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Abstract. The scarcity and imbalance of annotated fault data pose significant challenges to the  
reliability of intelligent industrial diagnostics. To address this issue, we propose an integrated fault  
diagnosis framework based on multi-domain feature fusion and generative adversarial networks  
(GANs). Unlike traditional approaches that treat generation and classification as independent  
stages, our model unifies these two processes. This method achieves diagnosis by transforming  
raw vibration signals into multi-domain representations (time domain, frequency domain, and  
time-frequency domain). The core innovation lies in the restructured generator architecture: a  
Transformer encoder captures global signal correlations, combined with an Efficient Channel  
Attention (ECA) mechanism for adaptive recalibration of feature weights, ensuring high-fidelity  
sample synthesis. Additionally, the model employs a dual-function discriminator that distinguishes  
genuine from synthetic samples while directly performing multi-class fault classification. Extensive  
experiments on CWRU and JNU benchmark datasets demonstrate that this approach surpasses  
existing state-of-the-art algorithms, achieving superior performance in Structural Similarity  
(SSIM), Peak Signal-to-Noise Ratio (PSNR), and diagnostic accuracy. This end-to-end solution  
effectively mitigates data scarcity challenges in industrial settings.
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Аннотация. Нехватка и несбалансированность аннотированных данных о неисправ-
ностях создают серьезные проблемы для надежности интеллектуальной промышленной  
диагностики. Для решения этой проблемы мы предлагаем интегрированную систему  
диагностики неисправностей, основанную на слиянии многодоменных характеристик  
и генеративных состязательных сетях (GAN). В отличие от традиционных подходов, ко-
торые рассматривают генерацию и классификацию как независимые этапы, наша мо-
дель объединяет эти два процесса. Этот метод позволяет проводить диагностику путем  
преобразования необработанных сигналов вибрации в многодоменные представления  
(временная область, частотная область и временная-частотная область). Основная ин-
новация заключается в реструктурированной архитектуре генератора: кодер Transformer  
улавливает глобальные корреляции сигналов в сочетании с механизмом Efficient Channel  
Attention (ECA) для адаптивной перекалибровки весов признаков, обеспечивая высокую  
точность синтеза образцов. Кроме того, модель использует дискриминатор с двойной  
функцией, который отличает подлинные образцы от синтетических, одновременно вы-
полняя многоклассовую классификацию неисправностей. Обширные эксперименты на  
эталонных наборах данных CWRU и JNU демонстрируют, что этот подход превосходит  
существующие современные алгоритмы, достигая превосходных результатов по струк-
турному сходству (SSIM), пиковому отношению сигнал/шум (PSNR) и точности диа-
гностики. Это комплексное решение эффективно смягчает проблемы нехватки данных  
в промышленных условиях.

Ключевые слова: диагностика неисправностей, генеративно-состязательные сети, ограни-
ченные данные, контролируемое обучение, анализ временных рядов
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Introduction

As was stated in our previous article [22], with the rapid advancement of Industry 4.0, the demand  
for the health monitoring and operational stability of intelligent industrial equipment has significant-
ly increased. As core components of rotating machinery, the condition of rolling bearings directly  
impacts the safety and stability of industrial systems. Due to their operation under variable speed and  
load conditions, bearings are susceptible to a variety of faults [22 ].

Traditional fault diagnosis methods typically rely on the analysis of 1D vibration signals from sen-
sors, requiring professionals to manually extract and assess signal features before designing classifi-
ers. Although these approaches have achieved high accuracy, they are often time-consuming and  
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labor-intensive, rendering them ill-suited for the automated, intelligent diagnostic requirements of  
modern manufacturing systems [22].

In recent years, data-driven methodologies, particularly convolutional neural networks (CNNs),  
have emerged as powerful tools for capturing nonlinear fault characteristics without human interven-
tion. However, the efficacy of these deep learning models is often contingent upon the availability of  
massive, annotated datasets. In practical industrial settings, acquiring high-quality fault data is chal-
lenging, leading to issues of data paucity and class imbalance. Consequently, standard models frequently  
fail to generalize or maintain high diagnostic accuracy when training samples are scarce [6, 7].

To mitigate the challenges of data scarcity, generative adversarial networks (GANs) [8] have been  
adopted as a robust strategy for data augmentation. By synthesizing realistic fault samples, GANs can  
rebalance datasets and enhance model robustness [9]. It is important to note that while our previous  
research explored the use of improved vision transformers (ViT) as standalone classifiers for fault  
diagnosis [22], the current study focuses on a different architectural approach. Specifically, rather  
than relying on an external ViT classifier, this work aims to optimize the generative process itself to  
produce higher fidelity samples for an integrated diagnostic framework.

The primary objective of this research is to develop a deep learning framework tailored for bearing  
fault diagnosis under severely limited data conditions. We propose an integrated model that fuses mul-
ti-domain features (time, frequency and time-frequency). Distinct from prior approaches, the novelty of  
this model lies in its generator architecture, which incorporates a Transformer encoder to capture global  
signal interactions and an Efficient Channel Attention (ECA) mechanism to refine feature representation.

The core challenge addressed in this study is the generation of high-fidelity synthetic data to com-
pensate for the lack of training samples. By strategically mixing original and generated data, we aim  
to construct an extended, balanced dataset that serves as the foundation for highly accurate fault classi-
fication performed directly by the model’s integrated discriminator.

The specific contributions of this paper are summarized as follows:
1.  Investigation of data scarcity: We conduct a systematic evaluation of bearing fault diagnosis  

performance under conditions of limited and unbalanced training samples using public datasets.
2.  Novel data enhancement model: We develop a multi-domain feature fusion GAN. This model unique-

ly integrates features from three domains and utilizes adversarial learning with attention mechanisms to  
ensure the generation of synthetic data that closely mimics the physical properties of real fault signals.

3.  Performance benchmarking: We perform a comprehensive comparative analysis against state-
of-the-art algorithms. The experimental results validate that the proposed method achieves superior  
reliability and applicability for industrial fault diagnosis tasks.

Related works

Traditional and deep learning-based fault diagnosis methods
Bearing fault diagnosis techniques have evolved from traditional statistical methods to advanced  

methods based on deep learning. Traditional methods, such as Gaussian Mixture Models (GMMs)  
and Hidden Markov Models (HMMs), rely heavily on hand-extracted features, such as Mel Fre-
quency Cepstral Coefficients (MFCCs), for modeling speech features. However, these methods have  
limited performance in dealing with high-dimensional data and complex working conditions.

With the rise of deep learning, models such as CNN, recurrent neural networks (RNNs) and long-
short-term memory networks (LSTMs) are widely used in fault diagnosis. These models can auto-
matically learn the hierarchical features of the original vibration signals, improving the accuracy and  
robustness of fault identification.

In [20], a transformer-based conditional generative adversarial network migration learning model  
was proposed, which enhances the quality and diversity of the generated data by introducing sample  
labeling information, thus improving the performance of cross-domain fault diagnosis.
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Fig. 1. Bearing diagram

In [21], a bearing fault diagnosis study based on a multimodal approach combined with a multi-
scale time-frequency and statistical feature fusion model was proposed, which is able to better handle 
non-stationary and nonlinear vibration data.

Limitations
Although the above methods have made significant progress in bearing fault diagnosis, there are  

still some challenges. Traditional methods have limited performance in dealing with high-dimension-
al data and complex working conditions, while deep learning methods face problems such as high  
consumption of computational resources and strong dependence on a large amount of labeled data.

Rationale for GAN
GANs provide a compelling solution to key challenges in bearing fault diagnosis, especially data  

scarcity and class imbalance. By introducing an adversarial framework between the generator and  
the discriminator, GANs can learn complex data distributions and synthesize real fault samples to  
expand limited data sets. This is particularly important in industrial environments where access to  
labeled fault data is costly or impractical. The generator captures subtle fault features-often from the  
time, frequency, or time-frequency domain-while the discriminator ensures sample quality through  
adversarial training. This dynamic change not only improves the robustness of diagnostic models, but  
also enhances their generalizability to real-world scenarios. Thus, GANs are a promising direction for  
building more accurate and resilient fault diagnosis systems under constrained data conditions.

Materials and methods

This study analyzes various bearing operating states using the Case Western Reserve University  
(CWRU) dataset [10]. This dataset provides information on the vibration characteristics of bearings  
in different states including normal operation, inner ring, outer ring and ball damage.

Fig. 1 shows a schematic of a bearing including the main structural elements: inner ring, outer ring  
and balls. Damage can be associated with different surface areas or different defect sizes, resulting in  
differences in bearing operating conditions. These differences create a complex classification problem  
that requires the use of deep learning techniques to accurately diagnose faults.

Data preprocessing involves converting vibration signals into multimodal representations, which  
allows the consideration of time, frequency, and time-frequency characteristics for further analysis  
and model training.

In the CWRU dataset, bearing damage is categorized by type and location of occurrence. The main  
categories include: ball damage, inner ring damage, outer ring damage, and normal condition. Ad-
ditionally, damage is differentiated by diameter, which is represented by values of 0.007, 0.014, 0.021  
etc. Thus, by combining the different types of damage and their diameters, the operational condition  
of bearings can be divided into ten categories.
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Fig. 2. Vibration signals of bearings in different damage states

In general, bearing vibration signals recorded under different operating conditions have markedly  
different characteristics, as evidenced by the data presented in Fig. 2. For example, in the range from  
sample 0 to sample 1000, signal 2 exhibits almost no pronounced vibration, while the vibration of  
signal 8 has a distinctly periodic character.

Furthermore, in the range from sample 200 to sample 1200, there is a significant difference in the  
vibration amplitudes of signal 1 and signal 9. These differences illustrate the complexity of analyzing  
bearing condition data and confirm the need for methods capable of efficiently processing and ana-
lyzing data with such variations.

As shown in Fig. 3, in order to obtain a complete set of vibration signal characteristics, this study  
used a time domain data transformation approach to transform the data into different representations.

The sample data were transformed in three different domains:
1.  Time domain – the original signals in their original form.
2.  Frequency domain – transforming the data using Fast Fourier transform (FFT) to reveal the 

frequency components of the signal.
3.  Time-frequency domain – a representation obtained using a time-frequency domain trans-

form, such as the Short-time Fourier transform (STFT), which allows you to analyze the dynamics of  
frequency components over time.

This approach provides a comprehensive analysis of signal characteristics, which is a key step for  
successful model training and bearing fault diagnosis.

Design of bearing fault diagnostic modeling

To address the persistent challenges of bearing fault diagnosis under data-constrained and im-
balanced conditions, this study introduces a unified, end-to-end deep learning framework. Unlike  
our previous work [22], which relied on an external classifier coupled with a generative model, the  
approach proposed in this study orchestrates sample generation and fault diagnosis within a single,  
cohesive architecture. As illustrated in Fig. 4, the framework is designed to synthesize high-fidelity  
multi-domain samples while simultaneously executing precise 10-category fault diagnosis through an  
integrated mechanism.
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Optimization of hyperparameters is pivotal for ensuring model convergence and diagnostic reli-
ability. Through empirical validation, the framework employs an Adam optimizer initialized with a  
learning rate of 0.001. Training is conducted with a batch size of 128 over 6000 epochs to guarantee  
stable feature extraction and distribution matching.

The primary function of the generator is to map latent noise distributions into interpretable, multi- 
domain signal representations. The generative process is initiated by fusing two distinct input vectors:

–  Latent Vector (Z): A noise vector sampled from a standard Gaussian distribution to induce sample 
diversity.

–  Label Embedding (C): A category-specific vector projected into a high-dimensional space via an 
embedding layer to condition the generation.

Mathematically, the embedding transformation is governed by the weight matrix:

Fig. 3. Information about vibration signals in time, frequency and frequency-time domains

Fig. 4. Proposed fault diagnosis model

classes embed
embed ,n d×∈W  (1)
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where nclass represents the number of fault categories and dembed denotes the embedding dimension.  
The vectors Z and C are fused via element-wise multiplication and subsequently reshaped into a  
four-dimensional tensor, serving as the foundational input for the deep deconvolutional layers.

To capture long-range dependencies within the feature maps                            a Transformer-based  
enhancement module is embedded within the generator. Initially, spatial information is compressed  
into a channel descriptor Y via Global Average Pooling (GAP):

where c denotes the channel index, while H and W represent spatial dimensions. The resulting chan-
nel descriptor Yc is flattened into a sequence to facilitate processing by the Multi-Head Attention  
(MHA) mechanism [7]. The MHA module dynamically models inter-channel correlations by com-
puting Query (Q), Key (K), and Value (V) matrices through learned linear projections:

where dk is the dimension of the attention heads, h is the number of heads, and                    is the  
linear projection matrix. This mechanism allows the generator to contextualize local features within  
the global signal structure. Prior to attention computation, a Normalization Layer (NL) is applied to  
stabilize gradients:

where Y and Y' represent the embedding sequence and MHA output, respectively, and NL(∙) denotes  
the normalization operation.

To further refine feature saliency, an ECA mechanism is integrated. The ECA module adaptively re-
calibrates channel weights, emphasizing informative features while suppressing noise. The re-weighted  
feature output OECA is computed as:

where σ(∙) denotes the sigmoidal activation function and OECA is the output feature after weighting  
the channel attention.

A defining characteristic of this framework is the dual-function discriminator. Distinct from methods  
that utilize separate downstream classifiers (e.g., [22]), the discriminator in this model is engineered to  
directly perform multi-class fault diagnosis alongside its adversarial duties.

The discriminator loss function consists of two components: classification loss and category clas-
sification loss. For real samples Sreal, the loss for real samples SD,real is defined as:

where yreal represents the true label.
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For Sg generated samples, the generated loss LD,fake is defined as:

where ygen denotes the generated label.
To improve the robustness of training, a Gradient Penalty (GP) term is introduced:

where PS is the uniform sampling distribution between real and generated samples, and λGP is the regu-
larization parameter. Therefore, the total discriminator loss is expressed as:

The task of the generator is to fool the discriminator while ensuring that the generated samples are  
assigned the correct class labels. The generator loss function is defined as:

The fault classification model achieves accurate recognition of different fault modes by supervised  
learning and is optimized using a loss function based on cross entropy. To further improve the perfor-
mance of the model, the real and generated data are combined for training. The loss function of the  
fault classification model is defined as:

Results and discussion

In order to evaluate the model's ability to generate data, this paper uses a joint sample quality as-
sessment method to evaluate the performance of the generated samples. The method includes PSNR  
and SSIM [12, 13, 22].

PSNR measures the total pixel error between the generated image and the original image. PSNR  
is calculated as follows:

where MSE is the mean square error; M and N are the width and height of the image, respectively; Xij  
and Yij are the pixel values of the original and generated images, respectively; IMAX is the maximum  
possible pixel value.

SSIM evaluates the perceptual similarity between the generated image and the original image. Its  
formula is as follows:
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where μx and μy are the mean values of the two images;        and        are their variance; σxy is the covari-
ance of the two images, respectively; C1 and C2 are constants to ensure computational stability.

Fig. 5 shows the variation of the training loss of the proposed model and the validation accuracy of  
the discriminator. From it, it is evident that the adversarial training of the generator and discriminator  
gradually stabilizes after 1000 epochs. The discriminator accuracy is also close to 100%.

The Figs. 6 and 7 show the quality scores of different models for each category of generated sam-
ples, including GAN [8], ACGAN [14], DCGAN [15] and the method used in this paper. Comparing  
the histograms for each category shows that the method proposed in this paper outperforms its coun-
terparts in terms of average SSIM and PSNR and ranks first in all ten categories.

In addition, the difference between the SSIM and PSNR scores for each category is only ±0.02,  
indicating the high stability and accuracy of the model in training the features in all categories. These  
results confirm that the proposed method can effectively meet the challenge of generating high-qual-
ity data and contribute to the improvement of bearing fault diagnosis.

To further validate the effectiveness of the proposed classification method, we compared the devel-
oped model with various state-of-the-art classification models including Random Forest (RF) [16],  
Support Vector Machine (SVM) [17], Hierarchical CNN (H-CNN) [18], 2D-CNN [19] and the  
method proposed in this paper. The results of the comparative analysis are presented in Fig. 8.

2
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1 2

2 2 2 2
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2 2
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Fig. 5. Variation of losses during model training and discriminator validation accuracy

Fig. 6. Comparison of SSIM with different generation models
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These results demonstrate the superiority of the proposed model in bearing fault diagnosis tasks,  
especially under conditions of limited and unbalanced data. On key classification metrics, the pro-
posed method consistently outperforms alternative approaches, confirming its robustness and prac-
tical applicability.

Among machine learning models, the random forest and support vector machine algorithms show  
similar results, with classification accuracies of 93.13% and 95.63%, and F1-scores of 93.01% and  
95.60%, respectively. Although SVM outperforms RF processing of high-dimensional data, its perfor-
mance in the task of fault signal classification remains limited. This is due to the inherent weaknesses  
of traditional methods in extracting features and adapting them to high-dimensional data, which does  
not fully reveal the underlying features of the signals.

Among deep learning models, the method proposed in this paper demonstrates the highest perfor-
mance on all metrics. The classification accuracy reaches 99.91% and the F1-score reaches 99.25%.  
These metrics emphasize the significant advantages of the developed model for fault classification  
tasks. The generation of high-quality augmented data using the proposed approach significantly im-
proves the generalization ability and classification performance of the model, unlocking its full po-
tential in complex diagnosis tasks.

To deeply evaluate the classification performance of the proposed model on the CWRU bearing  
dataset, this paper conducts relevant experiments and constructs a confusion matrix based on the  
test set samples to clearly demonstrate the model's ability to recognize different types of faults. Fig. 9  
shows the confusion matrix, where the horizontal axis shows the fault types predicted by the model and  
the vertical axis shows the actual fault types. As can be seen from Fig. 9, the proposed model achieves  

Fig. 7. Comparison of PSNR with different generation models

Fig. 8. Comparison of accuracy and F1 between different models
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Fig. 9. Confusion matrix results

Fig. 10. The radar plot of data comparison with models

high classification accuracy of ten fault types in the CWRU dataset, which fully confirms its effective-
ness and robustness in fault diagnosis tasks.

In addition, this paper further verifies the bearing data from Jinan University. In this paper, we  
classify the signal data in different operating conditions, and there are eight kinds of bearing data. The  
comparison of experimental data with different comparison models is shown in Fig. 10.

As can be seen from the data distribution graph in Fig. 10, the method proposed in this paper out-
performs the compared methods in terms of accuracy, predictive value, recall and F1-score, which  
proves the strong generalization ability of the proposed method.

In addition, in order to verify the generalization ability of the proposed model in this paper, ex-
periments are conducted on the JNU dataset, and the experimental results of the comparison models  
are shown in Fig. 11. As can be seen from the figure, the proposed model exhibits the best diagnostic  
results.

In summary, the experiments on CWRU and JNU datasets show that the model proposed in this  
paper is effective in diagnosing the operating conditions under different mechanical conditions.
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