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Abstract. The rapid development of neural networks has led to the integration of these
technologies into various industrial sectors. At the same time, improving the accuracy and
efficiency of detecting defects and damages, including in real-time, remains a critical task.
By combining neural networks with the Internet of Things (IoT) and technologies for data
collection, storage and protection, it is possible to create a comprehensive and effective
information-measurement system for surface defect detection. In this context, the present work
highlights recent advances in the application of artificial intelligence for quality control, as well
as the detection of defects and damages in structures. The focus is on the development and
training of neural networks capable of effectively identifying and classifying various types of
defects. The study demonstrates how these technologies significantly improve the speed and
accuracy of diagnostics compared to traditional visual and instrumental inspection methods.
The results of model testing on real industrial data confirm the high efficiency of the proposed
approach. Additionally, the authors have developed an algorithm and implemented software
for the automatic annotation of images in a format suitable for modern architectures such as
YOLO. This approach enables the effective application of the model for detecting damages on
the surfaces of structures and systems using widely available types of datasets.
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Annoramusi. BypHoe pa3BuTre HEPOHHBIX CeTeil MPUBEIO K MHTETPALlUU DTUX TEXHOJOTUM
B pasjMyHbIe OTPACIU MPOMBIIUIEHHOCTU. B TO e BpeMsi moBbillieHUEe TOYHOCTU U 3 dek-
TUBHOCTHU BBISIBJICHUS Ne(EKTOB U MOBPEXKIECHUI, B TOM YKCIE B pealbHOM BPEMEHM, OCTAET-
cg akTyanbHOU 3amaueit. KomOuHupys HelipoHHble cetu ¢ MHTepHeToMm Bemieit (IoT), a tak-
K€ TeXHOJOrUsIMU cOopa, XpaHEHUSI U 3alUUThl TaHHBIX, BO3MOXHO CO3[aTh KOMIUIEKCHYIO U
o3¢ dekTUBHYI0 MH(POPMATTMOHHO-U3MEPUTETHHYIO CUCTEMY TSI OOHAPYKEHUSI TTOBEPXHOCTHBIX
negekToB. B aTOM KOHTeKkcTe maHHAsT paboTa OCBEIIAET COBPEMEHHBIE JOCTUXEHUS B TIpUMeE-
HEHUU UCKYCCTBEHHOTO MHTEJIJIEKTA JIJIsi KOHTPOJISI KauecTBa, a TakKe BBISIBICHUS 1e(EKTOB U
MOBPEXACHUIN B KOHCTPYKIMsIX. OCHOBHOE BHUMaHUE yIesieTcsl pa3paboTKe U 0O0yYeHUIO Hell-
POHHBIX ceTeil, cmocOOHBIX 9 GHEKTUBHO UNEHTUMUIIMPOBATh U KJIacCUbUIIUPOBATh Pa3aUyHbIe
tunel fedekToB. McciaenoBaHue AeMOHCTPUPYET, KaK 3TU TEXHOJIOTUU 3HAYUTEIbHO MOBBIIIAIOT
CKOPOCTh ¥ TOYHOCTh JUATHOCTUKHU MO CPABHEHUIO C TPAAUIIMOHHBIMU METOJAMU BU3YaJTbHOTO
U UHCTPYMEHTAILHOTO KOHTpOJisl. Pe3ynbraThl TecTUpOBaHUS MOMENel Ha peaibHbIX TPOMBIIII-
JIEHHBIX JaHHBIX TTOATBEPKAAIOT BbICOKYIO 3(h(hEeKTUBHOCTD MpeMIOKeHHOTo noaxoaa. Kpome
TOTO, aBTOpaMHM pa3paboTaH aITOPUTM U pean30BaHO MMPOrPAMMHOE OOeCIIeYeHUE 7151 aBTOMa-
TUYECKOI aHHOTAllMM U300pakeHnil B hopMaTe, MOAXOASIIEM 11 COBPEMEHHBIX apXUTEKTYP,
Takux Kak YOLO. JlaHHbIi moaXxo/ Mo3BoisieT 9(p@GeKTUBHO NPUMEHSITh MOJIEJb IJIs OOHApyKe-
HUST TTOBPEXIECHUN HAa TTIOBEPXHOCTSX KOHCTPYKIIUI M CHUCTEM, MCIIONb3YS TMPOKOTOCTYITHBIC
TUTIBI HAOOPOB TAHHBIX.

KiioueBble cioBa: obHapyxeHue nehekToB, HepoHHbIe ceTH, apxuTekTypa YOLO, MOHUTOpPUHT
LIEJIOCTHOCTU KOHCTPYKUMiA, nH(ppakpacHasg TepMmorpadusi, aBTOMaTU3UPOBAHHBIA aHaIU3 Jie-
(exToB, MammMHHOE 00yUYeHUE 1T 1e(PEeKTOCKOTNHN

Jng murupoBanus: Agamirov V.L., Agamirov L.V., Nosikov M.A. et al. Application of neural net-
works for detecting defects and damage in metal structures // Computing, Telecommunications
and Control. 2025. T. 18, Ne 3. C. 9—22. DOI: 10.18721/JCSTCS.18301

Introduction

In the design and operation of engineering products, special attention is given to methods for detect-
ing macrocrack-type defects in critical structural elements, as these significantly impact the reliability
and lifespan of complex technical systems. This is particularly relevant for structures operating under
variable loads in aviation, railway and automotive transport, such as bridge structures, road surfaces etc.

Defects of this type can occur on the surfaces of load-bearing structural elements and lead to product
failures with potentially catastrophic consequences, especially in aviation. The causes of surface defects
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include both objective factors, such as structural heterogeneity of construction materials, maximum sur-
face stresses during deformation and characteristics of surface material layers, and subjective factors, in-
cluding deviations in the shape and dimensions of products, dents, scratches, other manufacturing defects
and operational errors like hard aircraft landings.

The development and creation of artificial intelligence (Al) devices and systems aimed at addressing
this problem is a highly relevant task. A critical requirement in this process is the transformation of raw
photo and video data obtained from devices into annotated data structures suitable for processing by
neural networks (NNs).

In this work, the authors have developed an information-measurement system for detecting surface
defects. This includes the design and software implementation of an algorithm for automatic annota-
tion of images into a format compatible with the state-of-the-art YOLO architecture. The algorithm
processes widely used dataset types, such as run length encoded (RLE) masks on images. This solution
enables the application of the model for efficient defectoscopic inspection of engineering structures and
products.

Before implementation, it is essential to examine existing approaches and solutions for detecting
defects in metal structures. The study [1] explores intriguing NN training methods based on various
YOLO versions and other types of NNs. It also evaluates multiple methods for assessing detection ef-
ficiency across different spectra. The results demonstrate that for visible spectrum, the most effective
methods are: GVN, HOG + SVM, SSD, GrabCut, cascading CNN, LBPHF + SVM, DMNN, VGG-
19, LBP + ULBP, YOLO v3, DELM + LRF, SVM, Faster R-CNN, CNN, stercovision + PLAMEC.
The most significant achievement was solving the key issue of inspecting power line structures (PLS)
using unmanned aerial vehicles (UAV) by introducing mobility and flexibility to the process, enabling
effective investigation of hard-to-reach areas.

The study [2] outlines the primary shortcomings and causes of defects in massive metal structures.
It further demonstrates how infrared thermography provides a clear assessment of technical conditions,
which is critical for the safe operation of structures. Infrared thermography is based on surface temper-
ature monitoring using thermal imaging in the infrared range. Unfortunately, a suitable sensor for these
studies has not yet been identified, making this method currently impractical.

In the study [3], a fiber-optic sensor was utilized to evaluate load on load-bearing elements of bridge
structures. The sensor’s key feature is its use of Bragg gratings and an interrogator, allowing precise
measurement of relative deformation and temperature. While this method is excellent for continuous
monitoring and structural reinforcement, it is not suitable for emergency integrity assessments of bridge
structures.

Method

NNs and defect detection

NN, particularly convolutional NNs (CNNs), have proven highly effective in image classification
and detection tasks. In the context of structural analysis, NNs can process images and videos captured
by drones or stationary cameras, automatically identifying signs of damage, such as cracks, corrosion,
deformations and other defects.

YOLO (You Only Look Once) — a NN architecture designed for object detection in images [4—8].

The YOLO model employs a fully CNN that predicts bounding boxes and object classes in a single
process. The input image is divided into a grid, with each grid cell predicting:

* the bounding box;

* the confidence that the bounding box contains an object;

* the probabilities of the object’s belonging to specific class.

CNNs can extract and interpret complex visual features, making them an effective tool for auto-
matic detection of defects on the surface of structures [9—14].
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Al-based methods enhance defect detection across various domains. Studies have improved PCB in-
spection using YOLO v8 and AOI technology [15, 16]. A hybrid Al approach has been proposed for defect
control [17]. Deep learning aids material classification and real-time road defect detection [18, 19].

CNN architecture

The architecture of CNNs includes several key components, each of which plays a crucial role in
image analysis:

« Convolutional layers. These layers apply filters to the input images, extracting important features
such as edges, corners and textures. For example, in the context of bridge diagnostics, convolutional
layers can identify cracks, signs of corrosion and other defects.

 Activation function. Rectified Linear Unit (ReLU) adds non-linearity to the model, allowing it to
learn more complex and abstract features of the images.

* Pooling layers. These layers reduce the dimensionality of feature maps while preserving the most
significant information. This helps decrease the amount of data to process and makes the model less
sensitive to the exact location of features.

 Fully connected layers. These layers combine the extracted features and use them for classification
or regression, allowing the determination of the extent and type of damage in the bridge structure.

CNN-based models, particularly YOLO, have significantly advanced defect detection across indus-
tries. Studies highlight improvements in solar panel and metal surface inspection [20—22], road defect
segmentation [23] and steel strip analysis [24]. The evolution from YOLO vl to YOLO v8 further en-
hances CNN-driven industrial defect detection [25].

Problem of data heterogeneity

Different research groups and companies use various datasets to train their models. This can make
it difficult to apply existing data for training a new NN. Different projects may require different NNs,
each with specific data and annotation requirements for training. In such cases, data transformation
mechanisms can be used, but in some situations, finding an acceptable solution may not be possible. For
example, an RLE dataset is not directly compatible with the YOLO NN.

In this work, the authors have developed a data converter from RLE format to a format compatible
with YOLO! [26]. RLE is a mask on the image that can label an object of any shape or type, but YOLO
requires the coordinates of the top-left and bottom-right corners of a rectangle containing the object. In
Fig. 1, on the right, the yellow-purple image is the mask on the picture, provided from the training data
set of Severstal® [27, 28], while on the left is the original photo from Severstal’s dataset, to which the
authors applied the developed program that determines the coordinates of the defect marking squares
for use in the YOLO NN.

YOLO accepts annotations in the form of a separate file with coordinates in the format: <class_label>
<x_center> <y_center> <width> <height>. In the original Severstal dataset, defect annotations (labels)
are stored in a separate .csv file as a string containing the pixel number and the count of subsequent
pixels. As a result of applying the program developed by the authors, by referencing the image mask and
using the cv2 library?, with the parameters “CV_RETR_EXTERNAL’ and “CV_CHAIN_APPROX _
SIMPLE”, we obtain the contours of adjacent mask pixels.

The mask (on the right in Fig. 1) is a new layer overlaid on the original image, showing only the dam-
aged area (yellow) and the image area (purple).

>

! See the guide on working with YOLO in Python on the website https://docs.ultralytics.com/ru/usage/python and the source code together with
instructions for running the software implementation by the authors of automatic image annotation for YOLO on the website https://github.com/
Nosikmov/Kaggle-Dataset-to-YOLO.

2 The dataset of images and defect annotations of Severstal steel sheets: https://www.kaggle.com/competitions/severstal-steel-defect-detection/
data, a software implementation of defect detection on steel sheets using convolutional neural networks by a prizewinner of competitions on the
Kaggle platform: https://www.kaggle.com/code/lightforever/severstal-mlcomp-catalyst-infer-0-90672.

* An open-source library for computer vision, machine learning, and image processing; for details see https://docs.opencv.org/4.x/d1/dfb/intro.
html.
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Fig. 1. The result of the data preparation program for training the YOLO v8 model

The contours (on the left in Fig. 1, green) represent the edges of the damage area in the mask. Since
the damage area can have an arbitrary shape and YOLO works with rectangles, it is necessary to find the
edges of the damage area in the mask to obtain the bounding rectangle.

Adjacent contour pixels are first converted into lines, using the pixel coordinates and their count
in the line. If the lines are located next to each other, they are considered adjacent, and in this case,
they need to be grouped into a single bounding rectangle annotation for YOLO.

The obtained contours can be converted into values suitable for the YOLO annotation format.
Since the annotation requires rectangle coordinates, it is necessary to determine the center of the
rectangle by averaging the corresponding values. The width and height of the rectangle are calculated
as the difference between the relevant coordinates. The center, width and height are then normalized by
dividing by the image dimensions. This process forms a defect annotation string, which is compatible with
YOLO* (Figs. 2, 3).

An example of the result from the trained model on the converted data is shown in Fig. 4.

Advantages of CNN

» Superior processing of visual data. CNNs are capable of identifying complex visual patterns, which
is especially important for detecting cracks and other structural anomalies in images and videos.

* Generalization to new data. After training on a large dataset, CNNs can successfully apply their
knowledge to new, previously unseen images, providing high accuracy under various conditions.

* Automation. The use of CNNs for structural monitoring reduces the need for frequent physical
inspections, which lowers costs and enhances safety.

Recent advancements in CNN-based YOLO models have significantly improved defect detection
across multiple domains. Enhanced architectures have been applied to surface, packaging and PCB
defect detection [29—32], as well as to steel, weld and pavement inspections [33—35]. Additionally, spe-
cialized adaptations have optimized insulator defect analysis [36].

Training NNs

To achieve high accuracy in defect detection, NNs must be trained on large datasets containing im-
ages of various types of defects. These datasets were sourced from open datasets. It is important to ensure
the protection of training data using modern encryption methods and blockchain technologies, which
guarantee the integrity and security of the data.

4 See https://github.com/Nosikmov/Kaggle-Dataset-to-YOLO for details on how to transform the Severstal dataset into a suitable dataset for
YOLO.
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Fig. 2. Process of programmatically converting defect annotations into YOLO format

Contour transformation Image normalization

The obtained contours are rep! d The obtained data needs to be converted into

as the coordinates of two corners, YOLO format and adjusted to the image size

while YOLO uses the center of the rectangle For this, the obtained data should be divided

along with its width and height. by the actual dimensions of the image

To achieve this, the sum of the corner coordinates

needs to be divided by 2. The desired center X = calculated center X / image width

The desired center Y = calculated center Y /image height

w=x2-x1 The desired width = width / image width
h=y2-y1 The desired height = height / image height
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Fig. 3. Obtained data needs to be converted into YOLO format and adjusted to the image size,
therefore, it should be divided by the actual dimensions of the image

threadbare 0.25

Fig. 4. Results of the YOLO model evaluation

Application of IoT for data collection

The Internet of Things (IoT) devices, such as vibration, temperature and deformation sensors, are
installed on bridge structures for continuous monitoring of their condition. These sensors transmit
real-time data to servers or cloud platforms, where it is analyzed by NNs to detect anomalies and
assess risk.

Sensor types

» Vibration sensors detect changes in vibrations caused by cracks or other structural alterations.

« Strain sensors detect changes in shape or deformation of structural elements.

» Thermal sensors monitor temperature changes that may indicate internal issues, such as material
strength degradation.

» Acoustic sensors are used to detect sounds caused by cracks or delaminations in the material.

Dash cameras, road cameras, drones

Modern technologies provide a variety of tools for monitoring road surface conditions. Among them,
road cameras, dash cameras and drones stand out. These devices enable the collection of visual informa-
tion about the roads, which helps improve their condition and enhance road traffic safety.
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The use of drones to capture images of road surfaces offers several advantages, including the ability
to inspect hard-to-reach sections of roads.

Dash cameras are installed in vehicles and record the road conditions in real time.

Advantages of IoT are as follows:

» Continuous monitoring: Continuous data collection allows for quick response to changes in the
condition of the structure.

* Process automation: The exclusion of the human factor from the data collection process reduces
the likelihood of errors.

* Wide availability: [oT devices can be installed even in hard-to-reach places, providing more com-
prehensive monitoring coverage.

Mobile devices for data collection and analysis

Mobile devices, such as smartphones and tablets, can be used to collect data from sensors and cam-
eras, as well as for preliminary processing. With specialized applications, primary diagnostics of the con-
dition of structures can be performed and data can be transmitted to central servers, utilizing blockchain
technologies for more detailed analysis by NNs.

Advantages of mobile devices are as follows:

» Convenience of use: Mobile devices are always at hand and allow for quick collection of the nec-
essary information.

* Mobility: The ability to work anywhere and anytime.

 Interactivity: Applications can provide users with instant feedback and recommendations.

Blockchain

Blockchain is a distributed ledger in which data is stored in the form of a chain of blocks. Each record is pro-
tected by cryptographic methods and is linked to previous records, which prevents unauthorized data alteration.

Key features of blockchain technologies are as follows:

« Data integrity: The data recorded in the blockchain cannot be altered without a corresponding
entry in the blockchain, which prevents falsification.

» Transparency: Each participant in the network can verify the authenticity of the data, which in-
creases trust in the system.

» Security: The use of cryptography protects data from unauthorized access.

* Decentralization: The absence of a central controlling authority eliminates single points of failure
and enhances the system’s resilience.

Let us consider the process of integrating blockchain technologies to ensure the reliability of data
storage used for training NN, using the example of bridge structure monitoring.

* Data collection: IoT sensors installed on bridges collect data on the condition of the structures,
such as vibrations, deformations and temperature changes.

« Data recording in blockchain: The collected data is sent to the blockchain, where it is recorded
as immutable blocks. Each block contains the hash of the previous block, creating a data chain.

+ Data analysis: NNs access the data from the blockchain for analysis and model training. Due to
the high reliability and integrity of the data, NNs are trained more accurately and efficiently.

* Monitoring and updating: Data is continuously updated and added to the blockchain, ensuring
the relevance of the information for analysis and decision-making.

Example of usage

Let us assume that vibration sensors on the bridge detect anomalies that could indicate the beginning
of a crack. The vibration data is recorded in the blockchain, where it can be verified and analyzed by
NN to determine the severity of the defect and the need for repair.

Data collection from satellites

Satellites equipped with high-resolution cameras regularly capture Earth’s surfaces, including road
networks. These images cover large areas and provide up-to-date information.
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Defect detection from defectogram images

NNs can be trained using images from defectograms, which are graphical representations of struc-
tural defects. Such images can be obtained through various non-destructive testing methods, such as
ultrasonic, radiographic and thermographic diagnostics.

Deep CNNs (DCNNs) play a crucial role in defect detection across multiple domains. Advanced
models enhance glass insulator inspection and electron microscopy diagnostics [37, 38], while DCNN-
based approaches improve defect identification in industrial manufacturing [39—41]. Additionally, NNs
optimize defect depth estimation and automated surface analysis [42—44].

Process of image analysis

« Image collection: Defectograms are collected from various diagnostic methods.

* Preprocessing: The images are processed to improve quality and remove noise.

* Model training: The NN is trained on pre-labeled images, where the types and locations of defects
are marked.

» Analysis and detection: The trained model analyzes new images and identifies defects, specifying
their type and location.

In the context of the study, the following NNs were used:

* NNs trained for crack and defect recognition in steel;

* NNs trained for tuberculosis detection from fluorography images.

* The YOLO NN designed for fast and accurate detection and classification of objects in real-time
image processing.

These networks were retrained to recognize cracks and defects on bridges using specialized datasets
with images of bridge structure damage.

For training the NNs, datasets containing images of various bridge damages were used, including
cracks, corrosion, deformations and other defects, as well as images from dash cameras and road cam-
eras showing potholes and clean road surfaces. These images were meticulously labeled to accurately
indicate the defects.

Results

After retraining, the NNs demonstrated successful defect detection on objects that needed to be
identified. The accuracy of detection was high, ranging from 70 to 90%, which confirms the effec-
tiveness of the method. The NNs were able to adapt to new conditions and deliver good results in the
assigned tasks.

The application of NN, initially trained for other tasks, and their retraining for specific defect mon-
itoring conditions, demonstrates high efficiency and potential for real-world applications.

Use of NNs in conjunction with the IoT

The IoT and NNs, when used together, are convenient for processing real-time data, allowing for
continuous receipt of up-to-date information in a processed form.

The process consists of a 3-step algorithm:

1. Acquiring information from IoT sensors.

2. Processing data through an intermediate operating system or other real-time processing system.

3. Transfer of the previously processed data to the NN.

This configuration allows for automatic data transmission without noticeable losses and adds sev-
eral debugging tools to optimize and increase the accuracy of the NN model.

Implementation of a damage and defect detector on Raspberry Pi

For mobility and compactness, single-board computers with sufficient computing power, such as the
Raspberry Pi Model 4B, were chosen. The board supports Linux operating systems, which allows using
the Python programming language without significant limitations. The IoT sensor used is the OV5647
camera, which supports Full HD and infrared lighting for night-time recording.
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Fig. 6. Assembled detector

Fig. 5 shows the minimal setup required for the detector to work, consisting of a single-board com-
puter, a compatible camera and an SD card that stores our program code in auto-start mode, as well
as the Linux operating system (Raspberry Pi OS). Additionally, a keyboard, mouse and monitor can be
added for convenient use of debugging tools. If peripheral devices are unavailable for viewing results,
wired or wireless (Bluetooth) headphones are recommended for listening to audio signals during defect
detection, allowing for mobile operation with the device.

Fig. 6 shows the fully assembled detector, ready for operation.

The design is suitable for continuous operation in a fixed location or for mobile use in various areas.
This implementation of the detector enables solving a wide range of tasks, such as automating the assess-
ment of metal quality for various industries and evaluating the integrity of structures in hard-to-reach
and poorly lit areas.

Architecture of the hardware-software complex

The architecture of the hardware-software complex of the detector is described in Fig. 7°.

The entire architecture is hosted on a Raspberry Pi running a Linux operating system, which fa-
cilitates interaction with the camera through libraries and drivers. After receiving the image from the
camera, the operating system passes the data to the virtual Python environment, specially configured
for the detector. Using the picamera2 library, the image is converted to JPG format in the main thread
of our program code. The image is then transformed into a matrix and passed to the NN for processing
and defect detection. In the child thread, created upon launching the program, a monitoring window
is available to track the image and camera angle, which will allow for optimization and improvement of
the defect detection accuracy by the NN in the future.

5 See Raspberry Pi documentation: https://www.raspberrypi.com/documentation/.
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Fig. 7. Architecture of the hardware-software complex
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Fig. 8. Flowchart of the program code

Block diagram of the program code
The listing of the program that uses a camera to capture images and send them to the NN for process-
ing, with added debugging tools such as a camera window and the display of NN results in the console,

is available on the website https://github.com/ikly323/raspberry _metal. Fig. 8 shows the flowchart of
this program code.
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When the program is launched, an initial sound signal is emitted to notify the user that the detec-
tor has started. After the sound, the program checks the integrity of the project and the presence of
all necessary files, which ensures the initialization of the NN model and the activation of the camera
for further interaction. After all checks and service launches are completed, an infinite loop starts,
responsible for defect detection and notifying the user. To do this, a frame is captured, saved as a file
in the operating system, and then passed to the NN as a matrix. Based on the NN’s prediction, a de-
cision is made whether to emit an audio notification or not. The program completes its life cycle when
the Ctrl + C command (kill signal) is issued or when the Raspberry Pi is powered off.

Conclusion

The use of NNs in combination with IoT, blockchain technologies and mobile devices represents
a powerful tool for monitoring and assessing the process of detecting surface defects in structural ele-
ments and technical systems, ensuring high accuracy and prompt detection. The implementation of this
development will contribute to improving the safety, resilience, reliability and lifespan of mechanical
engineering products, road and railway surfaces. Additionally, based on the conducted research, a defect
detection process for metals during the production preparation phase can be implemented in autono-
mous mode.

The architecture of the developed detector allows for a versatile expansion of defect detection capa-
bilities by adding advanced analysis methods. In the future, ultrasound may be used to study macroc-
racks, as well as a more detailed surface analysis using time-of-flight sensors.
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