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Abstract. Estimating Heterogeneous Treatment Effects (HTE) is crucial for personalized
decision-making in medicine, economics and engineering. While machine learning models for
Conditional Average Treatment Effect (CATE) estimation have become increasingly accurate,
they often remain black boxes, providing little insight into why treatments affect individuals
differently. This paper introduces CATE-Concept Bottleneck Model (CATE-CBM), a novel
framework that integrates concept-based learning with CATE estimation to bridge this
interpretability gap. Our approach enforces a concept bottleneck that forces the model to express
treatment effects through understandable concepts, enabling transparent reasoning about which
concepts drive heterogeneous effects. Through experiments on a modified MNIST dataset, we
demonstrate that CATE-CBM maintains competitive accuracy while providing meaningful
concept-based explanations of treatment effect heterogeneity. The model successfully identifies
how both the presence and absence of specific concepts influence treatment outcomes,
offering clinicians and engineers both accurate effect estimates and interpretable rationales
for personalized interventions. This work represents the first unification of concept bottleneck
models with causal effect estimation, advancing the frontier of explainable artificial intelligence
in causal inference.
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Annoramus. OueHka ycioBHOro addekra JeyeHUus UMeeT peluampllee 3HaYeHue i mep-
COHAJIM3UPOBAHHOTO MPUHSITUS PEIIeHU B MEIUIIMHE, SKOHOMUKE M TeXHUKE. XOTsS MOLCIU
MAIITMHHOTO OOYYCHMS IJI OICHKHU YCIOBHOTO cpemHero addexrta neueHus (CATE) craHo-
BSTCSI BCe 00Jiee TOYHBIMU, OHU YacTO OCTAIOTCS «YEPHBIMU SIIMKAMU», HE JaBas MOHUMaHUS
TOro, Moyemy JeuyeHUe MOo-pa3HOMY BIMSIET Ha pa3IM4YHbIX Jioaei. JlaHHas paboTa mpeacTaB-
asieT HoBylo Moaelb CATE-CBM, koTopass MHTeTpupyeT OoOydyeHMe Ha OCHOBE KOHILENTOB C
oueHkoir CATE, uToObl mpeoaoseTh 3TOT pa3pbiB B MHTepHpeTupyeMocTu. [IpemnaraeMbiit
IMOIXOM MCIIOJIb3yeT 00yYeHMe Ha KOHIIeIITaX, 3aCTaBIsIsI MOACIb BhIpaxkaTh 3((MEKTH Jeue-
HUS 4yepe3 MOHSATHBIC TSI YeJIOBeKa KOHIICTITHI, YTO TTO3BOJISIET IIPO3PauyHO OO0BSICHATDH, KaKue
MMEHHO KOHIENTHl 00ycnaBauBamoT 3pdekThl. B axcnepumeHTax Ha MOAU(MULIIMPOBAHHOM Ha-
oope maHHbiX MNIST nemonctpupyercs, yuto CATE-CBM coxpaHseT KOHKYPEHTOCITOCOOHYIO
TOYHOCTb, OJHOBPEMEHHO TMPENOCTaBJIsIsI COmEpXXaTeJlbHbIe OOBSICHEHUS MpenckazaHust 3d-
dekTa JeyeHusI Ha OCHOBE KOHIENTOB. MoJesb YyCIEeIHO UASHTUDUIIUPYET, KaK MTPUCYTCTBUE
WJIN OTCYTCTBME KOHKPETHBIX KOHIICTITOB BIMSCT Ha pe3ybTaThl JICUCHUS, TIpeaarast KInH-
IIMCTaM ¥ TOJMTHUKAM KaK TOYHBIC OLICHKM 3¢ @eKTa, TaK U WHTEPIPeTUpPyeMble 000CHOBA-
HUS IS TIepCOHAIM3UPOBAHHBIX BMEIIaTeIbCTB. JlaHHast paboTa mpeacTaBisieT co00il mepByIO
yHUGbUKALIMIO Mojedell ¢ Oo0ydyeHMeM Ha KOHILIeNTax M OLEHKONH MPUYMHHO-CJIEeICTBEHHBIX
CBsI3el, MPOJABUTas 'PaHULIBI 00bSICHUMOTO UCKYCCTBEHHOTO MHTEJIIEKTA.

KmoueBble cioBa: MalllMHHOE OOydeHMe, OOydyeHMe Ha KOHIIEITaX, YCJIAOBHBINM cpemHuii apdekT
JICYEHUST, THTEPIIPETUPYEMOCTD, HEIIPOHHAS CETh

®unancupoBanme: VccienoBaHme BHITTOJTHEHO TTpU (PMHAHCOBOM TToanepxKe Poccuiickoro Ha-
y4HOro (PoHAAa B paMKax peaM3aluy Ipoekra «Mojeau MalrHHOro oO0ydyeHUs I OLEHKU
addekTa neyeHNs Ipyu pa3HOPOJHOIN TMATHOCTUYECKON MH(OPMAILIMK ¢ SKCIIEPTHLIMU ITPaBU-
namu» (Cornamenue Ne 25-11-00021; https://rscf.ru/project/25-11-00021/).

Jna nutupoBanuga: Utkin L.V., Konstantinov A.V., Verbova N.M. Concept-Based Learning in
Heterogeneous Treatment Effect // Computing, Telecommunications and Control. 2025. T. 18,
Ne 4. C. 7—19. DOI: 10.18721/JCSTCS.18401

Introduction

The pursuit of explainability and the integration of human-centric reasoning into Machine Learn-
ing (ML) has catalyzed the development of Concept-Based Learning (CBL). Unlike conventional
models that operate directly on raw, low-level features, CBL utilizes high-level, human-intelligible
concepts as intermediate representations for making predictions [1]. This paradigm aims to bridge the
gap between data-driven patterns and expert knowledge, leading to models that are not only more in-
terpretable but also more data-efficient and robust [2, 3]. A prominent instantiation of this approach
is the Concept Bottleneck Model (CBM), which enforces a compressed, concept-based representa-
tion of the input, forcing the final classifier to rely solely on these concepts for prediction [4]. This
architectural constraint ensures that the model’s decision-making process is intrinsically tied to a
vocabulary of meaningful concepts, significantly enhancing its explainability [3].
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The application of CBL can extend beyond standard supervised learning into more complex do-
mains, such as estimating Heterogeneous Treatment Effects (HTE). HTE is the recognition that the
effect of a treatment (e.g., a drug, a policy) varies across different individuals [5—7]. While HTE de-
scribes this general property, the Conditional Average Treatment Effect (CATE) quantifies it by meas-
uring the average treatment effect for a specific subpopulation with given characteristics. To estimate
the treatment effect, patients are typically divided into treatment and control groups, and their average
outcomes are compared. This comparison provides an estimate of the causal effect of the treatment.
Various approaches to estimating this effect are considered in several surveys [5, 8—12].

The primary aim of combining HTE and CBL is to provide explanations for why a certain treat-
ment is predicted to be more effective for one individual than for another. For instance, in a medi-
cal context, a model might predict a stronger positive treatment effect for patients characterized by
the concepts “high genetic marker expression” and “early disease stage”, providing clinicians with a
clear, conceptual rationale for personalized treatment plans. Incorporating CBL into CATE estima-
tion moves us beyond simply knowing that a treatment effect is heterogeneous; it provides the crucial
why, explaining this heterogeneity through the lens of understandable concepts. This can lead to more
informed and personalized decisions in healthcare, economics and public policy. Moreover, to the
best of our knowledge, no existing method combines CBL with HTE or CATE.

Motivated by the above reasoning, we propose a model called CATE-CBM, which integrates concept
learning and CATE estimation into a single framework. The model consists of two main components:

1. The first produces concept probabilities, which serve as a type of embedding.

2. The second part solves the CATE estimation problem using these predicted concept probabilities
for patients in the treatment and control groups.

An important characteristic of CBL is the interpretation of predictions in terms of human-intelligi-
ble concepts. Therefore, this paper demonstrates how to locally interpret the CATE predictions made
by our model.

Numerical experiments conducted on a modified MNIST dataset demonstrate how the integration
of CATE estimation and CBL can improve accuracy and provide explanations for the CATE-CBM
predictions in terms of concepts.

Related work

Concept-based learning

The growing interest in CBL has led to a proliferation of models aimed at improving the inter-
pretability and explainability of ML predictions [1, 2]. These models leverage understandable concepts
to make model reasoning more transparent and to align machine decisions with user intuition. The
CBM [4] as a special case of CBL serves as a foundational architecture for many CBL approaches.
Its efficient two-stage design in predicting concepts from inputs, then targets from concepts, has in-
spired numerous extensions. These include models that learn continuous concept embeddings [13],
probabilistic variants to handle uncertainty [14] and investigations into concept independence and
intervention [15, 16]. Further adaptations have integrated powerful pre-trained models like CLIP [17,
18] and addressed performance disparities between different CBM formulations [19].

Survey papers [20—22] comprehensively discuss aspects of CBL, CBM and their applications.

Estimating CATE

Accurately estimating CATE is fundamental to various applications. Early statistical methods were
ranged from LASSO-based estimators [23] to causal forests [24]. Subsequent research extended these
ideas, developing methods for censored data [25] and anomaly detection [26].

A key development was the formalization of meta-learners, flexible estimation strategies like
T-learners, S-learners and X-learners [27]. More recently, neural networks have emerged as a powerful
framework for CATE estimation, leading to numerous specialized architectures [28—30].
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Recent work has extended CATE estimation to transformer-based architectures, leveraging atten-
tion mechanisms to model complex dependencies [31—33]. While Nadaraya-Watson kernel regression
provides a theoretically grounded approach to CATE estimation [34, 35], its practical application is
often limited by data sparsity, particularly in the treatment group.

Background

Concept-based learning
The paradigm of CBL formalizes a ML problem where a model must reason using a set of under-
standable, high-level concepts in addition to, or instead of, raw input features [36]. Formally, this
N
framework assumes the availability of a training dataset D= {(xi,ci, Vi )}‘71 , where x. e X RY is

a d-dimensional input feature vector; V€ Y c R is a continuous-valued regression target; €; =

= (cl.(l),. . .,ci(m)) e X c RY, in particular ¢, € {0, 1} is a vector of m binary concept annotations as-
sociated with x . Here, ci(j ) =1 indicates the presence of the j-th concept in the sample.

The core objective of CBL is twofold. The primary goal is to learn a hypothesis 4: X — (C,y)
that can accurately predict both the target variable and the underlying concepts for a new input. The
secondary, and equally critical, goal is to achieve a high degree of model explainability. By leveraging
concepts as intermediate representations, CBL provides a transparent interface through which a user
can understand which concepts present in an input were most influential in arriving at a final prediction,
and to what degree they influence the predicted value.

A seminal architecture that instantiates this paradigm is the CBM [4]. The CBM explicitly decom-
poses the function % into two distinct stages: a concept encoder g : X — C that maps the raw input
X to a vector of predicted concepts €; a label predictor f :C — ) that maps the predicted concepts to
a final, continuous target j.

The final prediction for a new input X is thus computed as y = f ( g(x)). This architectural design
imposes a “concept bottleneck”: all information from the input must flow through the intermediate
concept representation before a final prediction is made. This ensures that the model’s output is in-
trinsically and interpretably linked to the human-defined concepts, allowing a user to trace the pre-
dicted value y back to the specific concepts ¢ that caused it, thereby fulfilling the central promise
of CBL to provide explainable predictions.

Treatment effect estimation

Let the available data be partitioned into two groups: a control group and a treatment group. The
control group consists of ¢ patients and is denoted as C = {(Xl,yl),...,(xc,yc )} , where each patient

i is characterized by a M-dimensional feature vector X; = (x”,...,xid) e R and a continuous out-
come y, € R (e.g., survival time, blood pressure). Similarly, the treatment group contains ¢ patients

127t
notational consistency across all n» = ¢ + ¢ patients, we define the treatment assignment indicator

T,- € {0, 1}, where T, = 0 indicates assignment to the control group and T, = 1 to the treatment group.

The central goal of causal inference is to estimate the effect of a treatment on an outcome. For
a given patient, we define two potential outcomes: Y (the outcome if the patient does not receive the
treatment, 7= 0) and H (the outcome if the patient does receive the treatment, 7= 1). A fundamental
problem in causal inference is that for any single patient, we can only observe one of these potential
outcomes, either Y or H, but never both. To overcome this, we estimate the CATE, which is the
expected treatment effect for a subpopulation defined by a specific feature vector x [37]:

and is denoted as 7 = {(Zl,hl),...,(z h )}, with feature vectors z, € R* and outcomes 4, € R. For

r(x)=E[H—Y|X=x].

10
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One of the important concepts if the treatment effect is the propensity score e(X) which is the prob-
ability that a specific patient will receive the treatment given its observed characteristics (covariates),

i.e., there holds e(X) = Pr(T = 1|X = X). It is used to adjust differences between treatment and con-
trol groups and to isolate the true effect of a treatment from the effects of pre-existing differences.

Under some assumptions [37], CATE can be identified from the observed data as the difference
between two conditional expectations:

1(x)=EB[H|T =1, X=x]-E[Y|T =0, X=x].

Let the outcome for a control patient be governed by g : R4 — R and for a treated patient by
g,: R — R. Then we can write

y=g,(x)+¢, xeC, h=g (z)+e, zeT,

where € is a random noise variable with & [8] =0.
Hence, the CATE is simply the difference between these two response surfaces:

t(x) =2 (%)=& (x).

Proposed model

The proposed model, CATE-CBM, can be regarded as a combination of a CATE estimation model
and a CBM. Its architecture is inspired by the Dragonnet model [38], which was introduced for CATE
estimation. The architecture of CATE-CBM is depicted in Fig. 1.

It can be seen from the figure that the convolutional neural network (CNN) extracts a feature
vector v which is fed to fully-connected neural networks (FCN-0 and FCN-1) for predicting the
concept probability distributions p = ( Dise-es pm) for controls and q = (ql,...,qm) for treatments,
respectively. The use of CNNs is important for reducing the dimensionality of images. The whole
network has three heads: two heads predict targets y and /4 from the corresponding concept probabili-
ties; the third head can be regarded as the propensity score regularization. It forces the model to learn
the structure of the confounding [38]. We propose to implement the propensity score regularization
by means of the attention mechanism. In this case, the propensity score e(X) or e(z) is computed
through the attention weights a(qi, q, 0) with trainable parameters 0 as follows:

Loss function:

prfobabilities cross-entropy
of concepts i
embedding " P! with concepts
v T=0 Lcgo
1
Vi . P Y Loss function:
] g P2 MSE
._2 S . LMsg-0
>
X,Z (@) | Pm ] 7 Loss function:
—> % : o % propensity score
Images . — = Lps
qi
— o
Vd-1 2 @ Loss function:
— & N Y, MSE
[ Ve Gm Lmse-1
Loss function:
cross-entropy
with concepts
Lcg1

Fig. 1. Architecture of the proposed model CATE-CBM

11
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n

e(x)= % a(a.q,.6) 7,

J=1j#i

where the attention weights are defined as:

Ke(qi’qj)
.q,.0)= '
a(q,.4,.6) S K (a,.4,)

Here Ke(qi, q/.) is a kernel. In particular, if the kernel is Gaussian, then the attention weight can be
expressed through the softmax function as:

a(qi,qj,G) :softmax(—ql. —qf./e).

It should be noted that instead of the Gaussian kernel, we can use a neural network to learn a
complex, data-driven similarity metric. However, this replacement significantly complicates the pro-
pensity score regularization.

In the context of the attention mechanism [39], the vector q, is referred to as the query, while vec-
tors q, and indicators T/ are called the keys and values, respectively.

Predictions y and 4 for every X and z, respectively, are obtained as outputs of the corresponding
FCNs.

The loss function for training the whole model consists of the following five components:

« Ly o and L, | are the Mean Squared Error (MSE) loss functions for the outputs y and 7,
respectively. The loss functions are of the form:

| S N
Lyse o :_Z(yi =V )> Lyse =

C i=l

where j/l. and };l. are predicted values of y, and hi, respectively.

« Loz, and L, , are the cross-entropy functions controlling probabilities of concepts p and q,
respectively. The loss functions correspond to solving the concept classification task. For a single
example with true concept values (cl, e Cy ) , the loss L, is defined as:

1e R
‘CCEfo = —;élog(pi )

Here p, is the predicted value of p.. The loss L;_, is defined in the same way replacing p, with g;.
. L'PS is the binary cross-entropy loss for the propensity score:

Lg == (T, log(é(2,)) + (1-T,)-log (x.)))

i=1

where é is the predicted propensity score value.
In sum, the whole loss function is defined as

L=vLysg_o+V2Lyse1 +¥sLcs_o +VsLop +VsLpss

where v, i1=1,...,5, are hyperparameters weighting the loss components.

12
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The predicted value of the treatment effect is computed as %(x) = };(x)— f/(x) The model is
trained in the end-to-end manner.

During inference, an image X is fed into a CNN, the output of which is an embedding v. This em-
bedding is then passed to two FCNs to obtain the concept probability vectors p and q, such that one
vector corresponds to the control group and the other to the treatment group. These vectors are fed
into neural networks that generate the predictions of y and 4.

It is important to note that an explicit embedding step is not strictly necessary. The concept prob-
ability vectors p and ( can be obtained directly as the output of the CNN, bypassing the intermediate
embedding representation. However, the intermediate embedding may have advantage in comparison
with the direct implementation of the concept probabilities as the output of the CNN. The embed-
ding layer can act as a form of regularization, preventing the concept predictors from overfitting to
the training data by forcing information compression. Moreover, the CNN'’s feature maps are often
low-level (edges, textures). An embedding layer can learn to combine these low-level features into a
more sophisticated, high-level representation that is better suited for predicting complex concepts.

Local interpretation of the CATE predictions

An important question in CATE estimation is its interpretation that lies in answering the question
of which concept change had the strongest impact on the estimated CATE value. The proposed model
allows us to answer this question in the following way.

First, it should be noted that we consider the local interpretation which allows us to explain an
individual prediction at a point of interest. Methods of the local interpretation are based on a line-
ar approximation of the predictive model in a neighborhood around the explainable point [40, 41].
A well-known local explanation method is the Local Interpretable Model-agnostic Explanations
(LIME) [42] interpreting the black-box model predictions by approximating the model at a point by a
linear model whose coefficients can be viewed as a quantitative representation of the feature impacts
on the prediction [43]. The approach to interprete predictions by means of the black-box model ap-
proximation at a point by the linear model can be applied to many classification and regression tasks.
Therefore, we consider its use for interpreting the CATE predictions.

The output FCN—AO and FCN-1 are linear, which makes it possible to interpret each predicted
function j/(x) and h (X) in terms of concepts. If we identify the concepts with the highest probabi-
lity, then the largest weights of the neural networks precisely show which of the identified concepts
are significant for each function. It should be noted that the absence of a concept can also be signi-
ficant. The change in their values, if present for a given concept, is exactly what answers the question
of CATE interpretation.

Suppose that functions f,(X)=a"x+a, and f,(x)=b"x+b, are lincar approximations of fun-
ctions )A/(x) and h(x), respectively, at a point X, where a = (@,,...,a )" and b = (b ,...,b )". Then

we can write ﬁ(x) =1, (X)+ e, and fl(x) = f1 (X)+ e,. Here €, and e are the approximation errors.
The CATE in this case is defined as

%(x) = i;(x)—f/(x) = f, (x)—f0 (x)+e] —e,.
Note that there holds
|e1 —e0| < |el|+|e0|.
Hence, the linear difference f, (X) _fo (X) can be regarded as a linear approximation of %(X) at

point X if the approximation errors e, and e are small. Finally, if we know weights of FCN-0 and
FCN-1, a and b, the the values of the concept importance are defined as the difference b — a.

13
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Numerical experiments

A difficulty of comparing the proposed model with other models is that CATE-CBM is the first
model combining CATE and CBM. Therefore, we will show some properties of CATE-CBM by
means of numerical experiments.

To study the proposed model, a synthetic dataset is constructed from the well-known MNIST da-
taset [44] which represents 28x28 pixel handwritten digit images. The original MNIST dataset has a
training set of 60000 instances and a test set of 10000 instances'.

Each instance in the synthetic dataset consists of four different digits randomly taken from MNIST
such that the instance has two digits in the first row and two digits in the second row as it is shown in
Fig. 2.

Each instance has the size 56x56. A similar dataset is used in [14] and in [45]. Concepts ¢V, ...,c(1?
are binary and defined by the presence of the corresponding number 1,...,9,0 in the instance. For exa-
mple, the first instance has concepts (1,1,1,0,0,0,0,0,0,1), the second instance has concepts
(0,0,0,0,1,1,1,0,0,1).

We analyze the proposed model by its training on numbers of instances (from 1000 till 5000). The
number of testing images is 20000. The cross-validation in all experiments is performed with 50 repeti-
tions.

For experiments, we apply functions similar to those used in [27]. They are expressed through the
indicator function 7 taking value 1 if its argument is true. The function for controls is represented as

g, (c)=b'c+5I(c, =1),

where bT = (1,2,3,4,5,4,3,2,1,0.01).
The function for treatments is represented as

gl(c)szc+51(c3 =1)+7[(c8 :1),

where b" = (0.01,1,2,3,4,5,4,3,2,1).

Values of y and / are generated by adding the normally distributed random numbers € with the zero
expectation and the standard deviations 6, = 1.5 for controls and 6, = 2.0 for treatments.

Suppose that we have additional information about peculiarities of digits in controls and treat-
ments, namaly controls do not have digits “1”, treatments do not have digits “7”. In accordance with
this information, we generate examples for control and treatment groups. It can be seen from Fig. 2
that the first example belongs to treatments, the second belongs to controls, the third and fouth can
belong to treatments as well as to controls, therefore, they are randomly referred to the controls or
treatments. If an example contains “1” and “7” simultaneously, then it is removed from the generated
dataset.

For the modified MNIST datasets, we employ CNN (Fig. 1) consisting of four convolutional layers
with progressively decreasing kernel sizes, starting from (8x8) to (4x4). LeakyReLU activation func-
tions are used throughout, and the final layer is linear. FCN-0 and FCN-1 consist of two layers with
sigmoid activation functions. The output FCNs contain one layer which is linear to implement inter-
pretability of the CATE. Parameter 0 of the Gaussian kernel in the propensity score regularization is
trainable.

The MSE measure is used as an accuracy measure of CATE in experiments. We compare the pro-
posed model CATE-CBM with the same implementation of the CATE estimator but without using
concepts. MSE of CATE with and without using concepts is shown in Fig. 3, where MSE as functions

! The dataset is available at http://yann.lecun.com/exdb/mnist/.

14
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of the training set size of the modified MNIST is demonstrated. It can be seen from the graphs that
information about concepts significantly improves the model performance.

Another important consideration is the interpretation of the results. Following the aforementioned
interpretation method, we compute the probabilities of concepts under the assumptions that an ex-
ample belongs to the control and treatment groups. Fig. 4 illustrates these concept probabilities for an
example containing the digits 4, 6, 2 and 0. The probabilities for these corresponding concepts are the
largest, indicating that the CATE-CBM model correctly recognizes them.

Fig. 5 shows the normalized weights from the output layers FCN-0 and FCN-1. The importance
of each concept for the CATE prediction can be derived from the difference between the weights of
FCN-1 and FCN-0. The results, depicted in Fig. 6, reveal that the most important concept is “5”,
which is not present in the example. This interesting finding demonstrates that the absence of a con-
cept can also be significant. Furthermore, the importance value for this concept is negative, implying
that concept 5 acts to reduce the treatment effect. In contrast, concepts 3 and 7 have positive impor-
tance.

15
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Fig. 5. Importance of concepts for the testing example
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Fig. 6. Values of the concept importance for the CATE interpretation of the considered example

It should be noted that the above interpretation results pertain only to the specific example with
digits 4, 6, 2 and 0.

Conclusion

This paper introduced CATE-CBM, the first model to integrate CBL with CATE estimation. By
combining interpretable concept bottlenecks with CATE estimation, the model provides both accurate
treatment effect predictions and understandable explanations through concept importance analysis.

The numerical experiments conducted on the modified MNIST dataset demonstrate several im-
portant properties and advantages of the proposed CATE-CBM model.

1. First, the incorporation of concept information significantly enhances model accuracy, as ev-
idenced by the consistently lower MSE of CATE estimation compared to the same model without
concept utilization.

2. Second, the model successfully identifies and extracts relevant concepts from complex image
data, as shown by the high probability scores assigned to correct digit concepts in test examples.

3. Third, CATE-CBM provides transparent insights into treatment effect mechanisms through
concept importance analysis.

4. Fourth, the CNN-Concept architecture proves effective for handling complex visual data while
maintaining interpretability, successfully balancing predictive performance with explanatory capabili-
ties.

16



4 Intelligent Systems and Technologies, Artificial Intelligence

These findings establish CATE-CBM as a promising approach for CATE estimation in settings
where both accuracy and interpretability are crucial, particularly when dealing with high-dimensional
data requiring meaningful feature extraction.

Several promising directions emerge from this work.

1. First, extending CATE-CBM to handle continuous-valued concepts and temporal treatment
effects would broaden its applicability.

2. Second, developing methods for automatic concept discovery rather than relying on pre-de-
fined concepts could enhance model flexibility.

3. Third, incorporating uncertainty quantification for both concept predictions and treatment
effects would provide crucial reliability measures for decision-making.

Applications in real-world clinical trials and policy evaluation settings would further validate the
approach’s practical utility.
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