Computing, Telecommunication and Control, 2025, Vol. 18, No. 4, Pp. 112-122.
4 MHdopMaTurKa, TeNeKOMMyHUKaumm 1 ynpasneHme. 2025. Tom 18, N2 4. C. 112-122.

System Analysis and Control
CUCTEMHbIN aHaNM3 U yrnpaBieHne

Research article @ 013
DOI: https://doi.org/10.18721/JCSTCS.18410 R
UDC 519.8

MULTI-CRITERIA CONTROL
OF LARGE-SCALE NONLINEAR DYNAMICAL SYSTEMS
WITHOUT LINEARIZATION, BASED ON LYAPUNOV FUNCTIONS

M.l. Fershtadt = , V.N. Shashikhin

St. Petersburg State Polytechnical University,
St. Petersburg, Russian Federation

= tral1930@mail.ru

Abstract. This paper proposes a numerical control method for large-scale nonlinear dynamical
systems, focused on maintaining stability without using linearization. The approach under study
is based on the principles of multi-criteria optimization, where the stability of the system is
directly included in the vector of target criteria through Lyapunov functions. This allows us
not only to minimize deviations from the target states and energy consumption for control,
but also to guarantee the asymptotic stability of the system under arbitrary initial conditions.
A mathematical formulation of the problem is presented, a discrete numerical control scheme
is developed, and a scalarization strategy is proposed that provides an approximation to
Pareto-optimal solutions. A series of numerical experiments implemented in Python has been
conducted, confirming the effectiveness of the method using examples of both single- and multi-
agent systems. The results demonstrate the stable behavior of the trajectories, a decrease in the
Lyapunov function over time and correct operation even with strong nonlinearity of the model.
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AnHOTammsA. B 1aHHOI cTaThe MpeajiaraeTcs METOA YMCICHHOTO YIIPaBJICHUS KPYITHOMAC-
IITAOHBIMU HEJIMHEWHBIMU JTUHAMUYECKUMU CUCTEMaMU, OPMEHTUPOBAHHBI Ha COXpaHe-
HUE YCTOMYMBOCTU O€3 MCIOJb30BaHUS JMHeapu3auuu. McciaenyeMmblit MOAXoH OIMUpPaeTCs
Ha NPUHLUIIBI MHOTOKPUTEPUATBHON ONITUMM3ALMU, THAE YCTOMUMBOCTh CUCTEMbI HAIIPSIMYIO
BKJIIOYAETCS B BEKTOP LIeJIEBbIX KpUTEPUEB MOCPEACTBOM (pyHKLMIT JIssmyHOBa. DTO MO3BOASET
HE€ TOJIbKO MUHUMU3UPOBATh OTKJIOHEHUS OT LIEJIEBBIX COCTOSIHUI U SHEpPro3arpaThl Ha yIpaB-
JIEHHWE, HO U TapaHTUPOBAThb aCUMITOTUYECKYIO YCTOMYMBOCTH CHCTEMBI TPU MPOU3BOJIBHBIX
HavyaJbHbIX ycsioBUsIX. [IpeacTaBieHa MmaremMaTuyeckasi MOoCTaHOBKA 3ajayu, pa3paboTaHa auc-
KpeTHasl YMCJeHHasl cXeMa YIpaBJIeHUSI U TIPeAJIoKeHa CTpaTerusl cKajasipusaluu, odecrieyn-
Baromas npubamkeHne K IlapeTo-ontumanabHbIM pelieHusM. [IpoBeneHa cepust YMCIEHHBIX
SKCIEPUMEHTOB TMPU MOMOIIU sI3bIKa MporpamMmmupoBaHus Python, pesynbraTbl MoaeaupoBa-
HUS TIpeCTaBleHbl B BUAe rpacMKOB, MOATBepKAAOIINX 3(P(PEeKTUBHOCTh METOJa Ha MPpUMEpPE
KaK OJMHOYHOI, TaK M MYJBTHAreHTHON cHUcTeMbl. Pe3yabTaThl JEMOHCTPUPYIOT YCTOMUYMBOE
MoBeJieHUE TPAEKTOPUIA, yMeHbIlIeHUE (PyHKIMMU JISIMyHOBA BO BpeMEeHM U KOPPEKTHYIO paboTy
JIaxe MPU CUJIbHOW HEJIMHEWHOCTHU MOJIEIIN.

KimoyeBble cioBa: HEJIMHEIHbBIE CUCTEMbI, YCTOMYMBOCTD, (hyHKIMS JISIITyHOBA, MHOTOKPUTEPH-
aJIbHAsi ONTUMU3ALIUS, paclpele/ieHHOe yIpaBieHrue, YUCIeHHOEe MOJIeIMPOBAHUE, YIIPABICHHE
0e3 TMHeapu3aumn

Jng murupoBanus: Fershtadt M.1., Shashikhin V.N. Multi-criteria control of large-scale nonlinear
dynamical systems without linearization, based on Lyapunov functions // Computing, Telecom-
munications and Control. 2025. T. 18, Ne 4. C. 112—122. DOI: 10.18721/JCSTCS.18410

Introduction

Modern technical, cyber-physical and social systems are characterized by high dimensionality, a
complex structure of interactions between components and pronounced nonlinear dynamics [1]. Such
systems include intelligent power grids, multi-agent robotic platforms, traffic management systems, dis-
tributed computing complexes and others [2, 3]. Increasing complexity creates the need for new control
approaches, the necessity to simultaneously consider multiple quality criteria, interactions between
subsystems, and stability requirements [4, 5].

Traditional control methods based on linearization of the model demonstrate limited applicability
under conditions of rapid transients, saturation of control actions and variable system structure. In par-
ticular, linearization can significantly distort the real properties of the system, reducing control accuracy
and depriving the developer of stability guarantees outside a small neighborhood of the equilibrium [6].

In these conditions, multi-criteria optimization (MCQO) without linearization becomes particularly
relevant, allowing for simultaneous consideration of dynamic and energy characteristics, as well as sta-
bility characteristics [7—10]. However, most existing approaches to MCO treat stability as an additional
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constraint or a posteriori verification of results, without including it in the optimization structure itself.
This creates a gap between the formal optimization task and the actual requirements for the safety and
stability of the system [11—14].

The present work introduces an approach in which the Lyapunov function is included directly in the
vector of criteria for MCO. This allows for integrating stability requirements into the optimization
process. This approach can be applied in both centralized and distributed control systems.

>

Mathematical model and formalization of multi-criteria control

Structure and properties of the controlled system

By a large-scale nonlinear system, we mean a set of M interacting subsystems Y i, each of which
has its own dynamics and interacts with others through a limited set of connections. The connectivity
of the system is represented by an oriented graph G = (V, E), where the vertices V = {1, 2, ..., M}
correspond to subsystems, and the edges £ = V' x V determine the structure of the interaction [15, 16].

The dynamics of each subsystem ) i is given by a system of differential equations:

% =f"(x"’ i xNi)’ yi=h(x),

where: x; € R} is the state vector; u, € R is the control input; N,  V'is a set of neighboring agents
with which there is a connection that affects subsystems  7; x,, is the vector of all neighboring states;
ﬁ, hi is the continuous functions, and in some cases, non-linear ones.

The state of the entire system:

T
T T T n
x:[xl, Xyy oens xM] eR", n=>n.

Problem formulation for multi-criteria control

Modern control tasks require simultaneous satisfaction of several, often contradictory, goals: mini-
mizing deviations from the trajectory, reducing control effort and ensuring stability and coordination
between system components [17—20]. Formally, such a task is formulated as a MCO with a vector ob-
jective function:

The desired control u(f) must be Pareto-optimal for the vector of criteria J(x(¢)), u(¢)) under the
following constraints:
1. Equations of motion of each subsystem:

X :fl.(xl., u, xNi).

2. Initial conditions:
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3. Functional constraints on control and state:
u () eU, x(t)eX, Vvte[0,T].

Stability as an integrated criterion: the Lyapunov function

The key feature of the proposed approach is the direct inclusion of the stability requirement in the
objective function of the optimization problem. This is achieved through a Lyapunov function V(x) that
satisfies the classical conditions:

V(x) >0 at x#0, V(O) =0;

V(x) = VV(x)T f(x, u) <0.
Using the Lyapunov function as one of the optimization criteria allows one not only to ensure the
stability of the system, but also to integrate the quality of the transition process into the objective vector.

The structure of the objective functions may include:
* control accuracy:

=L (0=, ()] e

where x j(t) is the desired trajectory;
* control effort:

Iy = [y Ju(e)[ ar.

* stability:

° convergence rate:

J, = -V (x(1))at.

For systems with polynomial nonlinearity, it is possible to use sums of squares of polynomials, which
makes it possible to efficiently construct and verify Lyapunov functions via semidefinite programming:

: T
Distributed problem formulation
When implementing control in a distributed environment, each agent solves a local optimization

problem, taking into account its objectives and coordination with its neighbors. In this case, the optimi-
zation takes the following form:

=S n (ol = pl )

where: f]{ji is the weighted average of the states of the neighbors; p, B are the coefficients of coordination
and control effort.
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Information exchange between agents takes place according to a certain topology of the graph G =
= (V, E), and coordination can be implemented either via consensus iterations or via the Alternating
Direction Method of Multipliers (ADMM).

Development of a numerical method for multi-criteria optimization

Requirements for the numerical algorithm

The following key requirements apply for the practical implementation of the proposed optimization
method:

1) working with the original nonlinear model — without prior linearization;

2) multi-criteria capability — the presence of several goals in the objective function, including sta-
bility;

3) numerical stability — maintaining the operability of the method under coarse approximations;

4) distributed implementation — the ability to perform optimization independently for each subsys-
tem with coordination;

5) flexibility — the ability to adapt to the constraints and changing structure of the model.

These requirements impose restrictions on the choice of integration method, convergence criteria
and the structure of the computational process.

Discretization of dynamics

For numerical analysis, the continuous dynamics of the system is discretized in time. The simplest
Euler scheme is used:

Xies1 :xk+At><f(xk, uk), k=0, ..., N—1,

where: At is the time step; NV is the number of discretization steps.

With this scheme, the state sequence X, is generated sequentially using the control values u -

In the future, the Euler scheme can be replaced by more stable schemes — Runge—Kutta or the back-
ward Euler scheme.

The system is constrained by physical bounds, the states and controls are clipped to prescribed ranges:

xk EX:[_Xmax’ Xmax]’ uk EU=[—U max]'

u

max 2

Structure of the scalar functional
For numerical solution, the multi-criteria problem is scalarized — one combined functional is formed
[21, 22]:

J(u)= a]\fV(xk)xAt+B1\§uf x A,
k=0 k=0

where: V(xk) is the the Lyapunov function at step k; u, is the control input.

The parameters o, [ are set by the user and reflect the priority between stability and control effort.

This approach has the following advantages:

1. Stability is included in the objective function, which guarantees a decrease in V(x) along the op-
timal trajectory. It is important to note here that stability is treated not as a hard constraint, but as one
of the criteria.

2. After discretization and scalarization, the usual function J(u) is obtained and the problem can be
solved numerically using Python and scipy.optimize.minimize or other standard nonlinear optimizers.

3. The algorithm is simple to implement in real time. If /V is chosen to be small, control can be com-
puted in a few seconds, without complex squares of polynomials or semidefinite programming solvers,
in the proposed algorithm the control action is updated at each control cycle.
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Integration of Lyapunov conditions

To integrate stability into a numerical algorithm, it is necessary:
+ fix the parameter § > 0;

 introduce a restriction:

V(xk) =VV(xk )T f(xk, uk) < —6||xk||2.

If V(x) is a quadratic or polynomial function (for example, V(x) = x’Px), then verification of this
condition is possible numerically. At the same time, the feasibility of the optimization problem remains,
even if the exact minimum is not achieved, due to the preservation of the stability property.

Optimization algorithm

The general numerical scheme is as follows:

1.

Initialization:

the initial state X, is set;

the parameters NV, At, a, B are set;

an approximation of fd (x, u) is chosen (for example, using the Euler method);
an initial control guess u? is selected (for example, zeros).

. Optimization:

the objective functional J(u) is constructed;
the optimization method is chosen (gradient, quasi-Newton, evolutionary);
if necessary, restrictions and filtering of values are introduced.

. Stability check:

it is necessary to make sure that the values of V’(xk) are negative along the entire trajectory;
then make sure that the function V(xk) decreases at each step.

. Results are presented as follows:

phase trajectories are plotted;
the total control effort is estimated;
visualization of system behavior.

Distributed implementation
For a distributed implementation, each subsystem solves its own local optimization problem:

)= 51 oot =5 [ ol |

The coordination mechanism can be implemented in two ways:

1) the Jacobi method: at each iteration, the agent receives data from neighbors and recomputes its
control;

2) ADMM: consensus variables and auxiliary Lagrange multipliers are introduced; simplification
lies in the fact that the current implementation uses an approximate prototype without multipliers.

This approach provides:

scalability;

« the ability to add or remove agents without changing the algorithm;

stability even with incomplete convergence;
feasibility of application in conditions of limited computing resources.

Empirical verification of the method

Verification objectives and structure
Empirical verification of the method is carried out to confirm its operability and stability in numeri-
cal modeling without linearization. The main tasks of verification are:
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» confirmation of the correctness of the numerical solution;

* demonstration of a decreasing Lyapunov function along the trajectories;

« verification of consistency and stability in distributed configurations;

 visualization of system trajectories and qualitative interpretation of behavior.

The simulation is implemented using the Python programming language and the numpy, scipy and
matplotlib modules. Verification includes two stages:

1) optimization of control on a single system;

2) distributed implementation with multiple agents.

Verification on a single system

System dynamics
The following nonlinear system is considered:

< 2
X, ==X, +Xx, +u

Xy =X, + XXy

The Lyapunov function is chosen as:
V (x) =x; +X5.

The initial state is set by the following parameters: x, = [1,5; —1,0]. Simulation time is T = 10, with
a discretization of N = 200.

Without control

Without the control action u(f) = 0, the system exhibits unstable behavior. The Lyapunov function
does not decrease and sometimes even increases. In the phase plane, the trajectory moves away from the
origin.

The Python code to generate the plots (Figs. 1—-3) is available for download and can be run locally'.

Constant optimal control

The problem of finding u = const that minimizes the objective functional for arbitrary control is
solved:

J(u)=af v (x(r))dt+p[, udt.
Substituting the condition u = const into this equation, we obtain:
J(u)=af, v (x(tu))de+p[ wdt=of v (x(tu))dt+BTu’,
where the trajectory x(£; u) can be expressed by the system:

. 2
X ==X +x;+u
X, ==X, + XX,

x(0)+[1.5-1.0]'

At o =1, B = 0,1, the optimal value u* = —0,71 ensures a guaranteed decrease in V(x(¢)) and a
bounded phase trajectory (the system decays without emissions).

' GitHub - fershtadt/lyapunov-control-visualization, Available: https://github.com/fershtadt/lyapunov-control-visualization (Accessed
13.11.2025).
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Fig. 2. Simulation with variable control

Variable control
For discrete control u, (k=0, ..., N—1), the following objective functional is minimized:

N-—

> [OLV(xk)+[3u,f]At.

k=0

J(u)

Results:

* the Lyapunov function V(x) decreases monotonically;

* trajectories x (), X,(?) tend to zero without oscillations;

« the derivative }”(x) < 0 along the entire trajectory;

* no overflow, oscillations, or anomalies are observed.

« the trajectories V(¢) for each agent lie below zero, therefore, the condition J” < 0 along the tra-
jectory is confirmed.
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Numerical derivative V'(t)
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Fig. 3. Numerical derivative of V(r)

Conclusions

1. A constant optimal value of u" stabilizes the system, but the attenuation of V(¥) is slower than
with an optimized time-varying control strategy.

2. Optimizing the discrete control sequence u, accelerates convergence and reduces control effort,
as evidenced by the steeper decline of V(f) and the negative derivative V() over the entire interval for
each agent.

3. It has been empirically confirmed that including the Lyapunov function in the objective vector
makes it possible to achieve stability without linearization, even with a simple Euler discretization and a
small number of Jacobi coordination iterations.

Verification in a distributed system

System configuration
A system of three agents is being considered:

5= £ (5 )+ X vy (- ),

JeN;

where: NV, is the set of neighbors of agent i; Y= 0,5 are consensus coefficients.

Each agent has the same local dynamics as the single-system and uses a local control of the form:

uzk = _Kvxlk,i - p(xlk,i - fll,cNi )

Distributed optimization

A simulation of distributed coordination using the Jacobi method was implemented in Python
(Figs. 2, 3). Each agent updates its trajectory according to its own equations, using the average states
of its neighbors.

Jacobi iterations: 20.

Results:

 all agents demonstrate coherent behavior: deviations between them decrease;

» the Lyapunov function decreases for each agent;

* control inputs u (f) remain within the acceptable range;

 the agents' phase trajectories converge to a common equilibrium state.

Conclusion

Even in the simplest implementation of distributed optimization (without Lagrange multipliers), the
proposed approach provides:
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« stability of the entire system;
» coordination between agents;
* numerical stability in nonlinear dynamics.
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