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Abstract. This paper proposes a numerical control method for large-scale nonlinear dynamical  
systems, focused on maintaining stability without using linearization. The approach under study  
is based on the principles of multi-criteria optimization, where the stability of the system is 
directly included in the vector of target criteria through Lyapunov functions. This allows us 
not only to minimize deviations from the target states and energy consumption for control, 
but also to guarantee the asymptotic stability of the system under arbitrary initial conditions.  
A mathematical formulation of the problem is presented, a discrete numerical control scheme  
is developed, and a scalarization strategy is proposed that provides an approximation to  
Pareto-optimal solutions. A series of numerical experiments implemented in Python has been  
conducted, confirming the effectiveness of the method using examples of both single- and multi-
agent systems. The results demonstrate the stable behavior of the trajectories, a decrease in the  
Lyapunov function over time and correct operation even with strong nonlinearity of the model.
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Аннотация. В данной статье предлагается метод численного управления крупномас-
штабными нелинейными динамическими системами, ориентированный на сохране-
ние устойчивости без использования линеаризации. Исследуемый подход опирается  
на принципы многокритериальной оптимизации, где устойчивость системы напрямую  
включается в вектор целевых критериев посредством функций Ляпунова. Это позволяет  
не только минимизировать отклонения от целевых состояний и энергозатраты на управ-
ление, но и гарантировать асимптотическую устойчивость системы при произвольных  
начальных условиях. Представлена математическая постановка задачи, разработана дис-
кретная численная схема управления и предложена стратегия скаляризации, обеспечи-
вающая приближение к Парето-оптимальным решениям. Проведена серия численных  
экспериментов при помощи языка программирования Python, результаты моделирова-
ния представлены в виде графиков, подтверждающих эффективность метода на примере  
как одиночной, так и мультиагентной системы. Результаты демонстрируют устойчивое  
поведение траекторий, уменьшение функции Ляпунова во времени и корректную работу  
даже при сильной нелинейности модели.

Ключевые слова: нелинейные системы, устойчивость, функция Ляпунова, многокритери-
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Introduction

Modern technical, cyber-physical and social systems are characterized by high dimensionality, a 
complex structure of interactions between components and pronounced nonlinear dynamics [1]. Such  
systems include intelligent power grids, multi-agent robotic platforms, traffic management systems, dis-
tributed computing complexes and others [2, 3]. Increasing complexity creates the need for new control  
approaches, the necessity to simultaneously consider multiple quality criteria, interactions between 
subsystems, and stability requirements [4, 5].

Traditional control methods based on linearization of the model demonstrate limited applicability  
under conditions of rapid transients, saturation of control actions and variable system structure. In par-
ticular, linearization can significantly distort the real properties of the system, reducing control accuracy  
and depriving the developer of stability guarantees outside a small neighborhood of the equilibrium [6].

In these conditions, multi-criteria optimization (MCO) without linearization becomes particularly  
relevant, allowing for simultaneous consideration of dynamic and energy characteristics, as well as sta-
bility characteristics [7–10]. However, most existing approaches to MCO treat stability as an additional  
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constraint or a posteriori verification of results, without including it in the optimization structure itself.  
This creates a gap between the formal optimization task and the actual requirements for the safety and  
stability of the system [11–14].

The present work introduces an approach in which the Lyapunov function is included directly in the  
vector of criteria for MCO. This allows for integrating stability requirements into the optimization 
process. This approach can be applied in both centralized and distributed control systems.

Mathematical model and formalization of multi-criteria control

Structure and properties of the controlled system
By a large-scale nonlinear system, we mean a set of M interacting subsystems ∑i, each of which  

has its own dynamics and interacts with others through a limited set of connections. The connectivity  
of the system is represented by an oriented graph G = (V, E), where the vertices V = {1, 2, …, M}  
correspond to subsystems, and the edges E ⊂ V × V determine the structure of the interaction [15, 16].

The dynamics of each subsystem ∑i is given by a system of differential equations:

where:                is the state vector;                is the control input; Ni ⊂ V is a set of neighboring agents  
with which there is a connection that affects subsystems ∑i; xNi

 is the vector of all neighboring states;  
fi, hi is the continuous functions, and in some cases, non-linear ones.

The state of the entire system:

Problem formulation for multi-criteria control
Modern control tasks require simultaneous satisfaction of several, often contradictory, goals: mini-

mizing deviations from the trajectory, reducing control effort and ensuring stability and coordination  
between system components [17–20]. Formally, such a task is formulated as a MCO with a vector ob-
jective function:

The desired control u(t) must be Pareto-optimal for the vector of criteria J(x(t)), u(t)) under the 
following constraints:

1.  Equations of motion of each subsystem:

2.  Initial conditions:
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3.  Functional constraints on control and state:

Stability as an integrated criterion: the Lyapunov function
The key feature of the proposed approach is the direct inclusion of the stability requirement in the  

objective function of the optimization problem. This is achieved through a Lyapunov function V(x) that  
satisfies the classical conditions:

Using the Lyapunov function as one of the optimization criteria allows one not only to ensure the  
stability of the system, but also to integrate the quality of the transition process into the objective vector.  
The structure of the objective functions may include:

•  control accuracy:

where xref(t) is the desired trajectory;
•  control effort:

•  stability:

•  convergence rate:

For systems with polynomial nonlinearity, it is possible to use sums of squares of polynomials, which  
makes it possible to efficiently construct and verify Lyapunov functions via semidefinite programming:

Distributed problem formulation
When implementing control in a distributed environment, each agent solves a local optimization  

problem, taking into account its objectives and coordination with its neighbors. In this case, the optimi-
zation takes the following form:

where:        is the weighted average of the states of the neighbors; ρ, β are the coefficients of coordination  
and control effort.
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Information exchange between agents takes place according to a certain topology of the graph G =  
= (V, E), and coordination can be implemented either via consensus iterations or via the Alternating  
Direction Method of Multipliers (ADMM).

Development of a numerical method for multi-criteria optimization

Requirements for the numerical algorithm
The following key requirements apply for the practical implementation of the proposed optimization  

method:
1)  working with the original nonlinear model – without prior linearization;
2)  multi-criteria capability – the presence of several goals in the objective function, including sta-

bility;
3)  numerical stability – maintaining the operability of the method under coarse approximations;
4)  distributed implementation – the ability to perform optimization independently for each subsys-

tem with coordination;
5)  flexibility – the ability to adapt to the constraints and changing structure of the model.
These requirements impose restrictions on the choice of integration method, convergence criteria 

and the structure of the computational process.
Discretization of dynamics
For numerical analysis, the continuous dynamics of the system is discretized in time. The simplest 

Euler scheme is used:

where: ∆t is the time step; N is the number of discretization steps.
With this scheme, the state sequence xk is generated sequentially using the control values uk.
In the future, the Euler scheme can be replaced by more stable schemes – Runge–Kutta or the back-

ward Euler scheme.
The system is constrained by physical bounds, the states and controls are clipped to prescribed ranges:

Structure of the scalar functional
For numerical solution, the multi-criteria problem is scalarized – one combined functional is formed  

[21, 22]:

where: V(xk) is the the Lyapunov function at step k; uk is the control input.
The parameters α, β are set by the user and reflect the priority between stability and control effort.
This approach has the following advantages:
1.  Stability is included in the objective function, which guarantees a decrease in V(x) along the op-

timal trajectory. It is important to note here that stability is treated not as a hard constraint, but as one  
of the criteria.

2.  After discretization and scalarization, the usual function J(u) is obtained and the problem can be  
solved numerically using Python and scipy.optimize.minimize or other standard nonlinear optimizers.

3.  The algorithm is simple to implement in real time. If N is chosen to be small, control can be com-
puted in a few seconds, without complex squares of polynomials or semidefinite programming solvers,  
in the proposed algorithm the control action is updated at each control cycle.
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Integration of Lyapunov conditions
To integrate stability into a numerical algorithm, it is necessary:
•  fix the parameter δ > 0;
•  introduce a restriction:

If V(x) is a quadratic or polynomial function (for example, V(x) = xTPx), then verification of this  
condition is possible numerically. At the same time, the feasibility of the optimization problem remains,  
even if the exact minimum is not achieved, due to the preservation of the stability property.

Optimization algorithm
The general numerical scheme is as follows:
1.  Initialization:
•  the initial state x0 is set;
•  the parameters N, ∆t, α, β are set;
•  an approximation of fd (x, u) is chosen (for example, using the Euler method);
•  an initial control guess u(0) is selected (for example, zeros).
2.  Optimization:
•  the objective functional J(u) is constructed;
•  the optimization method is chosen (gradient, quasi-Newton, evolutionary);
•  if necessary, restrictions and filtering of values are introduced.
3.  Stability check:
•  it is necessary to make sure that the values of V’(xk) are negative along the entire trajectory;
•  then make sure that the function V(xk) decreases at each step.
4.  Results are presented as follows:
•  phase trajectories are plotted;
•  the total control effort is estimated;
•  visualization of system behavior.
Distributed implementation
For a distributed implementation, each subsystem solves its own local optimization problem:

The coordination mechanism can be implemented in two ways:
1)  the Jacobi method: at each iteration, the agent receives data from neighbors and recomputes its  

control;
2)  ADMM: consensus variables and auxiliary Lagrange multipliers are introduced; simplification 

lies in the fact that the current implementation uses an approximate prototype without multipliers.
This approach provides:
•  scalability;
•  the ability to add or remove agents without changing the algorithm;
•  stability even with incomplete convergence;
•  feasibility of application in conditions of limited computing resources.

Empirical verification of the method

Verification objectives and structure
Empirical verification of the method is carried out to confirm its operability and stability in numeri-

cal modeling without linearization. The main tasks of verification are:
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•  confirmation of the correctness of the numerical solution;
•  demonstration of a decreasing Lyapunov function along the trajectories;
•  verification of consistency and stability in distributed configurations;
•  visualization of system trajectories and qualitative interpretation of behavior.
The simulation is implemented using the Python programming language and the numpy, scipy and  

matplotlib modules. Verification includes two stages:
1)  optimization of control on a single system;
2)  distributed implementation with multiple agents.

Verification on a single system

System dynamics
The following nonlinear system is considered:

The Lyapunov function is chosen as:

The initial state is set by the following parameters: x0 = [1,5; –1,0]. Simulation time is T = 10, with  
a discretization of N = 200.

Without control
Without the control action u(t) = 0, the system exhibits unstable behavior. The Lyapunov function  

does not decrease and sometimes even increases. In the phase plane, the trajectory moves away from the  
origin.

The Python code to generate the plots (Figs. 1–3) is available for download and can be run locally1.
Constant optimal control
The problem of finding u = const that minimizes the objective functional for arbitrary control is  

solved:

Substituting the condition u = const into this equation, we obtain:

where the trajectory x(t; u) can be expressed by the system:

At α = 1, β = 0,1, the optimal value u* ≈ –0,71 ensures a guaranteed decrease in V(x(t)) and a 
bounded phase trajectory (the system decays without emissions).

1 GitHub – fershtadt/lyapunov-control-visualization, Available: https://github.com/fershtadt/lyapunov-control-visualization (Accessed 
13.11.2025).
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Variable control
For discrete control uk (k = 0, …, N – 1), the following objective functional is minimized:

Results:
•  the Lyapunov function V(x) decreases monotonically;
•  trajectories x1(t), x2(t) tend to zero without oscillations;
•  the derivative V’(x) < 0 along the entire trajectory;
•  no overflow, oscillations, or anomalies are observed.
•  the trajectories V’(t) for each agent lie below zero, therefore, the condition V’ < 0 along the tra-

jectory is confirmed.

Fig. 1. Simulation of the system without control

Fig. 2. Simulation with variable control
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Fig. 3. Numerical derivative of V(t)

Conclusions
1.  A constant optimal value of u* stabilizes the system, but the attenuation of V(t) is slower than  

with an optimized time-varying control strategy.
2.  Optimizing the discrete control sequence uk accelerates convergence and reduces control effort,  

as evidenced by the steeper decline of V(t) and the negative derivative V’(t) over the entire interval for  
each agent.

3.  It has been empirically confirmed that including the Lyapunov function in the objective vector 
makes it possible to achieve stability without linearization, even with a simple Euler discretization and a 
small number of Jacobi coordination iterations.

Verification in a distributed system

System configuration
A system of three agents is being considered:

where: Ni is the set of neighbors of agent i; γij = 0,5 are consensus coefficients.
Each agent has the same local dynamics as the single-system and uses a local control of the form:

Distributed optimization
A simulation of distributed coordination using the Jacobi method was implemented in Python  

(Figs. 2, 3). Each agent updates its trajectory according to its own equations, using the average states  
of its neighbors.

Jacobi iterations: 20.
Results:
•  all agents demonstrate coherent behavior: deviations between them decrease;
•  the Lyapunov function decreases for each agent;
•  control inputs ui(t) remain within the acceptable range;
•  the agents' phase trajectories converge to a common equilibrium state.

Conclusion

Even in the simplest implementation of distributed optimization (without Lagrange multipliers), the  
proposed approach provides:
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•  stability of the entire system;
•  coordination between agents;
•  numerical stability in nonlinear dynamics.
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