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Abstract. The recently proposed Kolmogorov—Arnold Network (KAN) architecture emerges
as a promising alternative to traditional neural networks based on the Multilayer Perceptron
(MLP). By leveraging the Kolmogorov—Arnold representation theorem, KAN represents
multidimensional functions as combinations of univariate functions, thereby offering potentially
higher accuracy and model interpretability through its inherently simpler structure. This paper
investigates the applicability of KAN to time series forecasting using the well-known hourly
electricity consumption dataset as a benchmark. Meteorological observation data are selected as
an additional testbed. A comparative analysis is conducted between KAN networks and traditional
MLPs, as well as implementations of recurrent architectures based on KAN (TKAN variants)
versus established designs such as Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRU). Experimental results demonstrate the superiority of the KAN architecture over
MLPs in temporal prediction tasks. The proposed recurrent architecture, TKANI1, achieves the
highest coefficient of determination (R?> = 0.3483) among TKAN variants, with a Root Mean
Squared Error (RMSE) of 0.1010 in energy demand forecasting.
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Annorammsa. HegaBHo mipemnoxkeHHas apxuTekTypa Helipocereii KoimoropoBa—ApHoibaa
(Kolmogorov—Arnold Networks, KAN) sBasieTcsl mepcrneKTUBHON anbTepHATUBOM Tpaauliv-
OHHBIM HEHPOHHBLIM CETSIM Ha OCHOBE MHOrocjoiHoro mnepcentpoHa (Multilayer Perceptron,
MLP). bnarogaps ucnonb3zoBaHuto Teopembl KonmoropoBa—ApHosbaa, KAN npeacrtasisi-
€T MHOTOMEepHBIe (PYHKIIUM B BHIe KOMOMHAIIMM OTHOMEPHEIX, OOeCIIeunBas TOTEHIINAIHHO
0osice BBICOKYIO TOYHOCTb M MHTEPIIPETUPYEMOCTb Moaean. B maHHOI cTaThbe MCCIEmyeTCs
npuMeHuMocTb KAN u ee pekyppeHtHOoTro pacmupeHus — Temporal Kolmogorov—Arnold
Networks (TKAN) — k 3agaye NMpOrHO3MPOBAHUSI BPEMEHHBIX PSIIOB Ha MpPUMEpPEe U3BECTHOIO
Habopa JaHHBIX [TOYACOBOTO MOTPEOJICHUS JIEKTPOIHEPruu. B KadyecTBe MOMOJHUTEIBHOTO
Habopa JaHHBIX BBIOpAaHBI TaHHBIE METEOPOJOTUYECKUX HabOmoneHuit. [IpoBeneH cpaBHUTEIb-
Hblii ananu3 ceteit KAN ¢ tpanuunonHsiMu MLP, a Takxke peaiu3anuu apXUTEKTYpbl PEKYp-
PEHTHOI HelpoceTd Ha OCHOBe apxXxUTeKTypbl KAN ¢ IIMPOKO M3BECTHBIMU apXUTEKTypaMu
nonroit kpatkocpouHoii maMsatu (Long Short-Term Memory, LSTM) u ynpaBisieMoro pekyp-
pentHoro 0joka (Gated Recurrent Units, GRU). BOxcnepumeHTallbHbIe pe3yabTaTbl IeMOH-
CTPUPYIOT TTPeBOCXOACTBO apxuTeKTyphl KAN Hag MLP B 3amauax BpeMEeHHOTO MPOTHO3MPO-
BaHus. [IpemnoxeHHast B cratbe peKyppeHTHast apxutektypa TKAN1 neMoHCTpUpyeT Jaydinmii
cpenu TKAN koadduniment nerepmunannu R* = 0,3483 npu RMSE 0,1010 B 3agaue nporHosu-
POBaHUS SHEPTOITOTPCOICHUS.

KiioueBbie cjioBa: BpeMEHHBIE PSIIbI, TIPOrHO3UPOBAHNE BpPEMEHHBIX PSIIOB, HelipoceTh KoiMo-
ropoBa—ApHOJIbIa, MHOTOCJIOWHBIN TIEPCENITPOH, PEKYPPEHTHast HEPOHHAsT CETh

Jna mutupoBanus: Maleev O.G., Kovaleva O.A. A study of the applicability of the Kolmogorov—
Arnold network architecture for time series forecasting // Computing, Telecommunications and
Control. 2025. T. 18, Ne 4. C. 20—29. DOI: 10.18721/JCSTCS.18402

Introduction

Forecasting time series is a critical task across diverse industries, from economics and transpor-
tation to meteorology and medicine. Achieving highly accurate forecasts is essential for maintain-
ing business competitiveness, minimizing risks, optimizing resources and justifying significant deci-
sion-making processes.

Established approaches address time series forecasting using classical statistical methods [1—3].
However, with increased computational power and the daily generation of vast volumes of temporal
data, deep neural networks have proven effective for forecasting. These networks can learn complex
data representations, eliminating or reducing the need for manual feature engineering [4, 5]. Despite
notable advancements in time series forecasting, several challenges persist. Models based on the Mul-
tilayer Perceptron (MLP) architecture require larger statistical datasets for training due to the lack of
prior knowledge [6]. Furthermore, black-box models exhibit reduced interpretability and explain ability
compared to statistical methods.
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A recently proposed fundamentally novel neural network architecture, the Kolmogorov—Arnold
Network (KAN) [7], presents a promising alternative to the MLP and opens new avenues for advancing
deep learning models.

Related works

MLP networks are effective approximators of nonlinear functions due to the underlying universal
approximation theorem (Cybenko’s theorem) [8], which asserts, that a feedforward network with a sin-
gle hidden layer containing a finite number of neurons can approximate any continuous multivariate
function to arbitrary accuracy, provided the hidden layer contains a sufficient number of neurons and
the network parameters are appropriately chosen. The KAN, in turn, is grounded in the Kolmogorov—
Arnold representation theorem, which states that any multivariate continuous function can be expressed
as a composition of univariate functions and addition operations:

f(xl""=xn): an(Dq [id)q,p (xp) ’

p

where ¢, :[O,l]—)R, O R->R
Each univariate function is parameterized as a B-spline curve with trainable coefficients ¢, of local
B-spline basis functions B, (x) , and is represented as a weighted sum with trainable weights w, and w

0(x)=w,b(x)+w,spline(x), spline(x)= ZciBi (x),

where b(x) is analogous to a residual connection.
Thus, /-th layer of KAN is defined by a matrix of functions:

D, :{d),’q,p}, [=0,...,L-1, p=1,...,mn, g=1,...,n,,,

enabling KAN to extend the Kolmogorov—Arnold representation theorem to arbitrary width and
depth [9].

The general structure of KAN comprises a composition of L layers, with dimensions specified by the
array [no, ceey anl]. For an input vector X € R"™, the KAN output is expressed as:

KAN(X)=(®, ,0®, ,0...00) X,

where each layer @, transforms its input through learnable univariate functions parameterized via
B-spline basis expansions.

Thus, in KAN, activation functions are moved to the edges of the computational graph: each weight
is replaced by a univariate activation function parameterized as a spline, while neurons themselves per-
form only summation of incoming activations.

KAN combines the strengths of MLPs and splines, featuring internal and external levels of degrees
of freedom. At the external level, KAN learns the compositional structure of the target function through
its MLP-like architecture, while at the internal level, it approximates univariate functions with high
precision via spline-like parameterization. Architectural complexity in KAN involves not only adding
more layers but also refining the spline grids.

The KAN approach to representing multivariate functions aligns with structural properties of time
series, such as trends and seasonality. Embedding prior knowledge about data structure directly into the
neural network architecture suggests KAN’s potential effectiveness in time series forecasting [10].
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Transition to the recurrent TKAN architecture

To extend the capabilities of KAN for time series forecasting, a natural direction is to integrate the
KAN architecture with other widely adopted deep learning methods for this task. Recurrent Neural
Network (RNN) models have demonstrated themselves as effective tools for forecasting in practical
scenarios of varying complexity [11].

For this study, we use a combination of a Recurrent Kolmogorov—Arnold Network (RKAN) and
a modified Long Short-Term Memory (LSTM) block, forming the Temporal Kolmogorov—Arnold
Network (TKAN) architecture [12]. This approach enables capturing complex nonlinearities through
RKAN’s learnable activation functions while efficiently managing memory over extended periods via
the LSTM cell architecture.

KAN layers retain short-term memory of previous network states, and the gating mechanism reg-
ulates information flow by determining which information should be preserved or forgotten over time.
The schematic of the TKAN cell is illustrated in Fig. 1.

Following the analogy of hidden state updates in RNNs, the dependence of the current hidden state
on its prior value introduces temporal dynamics into each activation function (I)l,j, ;

ny ny
X1, (t)zz)zl,j,i(z):Ed)l,j,i(xl,i(t)’hl,i(t))’ J=1 o,

where 7 (t) is the memory state function for the i-th neuron of the /-th layer at time ¢.
By analogy with the LSTM cell, information flow in the TKAN cell is governed by a forget gate, input
gate and output gate:

fi=c(Wx,+Uh

t" -1

0,=c(RKAN(X,1)).

+bf), i, =c(Wx,+Uh

itt-1

+b,),

The hidden state h; is computed as the output of the cell:
h, =0, ®tanh(c,),
where ¢, represents the long-term memory of the cell, updated according to:
Ct =j; ®ct—l +lt ®5t’

where ¢, =o(W.x,+U,h_ +D,).

c -1

The final predicted value j/t is derived via a linear layer:

Y, =W, h+b,.

hy""t

This formulation aligns with standard LSTM-based memory mechanisms, where the hidden state
h; acts as a compressed representation of temporal dependencies, and the cell state ¢, retains long-term
memory through gated updates.

Numerical experiments

To evaluate the applicability of KAN to time series forecasting, we conduct a comparative analysis
of KAN against MLP and TKAN against classical recurrent architectures — LSTM [13] and GRU [14].

23



4 MHTennekTyasnbHble CUCTEMBI U TEXHOSOTNN, I/ICKyCCTBEHHbIVI NHTENNEKT >

W
\

Fig. 1. Architecture of the TKAN Cell

We frame multivariate time series forecasting as a supervised learning task. The input to the model

ey X H] e R where H denotes the historical win-

dow size used for forecasting and D represents the number of variables. The forecasting task involves

is a sequence of historical time steps X = [X I

generating an output sequence Y = [X Hats cees Xpps F] e R™P where F is the forecasting horizon.

We evaluate the considered models on widely used benchmark datasets (Table 1):

1. Electricity Dataset: This dataset contains hourly electricity consumption data from 321 clients
between 2012 and 2014, measured in kilowatts'.

2. Weather Dataset: This dataset includes meteorological observations recorded at 10-minute inter-
vals near Beutenberg (Germany) from 2021 to 20232 Hourly data was obtained by sampling the first
observation of each hour.

Table 1
Characteristics of the used datasets
Dimensions Series length Granularuty Split
Electricity 321 26304 1 hour [7:1:2]
Weather 20 26280 1 hour [8:0.5:1.5]

Data preprocessing involves MinMax scaling, which maps values to the [0,1 ] interval while preserv-
ing the distribution shape. Validation follows a simple strategy: datasets are split into training, validation
and testing subsets in chronological order according to the predefined ratios.

We compare MLP and KAN on the Electricity dataset, analyzing the dependence of model perfor-
mance on a key KAN parameter — the spline grid size G. Identical network configurations are consid-
ered, with varying numbers of hidden layers and neurons. The historical window size is fixed at H = 24,
and the forecasting horizon is set to /' = 6. Network configurations are detailed in Table 2. The loss func-
tion is Mean Squared Error (MSE), and training employs the Adam optimizer with an initial learning
rate of Ir = 0.001. The MSE and Mean Absolute Error (MAE) are used as evaluation metrics for models
on test data. Results are summarized in Table 2.

! Electricity Hourly Dataset, Available: https://zenodo.org/records/4656140 (Accessed 08.04.2025)
2 Max-Planck-Ingtitut fuer Biogeochemie — Wetterdaten, Available: https://www.bgc-jena.mpg.de/wetter/weather data.html (Accessed
08.04.2025)
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Table 2
Comparison of MLP and KAN evaluation results
Configuration MSE MAE Number of parameters
[24, 5, 6], G=3 0.00471 0.04299 12K
[24, 10, 6], G=3 0.00451 0.04215 24K
KAN [24, 20, 6], G=3 0.00442 0.04180 4.8 K
[24, 10, 10, 6], G=3 0.00464 0.04354 32K
[24, 10, 6], G=10 0.00419 0.04060 45K
[24, 10, 10, 6], G=10 0.00416 0.04081 6.0 K
[24, 5, 6] 0.00561 0.04801 161
[24, 10, 6] 0.00498 0.04484 316
MLP [24, 20, 6] 0.00460 0.04265 626
[24, 10, 10, 6] 0.00522 0.04655 426
[24, 20, 20, 20, 6] 0.00480 0.04440 I.5K

For TKAN, LSTM and GRU, we adopt a simple unified architecture: an input recurrent layer re-
turning full sequences and an intermediate layer returning only the final hidden state, both with iden-
tical hidden state dimensions. The output layer is fully connected with linear activation. Hidden state
sizes h = [50, 100] , KAN layer sizes hk = 20, spline grid size G = 3 and spline order k = 3 are tested.
Forecasts are generated for F' = [12, 24, 48, 96, 168] with H = 48. The loss function remains MSE, and
evaluation metrics include RMSE, MAE and the coefficient of determination R”. Results are reported
in Tables 3—6, with bold indicating the best performance per metric and forecasting horizon.

Table 3

Evaluation results of recurrent models with hidden state size # = 100 on the electricity dataset

TKAN GRU LSTM
F R? RMSE MAE R? RMSE MAE R? RMSE MAE
12 0.1316 0.0766 0.0593 0.2228 0.0797 0.0621 0.3497 0.0767 0.0596
24 0.2073 0.0767 0.0590 0.3592 0.0756 0.0585 0.3668 0.0777 0.0605
48 0.2292 0.0873 0.0677 0.3204 0.0776 0.0597 0.2436 0.0808 0.0624
96 0.2869 0.0829 0.0640 0.2790 0.0829 0.0639 0.1663 0.0822 0.0632
Table 4

Evaluation results of recurrent models with hidden state size # = 100 on the weather dataset

TKAN GRU LSTM
F R? RMSE MAE R? RMSE MAE R? RMSE MAE
12 0.6822 0.0738 0.0506 0.7029 0.0697 0.0469 0.6676 0.0747 0.0514
24 0.5893 0.0884 0.0633 0.6070 0.0858 0.0611 0.6133 0.0842 0.0590
48 0.4781 0.1027 0.0748 0.5774 0.0895 0.0632 0.5416 0.0944 0.0674
96 0.4666 0.1043 0.0751 0.5078 0.0989 0.0708 0.4904 0.1012 0.0726
168 0.4453 0.1068 0.0767 0.3738 0.1143 0.0843 0.4168 0.1100 0.0800
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Table 5
Evaluation results of recurrent models with hidden state size # = 50 on the electricity dataset
TKAN GRU LSTM
F R? RMSE MAE R? RMSE MAE R? RMSE MAE
12 0.2513 0.0809 0.0631 0.1929 0.0756 0.0583 0.2130 0.1063 0.0840
24 0.3033 0.0940 0.0744 0.1615 0.0768 0.0593 0.1344 0.0756 0.0581
48 0.3425 0.1006 0.0791 0.0974 0.0768 0.0588 0.3700 0.0763 0.0583
96 0.3733 0.0881 0.0683 0.1886 0.0817 0.0631 0.3227 0.0915 0.0716
Table 6
Evaluation results of recurrent models with hidden state size 7 = 50 on the weather dataset
TKAN GRU LSTM
F R? RMSE MAE R? RMSE MAE R? RMSE MAE
12 0.6563 0.0773 0.0547 0.6879 0.0724 0.0497 0.6929 0.0717 0.0484
24 0.5880 0.0889 0.0640 0.6081 0.0858 0.0611 0.6319 0.0820 0.0566
48 0.4703 0.1040 0.0760 0.5187 0.0981 0.0712 0.4840 0.1021 0.0745
96 0.4703 0.1041 0.0748 0.4368 0.1077 0.0791 0.4888 0.1016 0.0726
168 0.4393 0.1075 0.0771 0.4121 0.1107 0.0807 0.4459 0.1069 0.0767

The experiments use an optimized KAN implementation?®, which addresses performance limitations
of the original KAN framework while achieving speed comparable to MLP.

Based on Table 2, it can be concluded that KAN outperforms MLP on the selected dataset. Bold val-
ues indicate the best results, while underlined values correspond to approximately the same number of
parameters. The simplest KAN configuration with a single hidden layer of 5 neurons achieves accuracy
comparable to an MLP with a significantly larger number of parameters and a more complex configu-
ration — three hidden layers with 20 neurons each. Adding 10 neurons to a single hidden layer in KAN
(third row) improved accuracy more effectively than adding an additional hidden layer with 10 neurons
(fourth row). Notably, the two lowest error rates were achieved with a refined spline grid. This suggests
that KAN’s internal degrees of freedom, implemented via splines, grant the architecture greater expres-
sive power in approximating data dependencies.

In experiments using recurrent models (Tables 3 and 5), for energy consumption data, R? increases
with the forecasting horizon for TKAN, while it decreases for weather data (Tables 4 and 6) and other
models. At a hidden state size of # = 50, TKAN consistently achieves the highest R?> across most ex-
periments, indicating its potential for optimal energy consumption forecasting when further optimizing
configurations.

To improve generalization, regularization techniques will be applied next. As shown in loss curves
(e.g., F=96, h =100 in Fig. 2), TKAN demonstrates potential for further training, whereas LSTM and
GRU exhibit overfitting, evidenced by diverging training and validation loss curves.

On weather data, TKAN demonstrates superior performance for the longest forecasting horizon
when the hidden state size is set to # = 100. Unlike other models, the decline in the coefficient of deter-
mination (R?) slows down starting from /' = 48, indicating improved stability in long-term predictions.
This suggests that TKAN retains greater explanatory power as the forecasting horizon increases, making

* GitHub — Blealtan/efficient-kan: An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN), Available: https://github.
com/Blealtan/efficient-kan (Accessed 08.04.2025)
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Fig. 2. Loss Functions for Recurrent Models (2 = 100)

it a viable alternative to traditional architectures like LSTM and GRU for long-term time series fore-
casting tasks.

Enhancement through dropout integration in TKAN architecture

To mitigate overfitting and improve model robustness in time series forecasting, we propose a refined
architectural framework by incorporating dropout regularization into the TKAN architecture. Dropout,
a well-established technique for preventing co-adaptation of neurons during training [15], introduces
stochastic deactivation of neurons, thereby enhancing generalization by reducing dependency on spe-
cific pathways.

Three variants of the modified architecture were evaluated:

1. TKANI1: A dual-dropout configuration with hidden state size 4 = 50, featuring dropout layers
(rate = 0.1) after each recurrent layer.

2. TKAN2: A single-dropout variant with 2 = 40 and a dropout rate of 0.2 applied after the first
recurrent layer.

3. TKAN3: A dual-dropout design with 2 = 40, KAN layer output size hk = 15, and dropout rate =
= 0.1 after each recurrent layer.

Experimental results validate the efficacy of this approach (Table 7), TKANI1 achieves the best
performance on the longest forecasting horizon, outperforming other models. Additionally, TKAN?3
demonstrates the highest R? for shorter-term forecasts, highlighting its adaptability to varying temporal
dependencies.

This systematic integration of dropout layers underscores TKAN’s capacity to harmonize structural
complexity with regularization, positioning it as a competitive alternative to traditional recurrent archi-
tectures in multi-horizon forecasting tasks.

Conclusion

The empirical analysis presented on this paper demonstrates that KAN serve as a promising alter-
native to MLP in time series forecasting. When extended to recurrent architectures via TKAN, the
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Table 7
Evaluation results of TKAN with regularization on the electricity dataset

TKAN GRU LSTM
F R? RMSE MAE R? RMSE MAE R? RMSE MAE
12 0.3801 0.0949 0.0729 0.3088 0.1025 0.0802 0.2775 0.0818 0.0634
24 0.3344 0.0978 0.0755 0.3540 0.0976 0.0762 0.3480 0.1013 0.0795
48 0.3709 0.0988 0.0770 0.3220 0.1019 0.0807 0.3693 0.0989 0.0767
96 0.3483 0.1010 0.0791 0.2877 0.1047 0.0834 0.3441 0.1012 0.0791

integration of LSTM-inspired gating mechanisms with spline-based parameterization exhibits superior
accuracy for extended forecasting horizons while maintaining reduced architectural complexity. Spe-
cifically, proposed in the paper modification TKAN1, augmented with dual Dropout layers (dropout
rate = 0.1) and a hidden state size & = 50, achieves the highest R> = 0.3483 and lowest RMSE 0.1010
on the Electricity dataset for extended forecasting horizons F' = 96.
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