
© Maleev O.G., Kovaleva O.A., 2025. Published by Peter the Great St. Petersburg Polytechnic University

Computing, Telecommunication and Control, 2025, Vol. 18, No. 4, Pp. 20–29.
Информатика, телекоммуникации и управление. 2025. Том 18, № 4. С. 20–29.

Research article
DOI: https://doi.org/10.18721/JCSTCS.18402
UDC 004.032.26

A STUDY OF THE APPLICABILITY  
OF THE KOLMOGOROV-ARNOLD NETWORK ARCHITECTURE  

FOR TIME SERIES FORECASTING

O.G. Maleev ✉    , O.A. Kovaleva
Peter the Great St. Petersburg Polytechnic University,  

St. Petersburg, Russian Federation
✉ olegmg@bk.ru

Abstract. The recently proposed Kolmogorov–Arnold Network (KAN) architecture emerges  
as a promising alternative to traditional neural networks based on the Multilayer Perceptron 
(MLP). By leveraging the Kolmogorov–Arnold representation theorem, KAN represents  
multidimensional functions as combinations of univariate functions, thereby offering potentially  
higher accuracy and model interpretability through its inherently simpler structure. This paper  
investigates the applicability of KAN to time series forecasting using the well-known hourly  
electricity consumption dataset as a benchmark. Meteorological observation data are selected as  
an additional testbed. A comparative analysis is conducted between KAN networks and traditional  
MLPs, as well as implementations of recurrent architectures based on KAN (TKAN variants)  
versus established designs such as Long Short-Term Memory (LSTM) and Gated Recurrent  
Units (GRU). Experimental results demonstrate the superiority of the KAN architecture over  
MLPs in temporal prediction tasks. The proposed recurrent architecture, TKAN1, achieves the  
highest coefficient of determination (R2 = 0.3483) among TKAN variants, with a Root Mean  
Squared Error (RMSE) of 0.1010 in energy demand forecasting.
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НЕЙРОННЫХ СЕТЕЙ КОЛМОГОРОВА-АРНОЛЬДА (KAN)  

К ЗАДАЧЕ ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ

О.Г. Малеев ✉    , О.А. Ковалева
Санкт-Петербургский политехнический университет Петра Великого,  

Санкт-Петербург, Российская Федерация
✉ olegmg@bk.ru

Аннотация. Недавно предложенная архитектура нейросетей Колмогорова–Арнольда  
(Kolmogorov–Arnold Networks, KAN) является перспективной альтернативой традици-
онным нейронным сетям на основе многослойного персептрона (Multilayer Perceptron,  
MLP). Благодаря использованию теоремы Колмогорова–Арнольда, KAN представля-
ет многомерные функции в виде комбинации одномерных, обеспечивая потенциально 
более высокую точность и интерпретируемость модели. В данной статье исследуется 
применимость KAN и ее рекуррентного расширения – Temporal Kolmogorov–Arnold  
Networks (TKAN) – к задаче прогнозирования временных рядов на примере известного  
набора данных почасового потребления электроэнергии. В качестве дополнительного  
набора данных выбраны данные метеорологических наблюдений. Проведен сравнитель-
ный анализ сетей KAN с традиционными MLP, а также реализации архитектуры рекур-
рентной нейросети на основе архитектуры KAN с широко известными архитектурами  
долгой краткосрочной памяти (Long Short-Term Memory, LSTM) и управляемого рекур-
рентного блока (Gated Recurrent Units, GRU).  Экспериментальные результаты демон-
стрируют превосходство архитектуры KAN над MLP в задачах временного прогнозиро-
вания. Предложенная в статье рекуррентная архитектура TKAN1 демонстрирует лучший  
среди TKAN коэффициент детерминации R2 = 0,3483 при RMSE 0,1010 в задаче прогнози-
рования энергопотребления.

Ключевые слова: временные ряды, прогнозирование временных рядов, нейросеть Колмо-
горова–Арнольда, многослойный персептрон, рекуррентная нейронная сеть
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Introduction

Forecasting time series is a critical task across diverse industries, from economics and transpor-
tation to meteorology and medicine. Achieving highly accurate forecasts is essential for maintain-
ing business competitiveness, minimizing risks, optimizing resources and justifying significant deci-
sion-making processes.

Established approaches address time series forecasting using classical statistical methods [1–3].  
However, with increased computational power and the daily generation of vast volumes of temporal  
data, deep neural networks have proven effective for forecasting. These networks can learn complex  
data representations, eliminating or reducing the need for manual feature engineering [4, 5]. Despite  
notable advancements in time series forecasting, several challenges persist. Models based on the Mul-
tilayer Perceptron (MLP) architecture require larger statistical datasets for training due to the lack of  
prior knowledge [6]. Furthermore, black-box models exhibit reduced interpretability and explain ability  
compared to statistical methods.
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A recently proposed fundamentally novel neural network architecture, the Kolmogorov–Arnold  
Network (KAN) [7], presents a promising alternative to the MLP and opens new avenues for advancing  
deep learning models.

Related works
MLP networks are effective approximators of nonlinear functions due to the underlying universal  

approximation theorem (Cybenko’s theorem) [8], which asserts, that a feedforward network with a sin-
gle hidden layer containing a finite number of neurons can approximate any continuous multivariate  
function to arbitrary accuracy, provided the hidden layer contains a sufficient number of neurons and  
the network parameters are appropriately chosen. The KAN, in turn, is grounded in the Kolmogorov– 
Arnold representation theorem, which states that any multivariate continuous function can be expressed  
as a composition of univariate functions and addition operations:

where                                         
Each univariate function is parameterized as a B-spline curve with trainable coefficients ci of local  

B-spline basis functions               and is represented as a weighted sum with trainable weights wb and ws:

where            is analogous to a residual connection.
Thus, l-th layer of KAN is defined by a matrix of functions:

enabling KAN to extend the Kolmogorov–Arnold representation theorem to arbitrary width and 
depth [9].

The general structure of KAN comprises a composition of L layers, with dimensions specified by the  
array                            For an input vector                   the KAN output is expressed as:

where each layer Φl transforms its input through learnable univariate functions parameterized via 
B-spline basis expansions.

Thus, in KAN, activation functions are moved to the edges of the computational graph: each weight  
is replaced by a univariate activation function parameterized as a spline, while neurons themselves per- 
form only summation of incoming activations.

KAN combines the strengths of MLPs and splines, featuring internal and external levels of degrees  
of freedom. At the external level, KAN learns the compositional structure of the target function through  
its MLP-like architecture, while at the internal level, it approximates univariate functions with high  
precision via spline-like parameterization. Architectural complexity in KAN involves not only adding  
more layers but also refining the spline grids.

The KAN approach to representing multivariate functions aligns with structural properties of time  
series, such as trends and seasonality. Embedding prior knowledge about data structure directly into the  
neural network architecture suggests KAN’s potential effectiveness in time series forecasting [10].
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Transition to the recurrent TKAN architecture

To extend the capabilities of KAN for time series forecasting, a natural direction is to integrate the  
KAN architecture with other widely adopted deep learning methods for this task. Recurrent Neural  
Network (RNN) models have demonstrated themselves as effective tools for forecasting in practical  
scenarios of varying complexity [11].

For this study, we use a combination of a Recurrent Kolmogorov–Arnold Network (RKAN) and  
a modified Long Short-Term Memory (LSTM) block, forming the Temporal Kolmogorov–Arnold  
Network (TKAN) architecture [12]. This approach enables capturing complex nonlinearities through  
RKAN’s learnable activation functions while efficiently managing memory over extended periods via  
the LSTM cell architecture.

KAN layers retain short-term memory of previous network states, and the gating mechanism reg-
ulates information flow by determining which information should be preserved or forgotten over time.  
The schematic of the TKAN cell is illustrated in Fig. 1.

Following the analogy of hidden state updates in RNNs, the dependence of the current hidden state  
on its prior value introduces temporal dynamics into each activation function ϕl, j, i:

where              is the memory state function for the i-th neuron of the l-th layer at time t.
By analogy with the LSTM cell, information flow in the TKAN cell is governed by a forget gate, input  

gate and output gate:

The hidden state ht is computed as the output of the cell:

where ct represents the long-term memory of the cell, updated according to:

where            

The final predicted value      is derived via a linear layer:

This formulation aligns with standard LSTM-based memory mechanisms, where the hidden state  
ht acts as a compressed representation of temporal dependencies, and the cell state ct retains long-term  
memory through gated updates.

Numerical experiments

To evaluate the applicability of KAN to time series forecasting, we conduct a comparative analysis  
of KAN against MLP and TKAN against classical recurrent architectures – LSTM [13] and GRU [14].
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Fig. 1. Architecture of the TKAN Cell

We frame multivariate time series forecasting as a supervised learning task. The input to the model  

is a sequence of historical time steps                                                    where H denotes the historical win- 

dow size used for forecasting and D represents the number of variables. The forecasting task involves  

generating an output sequence                                                          where F is the forecasting horizon.
We evaluate the considered models on widely used benchmark datasets (Table 1):
1.  Electricity Dataset: This dataset contains hourly electricity consumption data from 321 clients 

between 2012 and 2014, measured in kilowatts1.
2.  Weather Dataset: This dataset includes meteorological observations recorded at 10-minute inter-

vals near Beutenberg  (Germany) from 2021 to 20232. Hourly data was obtained by sampling the first 
observation of each hour.

Table  1
Characteristics of the used datasets

Dimensions Series length Granularuty Split

Electricity 321 26304 1 hour [7:1:2]

Weather 20 26280 1 hour [8:0.5:1.5]

Data preprocessing involves MinMax scaling, which maps values to the [0,1 ] interval while preserv-
ing the distribution shape. Validation follows a simple strategy: datasets are split into training, validation  
and testing subsets in chronological order according to the predefined ratios.

We compare MLP and KAN on the Electricity dataset, analyzing the dependence of model perfor-
mance on a key KAN parameter – the spline grid size G. Identical network configurations are consid-
ered, with varying numbers of hidden layers and neurons. The historical window size is fixed at H = 24,  
and the forecasting horizon is set to F = 6. Network configurations are detailed in Table 2. The loss func-
tion is Mean Squared Error (MSE), and training employs the Adam optimizer with an initial learning  
rate of lr = 0.001. The MSE and Mean Absolute Error (MAE) are used as evaluation metrics for models  
on test data. Results are summarized in Table 2.

1 Electricity Hourly Dataset, Available: https://zenodo.org/records/4656140 (Accessed 08.04.2025)
2 Max-Planck-Institut fuer Biogeochemie – Wetterdaten, Available: https://www.bgc-jena.mpg.de/wetter/weather_data.html (Accessed 
08.04.2025)
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Table  2
Comparison of MLP and KAN evaluation results

Configuration MSE MAE Number of parameters

KAN

[24, 5, 6], G=3 0.00471 0.04299 1.2 K

[24, 10, 6], G=3 0.00451 0.04215 2.4 K

[24, 20, 6], G=3 0.00442 0.04180 4.8 K

[24, 10, 10, 6], G=3 0.00464 0.04354 3.2 K

[24, 10, 6], G=10 0.00419 0.04060 4.5 K

[24, 10, 10, 6], G=10 0.00416 0.04081 6.0 K

MLP

[24, 5, 6] 0.00561 0.04801 161

[24, 10, 6] 0.00498 0.04484 316

[24, 20, 6] 0.00460 0.04265 626

[24, 10, 10, 6] 0.00522 0.04655 426

[24, 20, 20, 20, 6] 0.00480 0.04440 1.5 K

For TKAN, LSTM and GRU, we adopt a simple unified architecture: an input recurrent layer re-
turning full sequences and an intermediate layer returning only the final hidden state, both with iden-
tical hidden state dimensions. The output layer is fully connected with linear activation. Hidden state  
sizes h = [50, 100] , KAN layer sizes hk = 20, spline grid size G = 3 and spline order k = 3 are tested.  
Forecasts are generated for F = [12, 24, 48, 96, 168] with H = 48. The loss function remains MSE, and  
evaluation metrics include RMSE, MAE and the coefficient of determination R2. Results are reported  
in Tables 3–6, with bold indicating the best performance per metric and forecasting horizon.

Table  3
Evaluation results of recurrent models with hidden state size h = 100 on the electricity dataset

F
TKAN GRU LSTM

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

12 0.1316 0.0766 0.0593 0.2228 0.0797 0.0621 0.3497 0.0767 0.0596

24 0.2073 0.0767 0.0590 0.3592 0.0756 0.0585 0.3668 0.0777 0.0605

48 0.2292 0.0873 0.0677 0.3204 0.0776 0.0597 0.2436 0.0808 0.0624

96 0.2869 0.0829 0.0640 0.2790 0.0829 0.0639 0.1663 0.0822 0.0632

Table  4
Evaluation results of recurrent models with hidden state size h = 100 on the weather dataset

F
TKAN GRU LSTM

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

12 0.6822 0.0738 0.0506 0.7029 0.0697 0.0469 0.6676 0.0747 0.0514

24 0.5893 0.0884 0.0633 0.6070 0.0858 0.0611 0.6133 0.0842 0.0590

48 0.4781 0.1027 0.0748 0.5774 0.0895 0.0632 0.5416 0.0944 0.0674

96 0.4666 0.1043 0.0751 0.5078 0.0989 0.0708 0.4904 0.1012 0.0726

168 0.4453 0.1068 0.0767 0.3738 0.1143 0.0843 0.4168 0.1100 0.0800
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Table  5
Evaluation results of recurrent models with hidden state size h = 50 on the electricity dataset

F
TKAN GRU LSTM

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

12 0.2513 0.0809 0.0631 0.1929 0.0756 0.0583 0.2130 0.1063 0.0840

24 0.3033 0.0940 0.0744 0.1615 0.0768 0.0593 0.1344 0.0756 0.0581

48 0.3425 0.1006 0.0791 0.0974 0.0768 0.0588 0.3700 0.0763 0.0583

96 0.3733 0.0881 0.0683 0.1886 0.0817 0.0631 0.3227 0.0915 0.0716

Table  6
Evaluation results of recurrent models with hidden state size h = 50 on the weather dataset

F
TKAN GRU LSTM

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

12 0.6563 0.0773 0.0547 0.6879 0.0724 0.0497 0.6929 0.0717 0.0484

24 0.5880 0.0889 0.0640 0.6081 0.0858 0.0611 0.6319 0.0820 0.0566

48 0.4703 0.1040 0.0760 0.5187 0.0981 0.0712 0.4840 0.1021 0.0745

96 0.4703 0.1041 0.0748 0.4368 0.1077 0.0791 0.4888 0.1016 0.0726

168 0.4393 0.1075 0.0771 0.4121 0.1107 0.0807 0.4459 0.1069 0.0767

The experiments use an optimized KAN implementation3, which addresses performance limitations  
of the original KAN framework while achieving speed comparable to MLP.

Based on Table 2, it can be concluded that KAN outperforms MLP on the selected dataset. Bold val-
ues indicate the best results, while underlined values correspond to approximately the same number of  
parameters. The simplest KAN configuration with a single hidden layer of 5 neurons achieves accuracy  
comparable to an MLP with a significantly larger number of parameters and a more complex configu-
ration – three hidden layers with 20 neurons each. Adding 10 neurons to a single hidden layer in KAN  
(third row) improved accuracy more effectively than adding an additional hidden layer with 10 neurons  
(fourth row). Notably, the two lowest error rates were achieved with a refined spline grid. This suggests  
that KAN’s internal degrees of freedom, implemented via splines, grant the architecture greater expres-
sive power in approximating data dependencies.

In experiments using recurrent models (Tables 3 and 5), for energy consumption data, R2 increases  
with the forecasting horizon for TKAN, while it decreases for weather data (Tables 4 and 6) and other  
models. At a hidden state size of h = 50, TKAN consistently achieves the highest R2 across most ex-
periments, indicating its potential for optimal energy consumption forecasting when further optimizing  
configurations.

To improve generalization, regularization techniques will be applied next. As shown in loss curves  
(e.g., F = 96, h = 100 in Fig. 2), TKAN demonstrates potential for further training, whereas LSTM and  
GRU exhibit overfitting, evidenced by diverging training and validation loss curves.

On weather data, TKAN demonstrates superior performance for the longest forecasting horizon  
when the hidden state size is set to h = 100. Unlike other models, the decline in the coefficient of deter-
mination (R2) slows down starting from F = 48, indicating improved stability in long-term predictions.  
This suggests that TKAN retains greater explanatory power as the forecasting horizon increases, making  

3 GitHub – Blealtan/efficient-kan: An efficient pure-PyTorch implementation of Kolmogorov-Arnold Network (KAN), Available: https://github.
com/Blealtan/efficient-kan (Accessed 08.04.2025)



Intelligent Systems and Technologies, Artificial Intelligence

27

it a viable alternative to traditional architectures like LSTM and GRU for long-term time series fore-
casting tasks.

Enhancement through dropout integration in TKAN architecture

To mitigate overfitting and improve model robustness in time series forecasting, we propose a refined  
architectural framework by incorporating dropout regularization into the TKAN architecture. Dropout,  
a well-established technique for preventing co-adaptation of neurons during training [15], introduces  
stochastic deactivation of neurons, thereby enhancing generalization by reducing dependency on spe-
cific pathways.

Three variants of the modified architecture were evaluated:
1.  TKAN1: A dual-dropout configuration with hidden state size h = 50, featuring dropout layers  

(rate = 0.1) after each recurrent layer.
2.  TKAN2: A single-dropout variant with h = 40 and a dropout rate of 0.2 applied after the first  

recurrent layer.
3.  TKAN3: A dual-dropout design with h = 40, KAN layer output size hk = 15, and dropout rate =  

= 0.1 after each recurrent layer.
Experimental results validate the efficacy of this approach (Table 7), TKAN1 achieves the best  

performance on the longest forecasting horizon, outperforming other models. Additionally, TKAN3  
demonstrates the highest R2 for shorter-term forecasts, highlighting its adaptability to varying temporal  
dependencies.

This systematic integration of dropout layers underscores TKAN’s capacity to harmonize structural  
complexity with regularization, positioning it as a competitive alternative to traditional recurrent archi-
tectures in multi-horizon forecasting tasks.

Conclusion

The empirical analysis presented on this paper demonstrates that KAN serve as a promising alter-
native to MLP in time series forecasting. When extended to recurrent architectures via TKAN, the  

Fig. 2. Loss Functions for Recurrent Models (h = 100)
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integration of LSTM-inspired gating mechanisms with spline-based parameterization exhibits superior  
accuracy for extended forecasting horizons while maintaining reduced architectural complexity. Spe-
cifically, proposed in the paper modification TKAN1, augmented with dual Dropout layers (dropout  
rate = 0.1) and a hidden state size h = 50, achieves the highest R2 = 0.3483 and lowest RMSE 0.1010  
on the Electricity dataset for extended forecasting horizons F = 96.

Table  7
Evaluation results of TKAN with regularization on the electricity dataset

F
TKAN GRU LSTM

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

12 0.3801 0.0949 0.0729 0.3088 0.1025 0.0802 0.2775 0.0818 0.0634

24 0.3344 0.0978 0.0755 0.3540 0.0976 0.0762 0.3480 0.1013 0.0795

48 0.3709 0.0988 0.0770 0.3220 0.1019 0.0807 0.3693 0.0989 0.0767

96 0.3483 0.1010 0.0791 0.2877 0.1047 0.0834 0.3441 0.1012 0.0791
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