\

Computing, Telecommunication and Control, 2025, Vol. 18, No. 4, Pp. 67-75.
MHdopMaTurKa, TeNEKOMMyHUKaumm 1 ynpasneHue. 2025. Tom 18, N2 4. C. 67-75.

Research article @ 018
DOI: https://doi.org/10.18721/]JCSTCS.18406 BN
UDC 621.397

DESIGN OF IOT DEVICE
USING BEAM-SPLITTING PRISM DISPLAY

Xu Luolan &
Xi'an Jiaotong University, Xi'an, China

= xuluolan123@gmail.com

Abstract. This project is based on an open-source hardware. Its functions have been redesigned
and improved, with enhancements made to the hardware programming and power supply
circuits. System-level secondary development has been carried out to implement an embedded
system interface and a weather clock application. During development, modifying device
functionality required close coordination between software and hardware and optimization of
the enclosure structure. As resource demands increases, adjustments to the hardware power
supply and software optimization become necessary to ensure reliable operation. Internet of
things (IoT) device development necessitates a holistic approach. By working backward from the
target specifications, hardware, software and enclosure design must be considered together. The
results indicate that optimized power supply, low-coupling software operation and a thermally
efficient enclosure significantly enhance the long-term stability and low-power operation of [oT
devices.

Keywords: embedded systems development, internet of things (IoT), devices, beam-splitting prism
display, low-power optimization, graphical user interface (GUI)

Acknowledgements: I would like to thank Peng Zhihui, the author of the open-source project,
the users of the project’s forum, my university and its teaching staff for their assistance in the
implementation of this research.

Citation: Xu Luolan. Design of IoT device using beam-splitting prism display. Computing,
Telecommunications and Control, 2025, Vol. 18, No. 4, Pp. 67-75. DOI: 10.18721/
JCSTCS.18406

© Xu Luolan, 2025. Published by Peter the Great St. Petersburg Polytechnic University

4yCTp017ICTBa N CUCTEMbI Nepeaayn, npueMa n obpaboTkn curHanos

>
I
Hay4dHas ctaTbs @ oIS
DOI: https://doi.org/10.18721/]JCSTCS.18406 o
YOK 621.397

PA3PABOTKA YCTPOUCTBA 10T C UCMOJIb3OBAHUEM OUCIMIEA
HA OCHOBE JIYYENPEJIOMJIAIOLWEN NMPU3MbI

J1. Crou =
CnaHbCKWIM TPaHCNOPTHbINM YHUBepPCcUTET, CMaHb, Knutai

= xuluolan123@gmail.com

Annoramusa. Hacrosimuii mpoeKT OCHOBaH Ha armnapaTHOM O0eCHeYeHUU C OTKPBIThIM KC-
XOIHBIM KofoM. Ero dyHKuuu ObuIH MepepaboTaHbl U YJIyYIleHbl, BKIOYasl YCOBEPIIEHCTBO-
BaHUE CXEM arrnapaTHOTO MPOTrpaMMUPOBAHUS U MUTaHUsI. Bbula poBeeHa MOMOTHUTEIbHAS
pa3paboTKa Ha CUCTEMHOM YPOBHE ISl peain3allii BCTPOEHHOTO CUCTEMHOTO MHTep(deiica u
porpaMMBbl JIsi METeOCTaHIIUM ¢ yacamMu. B xome pa3paboTku Moaudukanus GyHKINOHATb-
HOCTU YCTpOWCTBa MOTpeboBajla TECHOU KOOpAMHALUM MEXIy MPOTpaMMHBIM U ammapaTHbIM
obecrneyeHUEM, a TakxKe ONTUMM3AalMU KOHCTPYKUMU Koprmyca. [Ipu yBeauueHun moTpediie-
HUS pecypcoB Uisi obecrieyeHus] HaJeXHOW padoThl MOTpeboBajach HACTpOIKa ammapaTHO-
ro obecrieyeHUs U ONTUMU3ALUS MporpaMMHoro odecrneyeHus. Paspaborka yctpoiictB UH-
tepHera Beuieil (IoT) TpebOyer komriuiekcHoro momxoma. Mcxonms M3 1LENeBBIX TEXHUYECKUX
XapaKTepUCTUK, HEOOXOMUMO paccMaTpuBaTh B KOMILIEKCE armapaTrHoe, MporpaMMHoe obe-
crieyeHue W au3ailH kopryca. Pe3ynbraThl MoKa3blBalOT, YTO ONTUMU3UPOBAHHBI MCTOYHUK
MUTaHUs, MPOrpaMMHOE OOeCIleYeHMe ¢ HU3KUM DHEpromnorpedseHrueM U TepModbbheKTUB-
HOCTb KOpITyca 3HAYUTEJbHO YBEJIWUYMUBAIOT CPOK CIYXKOBI U YJIyUyIIalOT CTAOUJIBHOCTh pabOTHI
loT-ycTpoiicTB.

KmoueBblie cioBa: pa3paboTKa BCTpauMBaeMbIX CUCTEeM, yCTpoiicTBa, nHTepHeT Beuei (1oT), nu-
cruieil Ha OCHOBE JIydeIlpeJOMJISIEMOI TPU3MBbI, ONTUMU3alLUs HEPronorpedaeHus, rpadpuue-
ckuit uatepderic nmonaws3opates (GUI)

Bbaaronapuoctu: f xoten 6b1 mobaarogaputhb [1aH Ukuxyasi, aBTopa MpoeKTa ¢ OTKPBITHIM UC-
XOIHBIM KOJOM, IOJib30BaTeseil (hopyMa NpoeKTa, MOl YHUBEPCUTET U €ro IpernojgaBaTelib-
CKMI COCTaB 3a MOMOIIb B peain3aluu JaHHOTO UCCIeT0BaHUSI.

Jlna marupoBanms: Xu Luolan. Design of IoT device using beam-splitting prism display // Com-
puting, Telecommunications and Control. 2025. T. 18, Ne 4. C. 67—75. DOI: 10.18721/JC-
STCS.18406

Introduction

With the rapid development of information technology, the proliferation of Internet of things (IoT)
devices has permeated various aspects of personal life, such as smart home and smart in-car systems.
Therefore, the rapid development of versatile IoT interactive terminal devices capable of connecting to
various gateways holds significant research value and importance [1].

This paper explores the secondary development of an open-source beam-splitting prism display de-
vice, enabling beginners to learn and master hardware design and optimization, as well as secondary
software development and comprehensive understanding of embedded systems [2].

Progress in electronics often comes from standing on the shoulders of giants. Open-source projects
represent the cumulative effort of numerous developers gradually refining a design. This study focuses
on creating an IoT device based on ESP32 hardware circuits and beam-splitting prism display, involving
circuit optimization, program modification, and functional enhancements such as temperature control
and weather information display. By creating an actual application, the device can later be extended into
a multifunctional integrated system — hence the project name AIO (All-In-One).

© Ctoii J1., 2025. U3patenb: CaHKT-MNeTepbyprckuil MoNUTEXHUYECKUIA YHUBEPCUTET MeTpa Benunkoro

4 Circuits and Systems for Receiving, Transmitting and Signal Processing

Research design

The ESP32-PICO-D4 was selected as the core controller for this research. It features a dual-core
32-bit processing core, RTC and low-power management module [3], and provides complete Wi-Fi and
Bluetooth functions, which greatly enhances the device’s practicality.

For the display, given the current trend toward transparent frameless screens, a balance between
technology and cost-effectiveness was sought. The method of prism refraction display can be used to
present various functions in a “transparent” manner at low cost. This project’s name AIO emphasizes
that the hardware platform serves as a foundation upon which a wide range of functions — such as the
weather and time display in this implementation — can be added through secondary software deve-
lopment.

Hardware design

Based on the open-source hardware, this project focuses on implementing weather and time display
with network NTP synchronization. The original hardware design supported only basic image display
functions, resulting in relatively low power consumption. However, the long-term simultaneous opera-
tion of network time synchronization, screen display, accelerometer, RGB lights and other components
will greatly increase the overall circuit power consumption, requiring modifications to the hardware
power supply [4].

The updated hardware design is as follows.

A two-layer printed circuit board (PCB) design was adopted. The upper PCB is designed for screen
display and optimized power supply. According to the size of the prism, a 1.3-inch IPS color display
with a 240x240 resolution (square format) was selected, ensuring the display area aligns precisely with
the prism’s refracting region. The lower PCB integrates main controller, accelerometer, RGB lights
and TransFlash card slot. The two circuit boards are connected by flexible flat cable (FFC) connec-
tors, which provide power and signal communication. Fig. 1 shows the front view of the lower main
control board of the device.

For the upper voltage-stabilizing display module of the device, the original circuit’s voltage-sta-
bilizing chip failed to provide stable power supply, and it was replaced with the ME6211 linear voltage
regulator to supply power to the entire device. Fig. 2 shows the front-side layout of the voltage-regulator
and display board.

Since there are no physical buttons, all control and interaction rely on the MPU6050 acceler-
ometer, which is placed in the middle of the lower main control board circuit to ensure accurate
parameters during program initialization. The ESP32 and the CP2102 chip (used for programming)

Fig. 1. Lower main control board

69

4yCTp017ICTBa N CUCTEMbI Nepeaayn, npueMa n obpaboTkn curHanos

Fig. 2. Front-side layout of the voltage-regulator and display board

are placed on the upper and lower sides of the accelerometer, respectively, while the Type-C port and
RGB LEDs are placed on the left and right sides. The back of the main control board is designed with
a TF card slot for storing images and videos in later stage, as well as files for development and calling.
This helps to save the memory space of the MCU itself.

The original project used the LP2992 linear voltage regulator, which supports a maximum output
current of 250 mA. However, the screen alone requires approximately 100 mA when illuminated. More-
over, subsequent maintenance programs occupy a large amount of processing capacity, leading to ex-
cessive power consumption that can cause severe heating of the low-dropout (LDO) regulator and even
program crashes. To solve this problem, this project replaced the ME6211C33 linear voltage regulator
chip in the screen’s power supply board, increasing the load current capacity to 500 mA and thereby
resolving the issue of overheating of the original IC. The optimized parameters of the updated circuit
are shown in Table 1.

Table 1
Comparison of updated device parameters

Ripple rejection ratio

45 dB @ 100kHz

Original Modified
Performance parameters LP2992 3V3 SGM662K-3.3
Maximum output current 250 mA 500 mA
Typical dropout voltage 115 mV @ 100mA 130 mV @ 300 mA
200 mV @ 150mA 200 mV @ 500 mA
Quiescent current Typical 170 pA Typical 30 pA
75dB @ 1kHz 75dB @ 1 kHz

40dB @ 10 kHz

Protection functions

Overcurrent, overtemperature, reverse
current protection, enable control

Overcurrent, overtemperature,
reverse current protection

Input voltage range 2.5V~ 16V 2.2V~ 5.5V
Operating junction temperature range —40°C ~ +125°C —40°C ~ +85°C
Circuit ripple 22 mV 18 mV
Cost Relatively high Very low

It can be seen that the updated power supply IC provides optimization in terms of low power con-
sumption, high-current drive capability and cost-effectiveness. Additionally, actual tests show that the

power ripple across the overall power supply has been reduced.

70

4 Circuits and Systems for Receiving, Transmitting and Signal Processing

Config

RGB APP/Weather
commaon-resource
NVS(Non-Volatile Storage)-space APP/Picture

TF-Card Controller APP APP/Media_Play

KEY-MPUG050 AEE/Secver

SYS-Drive
WiFi APP......

Fig. 3. System design mind map

Software framework

Based on the hardware design, the software must account for the actual computing power of the
MCU. Therefore, the light and versatile graphics library (LVGL) was selected to handle the control
display interface, which also helped shorten the software development cycle. The logical design of the
system framework can be understood from the overall system design mind map shown in Fig. 3.

It can be seen that all functions are implemented through the main control class (system graphical
interface). Since the hardware uses an accelerometer for control, the sensor’s output is processed as
the key value to realize human-machine interaction logic, which is the core control method of the
device — operation via the gyroscope sensor. At the software level, the key value can be used as a con-
troller to select the running app code module, thereby realizing different functions [5]. Once inside
the app, the key value is also used for control or selection. In this way, the integrated sensor fully re-
places various external devices such as computer mouse or keyboard, making the device very compact
and fully functional — consistent with the design philosophy of small, portable IoT devices.

Each app (structured as a module) can access public resources as long as it meets the interface
specifications of the overall framework. For example, access to the TF card, RGB lights, global con-
figuration files, network settings and small system parameters can all be modified and controlled. This
low-coupling program design enables rapid customization of software according to existing hardware
resources during app development.

It should be noted that, due to the physical characteristics of the light-splitting prism, during the
system development process, the image displayed on the screen must be mirrored to display the correct
content that appears on the front side of the prism.

Implementation of weather system app function

On the 1.3-inch color display, in addition to text data, weather icons can be added to enhance the
visual effect [6]. This requires the use of the display font library and the integration of the LVGL [7].
Since this project only uses weather and region-related content, other elements of the library can be
removed to save processor storage space.

For example, Chinese Amap Open Platform provides real-time updates of temperature, humidity,
wind strength and air quality for specified cities, as well as weather forecast information for the next
week. The app ID, app secret , city name, and network synchronization interval information are re-
corded in the ESP32 to avoid repeated settings after power loss or restart [8].

However, since weather conditions seldom change over short periods of time, displaying this infor-
mation is unnecessary. Moreover, this may lead to screen burn-in. Therefore, this project incorporates
dynamic clock display. On one hand, it can update data in real time to prevent screen burn-in; on the
other hand, it enhances the visual appeal of the weather app.

71

4yCTp017ICTBa N CUCTEMbI Mepeaayn, npuemMa n 0bpaboTkn CMrHanoB

>

The weather app consists of the following modules, coordinated via functions or messaging mechanisms:
1. Initialization Phase
a. Read or write weather-related configurations (e.g., city name, update interval).
b. Prepare basic styles such as fonts and color schemes for the interface.
c. Initialize runtime data for storing weather and time information.
2. Main Loop/Event Processing
a. Continuously monitor user input (e.g., return, left/right switching) and system messages
(e.g., Wi-Fi connection, parameter settings) in a loop or timed callbacks.
b. Determine the next action based on the current page type (weather or curve page): update
weather data or time, or simply display existing data.
3. Data Acquisition and Parsing
a. When the network is available, access the corresponding weather and time API; parse JSON
responses or timestamps.
b. When the network is unavailable, use local millisecond counters for time calculation until
connection is restored.
c. Store the obtained or calculated results in the runtime data structure.
4. Interface Display and Refresh
a. Update graphical interface when new data is available.
b. On the weather page: display current temperature, humidity, wind strength, city name, etc.,
along with animations.
c. On the curve page: draw weekly maximum/minimum temperature curve.
d. When the network is available, update the clock display (hours, minutes, seconds, date).
5. Exit/Cleanup
a. When the user or system requests to exit, destroy interface objects and styles, close back-
ground tasks, release memory and ensure that no system resources are retained.

The flowchart of the weather program design is shown in Fig. 4. It should be noted that the graphi-
cal interface of the weather app is developed based on LVGL, including interface and style, multi-page
management, weather display, forecast curve, clock and date display, animation effects, etc. This project
draws inspiration from the clock interface template made by Misaka. Image design is customizable ac-
cording to personal preferences and will not be described in detail in this paper.

Shell design

Since the designed loT device needs to run continuously and the ESP32 periodically performs
network time calibration through Wi-Fi, heat generated by the power supply and screen display will
inevitably accumulate [3]. If heat dissipation cannot be guaranteed, the operation stability of the
IoT device will be reduced [9]. Therefore, the shell connecting the main control PCB, screen PCB
and upper light-splitting prism will assume the main heat dissipation function. In the early stage, 3D
printing can be used to determine the rationality of the hardware structure distribution. In the later
stage, the designed structure can be made of aluminum alloy, and the shell model parameters can be
delivered to a factory capable of CNC machining [10]. Thanks to technological advancements and
the convenience of online shopping, the cost of small-batch design and processing has been greatly
reduced. It should be noted that due to the adoption of a metal heat dissipation shell design, the PCB
should use the via tenting process, and during assembly, the metal parts on the circuit board must be
properly insulated for the circuit.

Results

After powering on the assembled device, it first boots into the system’s main interface. From there,
the weather app can be selected and entered through tilt-based navigation. After entering the interface,

72

4 Circuits and Systems for Receiving, Transmitting and Signal Processing

Launch/enter the Weather app

Initialization:
Read/generate weather configuration
Initialize the styles required by the interface
Establish or prepare data structures

Main loop/event processing:
Menitor user operations and system messages
Decide to display
1, weather interface
2, curve interface based on the current interface

l

Data acquisition and analysis:
Analyze the temperature, humidity and other contents
and save them in the data structure

l

Interface display and refresh

l

User or system request to log out

Exit/Cleanup

Fig. 4. Weather app design flowchart

the program initially displays the default time and weather screen, and the time is updated according
to the RTC built into the ESP32, which ensures normal app operation. Shortly after, the device expe-
riences a brief lag, while the program is calibrating the weather and time data over the network. Sub-
sequently, the interface will display the synchronized information, indicating that the overall design
functions are operational. After 24 hours of continuous operation, as shown in Fig. 5, the displayed
time remains accurate to the second due to regular calibration, with no observed desynchronization.
This also demonstrates stable performance of the device’s network and weather display functions.

By touching the metal shell part, it is evident that most of the heat generated by the device is
transferred to the shell, and the temperature is stably controlled at a level slightly above ambient level,
indicating that the effective auxiliary heat dissipation is provided by the shell.

Finally, all content is presented in the transparent glass through the refraction and reflection of the
prism.

Conclusion

Through the design and implementation of this prism-based display IoT project, the intended func-
tions have been realized via integrated hardware and software design, shell design, and novel prism
display design. A deeper understanding of the comprehensive optimization of device stability has been
obtained. This project-based learning approach has proven to be a highly effective methodology.

During hardware design, it was found that after software updates, the screen failed to display prop-
erly due to insufficient current; the power supply was subsequently modified. During software design,
app development was carried out using a low-coupling approach to reduce redundant code. During
shell design, overheating was found to cause system crashes, and the shell material was improved to

73

4yCTpOl7ICTBa N CUCTEMbI Nepeaayn, npueMa n obpaboTkn curHanos >

= .
ENE OH

162222 I

1HsH A=

p==— sc @,
CESU%

Fig. 5. Equipment operation

enhance overall thermal conductivity. These modifications were identified and implemented during
the secondary development of the original device.

Compared with the initial hardware design, the combination of optimized voltage-stabilizing cir-
cuit, metal shell and main control board heat dissipation realizes more stable voltage control, thereby
improving the stability of the module during long-term use and reducing circuit ripple noise. At the
software level, by setting public reusable interfaces, subsequent development on this hardware platform
can incorporate customized apps within the overall framework. The IoT module can adapt to different
usage scenarios by software upgrades, significantly reducing the app development cycle of the underly-
ing operating system.

In the future, the number of IoT devices is expected to show explosive growth and will appear in
all aspects of people’s lives in various forms [8]. In terms of interaction logic, design will continue to
engage human visual, motion, auditory, and tactile perception [5]. Presenting the interface in a more
elegant manner remains a persistent goal for engineers. Based on the design of the minimum core
module of the 10T, this project presents an interactive form different from traditional screen display.
It is hoped that through this way, open-source [oT devices can show a more diversified development.

REFERENCES

1. Jocknoi L., Kucharoen P. ESP32Exten: Designing and developing an ESP32 microcontroller expansion
for 10T applications with motor propulsion and Al image processing. 2024 8" International Conference on
Information Technology (InCIT), 2024, Pp. 278—283. DOI: 10.1109/InCIT63192.2024.10810578

2. Wang Z., Tu K., Lv G., Feng Q. Depth enhanced holographic super multi-view display based on mul-
tiple image recording planes. IEEE Journal of Selected Topics in Quantum Electronics, 2024, Vol. 30, No. 2,
Art no. 6000506. DOI: 10.1109/JSTQE.2024.3364581

3. Farid N.A.M., Razak A.H.A., Halim A.K., Idros M.F.M. Design of CMOS RF Doherty power ampli-
fier in low-power 5G wireless networks for 10T application. 2023 IEEE 11" Conference on Systems, Process
& Control (ICSPC), 2023, Pp. 310—314. DOI: 10.1109/ICSPC59664.2023.10420155

4. Saxena A., Haripriya D., Madan P., Srivastava A.P., Shalini N., Kumar A. Design and optimization
of low-power VLSI circuits for 10T devices. 2023 10" IEEE Uttar Pradesh Section International Conference
on FElectrical, Electronics and Computer Engineering (UPCON), 2023, Pp. 1267—1273. DOI: 10.1109/UP-
CON59197.2023.10434775

5. Nwadiugwu W.P., Kim D.-S. Energy-efficient sensors in data centers for Industrial Internet of Things
(I1oT). 2018 3 International Conference on Internet of Things: Smart Innovation and Usages (loT-S1U),
2018, Pp. 1—-6. DOI: 10.1109/10T-SI1U.2018.8519871

74

4 Circuits and Systems for Receiving, Transmitting and Signal Processing

6. Devi A., Arivunambi A., Suvetha S., Sasikala S., Dharanyadevi P., Senthilnayaki B. IoT based satellite
balloon system for live-weather forecast. 2024 3 International Conference on Smart Technologies and Systems
for Next Generation Computing (ICSTSN), 2024, Pp. 1-5. DOI: 10.1109/ICSTSN61422.2024.10671106

7. Zaharia S., Rebedea T., Trausan-Matu S. Source code vulnerabilities detection using loosely coupled
data and control flows. 2019 21" International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2019, Pp. 43—46. DOI: 10.1109/SYNASC49474.2019.00016

8. Cheng Z. Research on Internet of Things human-computer interaction system based on computer
Artificial Intelligence technology. 2024 IEEE 2" International Conference on Control, Electronics and Comput-
er Technology (ICCECT), 2024, Pp. 1135—1139. DOI: 10.1109/ICCECT60629.2024.10545728

9. Wijittemee W., Plangklang B. An efficient thermal management using passive cooling techniques.
2024 International Conference on Power, Energy and Innovations (ICPEI), 2024, Pp. 73—77. DOI: 10.1109/
ICPEI61831.2024.10748605

10. Boora A., Verma D., Bijender, Soni A. Time reduction analysis based on infill pattern on FDM 3D
printed PLA material. 2024 International Conference on Intelligent & Innovative Practices in Engineering &
Management (IIPEM), 2024, Pp. 1-4. DOI: 10.1109/I1TPEM62726.2024.10925750

INFORMATION ABOUT AUTHOR / CBEAEHUA Ob ABTOPE

Xu Luolan
Cioii Jlonans
E-mail: xuluolan123@gmail.com

Submitted: 10.01.2025; Approved: 13.11.2025; Accepted: 09.12.2025.
Ilocmynuaa: 10.01.2025; Odobpena: 13.11.2025; [Ipunama: 09.12.2025.

75

