that maps the raw input  
x to a vector of predicted concepts      a label predictor                     that maps the predicted concepts to  
a final, continuous target   

The final prediction for a new input x is thus computed as                           This architectural design  
imposes a “concept bottleneck”: all information from the input must flow through the intermediate  
concept representation before a final prediction is made. This ensures that the model’s output is in-
trinsically and interpretably linked to the human-defined concepts, allowing a user to trace the pre-
dicted value      back to the specific concepts      that caused it, thereby fulfilling the central promise  
of CBL to provide explainable predictions.

Treatment effect estimation
Let the available data be partitioned into two groups: a control group and a treatment group. The  

control group consists of c patients and is denoted as                                                 where each patient  

i is characterized by a M-dimensional feature vector                                         and a continuous out-
come yi ∈ ℝ (e.g., survival time, blood pressure). Similarly, the treatment group contains t patients  

and is denoted as                                                  with feature vectors zi ∈ ℝM and outcomes hi ∈ ℝ. For  
notational consistency across all n = c + t patients, we define the treatment assignment indicator  
Ti ∈ {0, 1}, where Ti = 0 indicates assignment to the control group and Ti = 1 to the treatment group.

The central goal of causal inference is to estimate the effect of a treatment on an outcome. For  
a given patient, we define two potential outcomes: Y (the outcome if the patient does not receive the  
treatment, T = 0) and H (the outcome if the patient does receive the treatment, T = 1). A fundamental  
problem in causal inference is that for any single patient, we can only observe one of these potential  
outcomes, either Y or H, but never both. To overcome this, we estimate the CATE, which is the  
expected treatment effect for a subpopulation defined by a specific feature vector x [37]:
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One of the important concepts if the treatment effect is the propensity score e(x) which is the prob-
ability that a specific patient will receive the treatment given its observed characteristics (covariates),  

i.e., there holds                                             It is used to adjust differences between treatment and con- 
trol groups and to isolate the true effect of a treatment from the effects of pre-existing differences.

Under some assumptions [37], CATE can be identified from the observed data as the difference 
between two conditional expectations:

Let the outcome for a control patient be governed by g0: ℝd → ℝ and for a treated patient by  
g1: ℝd → ℝ. Then we can write

where ε is a random noise variable with            
Hence, the CATE is simply the difference between these two response surfaces:

Proposed model

The proposed model, CATE-CBM, can be regarded as a combination of a CATE estimation model  
and a CBM. Its architecture is inspired by the Dragonnet model [38], which was introduced for CATE  
estimation. The architecture of CATE-CBM is depicted in Fig. 1.

It can be seen from the figure that the convolutional neural network (CNN) extracts a feature  
vector v which is fed to fully-connected neural networks (FCN-0 and FCN-1) for predicting the  
concept probability distributions                              for controls and                             for treatments,  
respectively. The use of CNNs is important for reducing the dimensionality of images. The whole  
network has three heads: two heads predict targets y and h from the corresponding concept probabili-
ties; the third head can be regarded as the propensity score regularization. It forces the model to learn  
the structure of the confounding [38]. We propose to implement the propensity score regularization  
by means of the attention mechanism. In this case, the propensity score e(x) or e(z) is computed  
through the attention weights a(qi, qj, θ) with trainable parameters θ as follows:
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Fig. 1. Architecture of the proposed model CATE-CBM
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where the attention weights are defined as:

Here Kθ(qi, qj) is a kernel. In particular, if the kernel is Gaussian, then the attention weight can be  
expressed through the softmax function as:

It should be noted that instead of the Gaussian kernel, we can use a neural network to learn a  
complex, data-driven similarity metric. However, this replacement significantly complicates the pro-
pensity score regularization.

In the context of the attention mechanism [39], the vector qi is referred to as the query, while vec-
tors qj and indicators Tj are called the keys and values, respectively.

Predictions y and h for every x and z, respectively, are obtained as outputs of the corresponding 
FCNs.

The loss function for training the whole model consists of the following five components:
•              and              are the Mean Squared Error (MSE) loss functions for the outputs y and h,  

respectively. The loss functions are of the form:

where      and      are predicted values of yi and hi, respectively.

•            and            are the cross-entropy functions controlling probabilities of concepts p and q,  
respectively. The loss functions correspond to solving the concept classification task. For a single  
example with true concept values                       the loss            is defined as:

Here      is the predicted value of pi. The loss            is defined in the same way replacing      with      
•        is the binary cross-entropy loss for the propensity score:

where     is the predicted propensity score value.
In sum, the whole loss function is defined as

where γi, i = 1,...,5, are hyperparameters weighting the loss components.
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The predicted value of the treatment effect is computed as                                     The model is 
trained in the end-to-end manner.

During inference, an image x is fed into a CNN, the output of which is an embedding v. This em-
bedding is then passed to two FCNs to obtain the concept probability vectors p and q, such that one  
vector corresponds to the control group and the other to the treatment group. These vectors are fed  
into neural networks that generate the predictions of y and h.

It is important to note that an explicit embedding step is not strictly necessary. The concept prob-
ability vectors p and q can be obtained directly as the output of the CNN, bypassing the intermediate  
embedding representation. However, the intermediate embedding may have advantage in comparison  
with the direct implementation of the concept probabilities as the output of the CNN. The embed-
ding layer can act as a form of regularization, preventing the concept predictors from overfitting to  
the training data by forcing information compression. Moreover, the CNN’s feature maps are often  
low-level (edges, textures). An embedding layer can learn to combine these low-level features into a  
more sophisticated, high-level representation that is better suited for predicting complex concepts.

Local interpretation of the CATE predictions

An important question in CATE estimation is its interpretation that lies in answering the question  
of which concept change had the strongest impact on the estimated CATE value. The proposed model  
allows us to answer this question in the following way.

First, it should be noted that we consider the local interpretation which allows us to explain an  
individual prediction at a point of interest. Methods of the local interpretation are based on a line-
ar approximation of the predictive model in a neighborhood around the explainable point [40, 41].  
A well-known local explanation method is the Local Interpretable Model-agnostic Explanations  
(LIME) [42] interpreting the black-box model predictions by approximating the model at a point by a  
linear model whose coefficients can be viewed as a quantitative representation of the feature impacts  
on the prediction [43]. The approach to interprete predictions by means of the black-box model ap-
proximation at a point by the linear model can be applied to many classification and regression tasks.  
Therefore, we consider its use for interpreting the CATE predictions.

The output FCN-0 and FCN-1 are linear, which makes it possible to interpret each predicted  
function            and            in terms of concepts. If we identify the concepts with the highest probabi- 
lity, then the largest weights of the neural networks precisely show which of the identified concepts  
are significant for each function. It should be noted that the absence of a concept can also be signi- 
ficant. The change in their values, if present for a given concept, is exactly what answers the question  
of CATE interpretation.

Suppose that functions                               and                              are linear approximations of fun- 
ctions            and              respectively, at a point x, where a = (a1,...,ad)T and b = (b1,...,bd)T. Then  

we can write                                  and                                  Here e0 and e1 are the approximation errors.  
The CATE in this case is defined as

Note that there holds

Hence, the linear difference                          can be regarded as a linear approximation of           at  
point x if the approximation errors e1 and e0 are small. Finally, if we know weights of FCN-0 and 
FCN-1, a and b, the the values of the concept importance are defined as the difference b – a.
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Numerical experiments

A difficulty of comparing the proposed model with other models is that CATE-CBM is the first  
model combining CATE and CBM. Therefore, we will show some properties of CATE-CBM by  
means of numerical experiments.

To study the proposed model, a synthetic dataset is constructed from the well-known MNIST da-
taset [44] which represents 28×28 pixel handwritten digit images. The original MNIST dataset has a  
training set of 60000 instances and a test set of 10000 instances1.

Each instance in the synthetic dataset consists of four different digits randomly taken from MNIST  
such that the instance has two digits in the first row and two digits in the second row as it is shown in  
Fig. 2.

Each instance has the size 56×56. A similar dataset is used in [14] and in [45]. Concepts c(1),…,c(10)  
are binary and defined by the presence of the corresponding number 1,…,9,0 in the instance. For exa- 
mple, the first instance has concepts (1,1,1,0,0,0,0,0,0,1), the second instance has concepts 
(0,0,0,0,1,1,1,0,0,1).

We analyze the proposed model by its training on numbers of instances (from 1000 till 5000). The  
number of testing images is 20000. The cross-validation in all experiments is performed with 50 repeti-
tions.

For experiments, we apply functions similar to those used in [27]. They are expressed through the  
indicator function I taking value 1 if its argument is true. The function for controls is represented as

where bT = (1,2,3,4,5,4,3,2,1,0.01).
The function for treatments is represented as

where bT = (0.01,1,2,3,4,5,4,3,2,1).
Values of y and h are generated by adding the normally distributed random numbers ε with the zero  

expectation and the standard deviations σ0 = 1.5 for controls and σ1 = 2.0 for treatments.
Suppose that we have additional information about peculiarities of digits in controls and treat-

ments, namaly controls do not have digits “1”, treatments do not have digits “7”. In accordance with  
this information, we generate examples for control and treatment groups. It can be seen from Fig. 2  
that the first example belongs to treatments, the second belongs to controls, the third and fouth can  
belong to treatments as well as to controls, therefore, they are randomly referred to the controls or  
treatments. If an example contains “1” and “7” simultaneously, then it is removed from the generated  
dataset.

For the modified MNIST datasets, we employ CNN (Fig. 1) consisting of four convolutional layers  
with progressively decreasing kernel sizes, starting from (8×8) to (4×4). LeakyReLU activation func-
tions are used throughout, and the final layer is linear. FCN-0 and FCN-1 consist of two layers with  
sigmoid activation functions. The output FCNs contain one layer which is linear to implement inter-
pretability of the CATE. Parameter θ of the Gaussian kernel in the propensity score regularization is  
trainable.

The MSE measure is used as an accuracy measure of CATE in experiments. We compare the pro-
posed model CATE-CBM with the same implementation of the CATE estimator but without using  
concepts. MSE of CATE with and without using concepts is shown in Fig. 3, where MSE as functions  

1 The dataset is available at http://yann.lecun.com/exdb/mnist/.

( ) ( )T
0 45 1 ,g I c= + =c b c

( ) ( ) ( )T
1 3 85 1 7 1 ,g I c I c= + = + =c b c
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Fig. 2. Examples of the modified MNIST dataset

Fig. 3. MSE of CATE with and without using concepts

Fig. 4. Probabilities of concepts for the testing example

of the training set size of the modified MNIST is demonstrated. It can be seen from the graphs that  
information about concepts significantly improves the model performance.

Another important consideration is the interpretation of the results. Following the aforementioned  
interpretation method, we compute the probabilities of concepts under the assumptions that an ex-
ample belongs to the control and treatment groups. Fig. 4 illustrates these concept probabilities for an  
example containing the digits 4, 6, 2 and 0. The probabilities for these corresponding concepts are the  
largest, indicating that the CATE-CBM model correctly recognizes them.

Fig. 5 shows the normalized weights from the output layers FCN-0 and FCN-1. The importance  
of each concept for the CATE prediction can be derived from the difference between the weights of  
FCN-1 and FCN-0. The results, depicted in Fig. 6, reveal that the most important concept is “5”,  
which is not present in the example. This interesting finding demonstrates that the absence of a con-
cept can also be significant. Furthermore, the importance value for this concept is negative, implying  
that concept 5 acts to reduce the treatment effect. In contrast, concepts 3 and 7 have positive impor-
tance.
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It should be noted that the above interpretation results pertain only to the specific example with  
digits 4, 6, 2 and 0.

Conclusion

This paper introduced CATE-CBM, the first model to integrate CBL with CATE estimation. By  
combining interpretable concept bottlenecks with CATE estimation, the model provides both accurate  
treatment effect predictions and understandable explanations through concept importance analysis.

The numerical experiments conducted on the modified MNIST dataset demonstrate several im-
portant properties and advantages of the proposed CATE-CBM model.

1.  First, the incorporation of concept information significantly enhances model accuracy, as ev-
idenced by the consistently lower MSE of CATE estimation compared to the same model without  
concept utilization.

2.  Second, the model successfully identifies and extracts relevant concepts from complex image  
data, as shown by the high probability scores assigned to correct digit concepts in test examples.

3.  Third, CATE-CBM provides transparent insights into treatment effect mechanisms through  
concept importance analysis.

4.  Fourth, the CNN-Concept architecture proves effective for handling complex visual data while  
maintaining interpretability, successfully balancing predictive performance with explanatory capabili-
ties.

Fig. 5. Importance of concepts for the testing example

Fig. 6. Values of the concept importance for the CATE interpretation of the considered example
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These findings establish CATE-CBM as a promising approach for CATE estimation in settings  
where both accuracy and interpretability are crucial, particularly when dealing with high-dimensional  
data requiring meaningful feature extraction.

Several promising directions emerge from this work.
1.  First, extending CATE-CBM to handle continuous-valued concepts and temporal treatment  

effects would broaden its applicability.
2.  Second, developing methods for automatic concept discovery rather than relying on pre-de-

fined concepts could enhance model flexibility.
3.  Third, incorporating uncertainty quantification for both concept predictions and treatment  

effects would provide crucial reliability measures for decision-making.
Applications in real-world clinical trials and policy evaluation settings would further validate the  

approach’s practical utility.
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