
© Turchinskii K.A., Krasnov A.Ye., 2025. Published by Peter the Great St. Petersburg Polytechnic University

Computing, Telecommunication and Control, 2025, Vol. 18, No. 3, Pp. 36–45.
Информатика, телекоммуникации и управление. 2025. Том 18, № 3. С. 36–45.

Research article
DOI: https://doi.org/10.18721/JCSTCS.18303
UDC 004.932

AUTOMATION OF BIOLOGICAL CELL IMAGE PROCESSING

K.A. Turchinskii ✉ , A.Ye. Krasnov
Russian State Social University (RSSU), Moscow, Russian Federation

✉ turchin.sky@yandex.ru

Abstract. When analyzing images of biological cells, automated methods for segmentation
and result storage are becoming increasingly in demand. Manual annotation is extremely labor-
intensive and does not scale to large volumes of data, while conventional segmentation algorithms
create binary masks of substantial size. The objective of this work is to develop a software
pipeline that combines local threshold filtering and morphological post-processing to obtain an
accurate binary mask and then encodes the result using run-length encoding (RLE) to reduce
storage space. Methods used are as follows: at the segmentation stage, local statistical criteria
are applied, followed by morphological closing. For storing the result, several modifications
of RLE (standard, Foreground-Only, DRLE and Z-order) are implemented along with their
comparative analysis. The scientific novelty of the work lies in the comprehensive integration
of block filtering and morphology with subsequent compression of binary segmentation masks
in the task of erythrocyte (and other cells) segmentation. This approach significantly reduces
storage requirements without substantial loss of accuracy. The proposed solution demonstrates
high metrics (Accuracy, IoU, Dice) while substantial memory savings. The practical significance
is that the developed software pipeline can be easily integrated into biomedical data analysis
systems, accelerating the mass processing of cell images and reducing the demands on storage
infrastructure.

Keywords: segmentation, biological images, run-length encoding, local threshold filtering,
morphological post-processing, automation, accuracy

Citation: Turchinskii K.A., Krasnov A.Ye. Automation of biological cell image processing.
Computing, Telecommunications and Control, 2025, Vol. 18, No. 3, Pp. 36–45. DOI: 10.18721/
JCSTCS.18303

Intelligent Systems and Technologies, Artificial Intelligence

Научная статья
DOI: https://doi.org/10.18721/JCSTCS.18303
УДК 004.932

АВТОМАТИЗАЦИЯ ОБРАБОТКИ ИЗОБРАЖЕНИЙ
БИОЛОГИЧЕСКИХ КЛЕТОК

К.А. Турчинский ✉ , А.Е. Краснов
Российский государственный социальный университет (РГСУ),

Москва, Российская Федерация
✉ turchin.sky@yandex.ru

Аннотация. При анализе изображений биологических клеток все более востребован-
ными становятся автоматизированные методы сегментации и хранения результатов.
Ручная разметка чрезвычайно трудоемка и не масштабируется на большие объемы дан-
ных, а обычные алгоритмы сегментации создают бинарные маски значительного объ-
ема. Целью работы является разработка программного конвейера, который сочетает
локальную пороговую фильтрацию и морфологическую постобработку для получения
точной бинарной маски, а затем кодирует результат отрезками разной длины (RLE) для
уменьшения занимаемого пространства. Используемые методы: на этапе сегментации
применяются локальные статистические критерии, за которыми следует морфологи-
ческое закрытие. Для хранения результата внедряются несколько модификаций RLE
(стандартная, Foreground-Only, DRLE и Z-order) с их сравнительным анализом. Научная
новизна работы заключается в комплексном объединении блоковой фильтрации и мор-
фологии с последующим сжатием бинарных сегментационных масок в задаче сегмента-
ции клеток, что позволяет существенно сократить объем хранения без значимого ущерба
точности. Полученное решение демонстрирует высокие метрики (Accuracy, IoU, Dice) при
существенной экономии памяти. Практическая значимость исследования состоит в том,
что разработанный программный конвейер легко интегрируется в системы анализа био-
медицинских данных, ускоряя массовую обработку изображений клеток и снижая тре-
бования к инфраструктуре хранения.

Ключевые слова: сегментация клеток, биологические изображения, кодирование отрез-
ками разной длины, локальная пороговая фильтрация, морфологическая постобработка,
автоматизация, точность

Для цитирования: Turchinskii K.A., Krasnov A.Ye. Automation of biological cell image pro-
cessing // Computing, Telecommunications and Control. 2025. Т. 18, № 3. С. 36–45. DOI:
10.18721/JCSTCS.18303

© Турчинский К.А., Краснов А.Е., 2025. Издатель: Санкт-Петербургский политехнический университет Петра Великого

Introduction

Digital processing of cell images is becoming increasingly important in biological and medical prac-
tice: from visualization of erythrocytes and leukocytes to analysis of tissues and micro-objects [1, 2].
Manual image annotation is an extremely labor-intensive process, which becomes more complicated
as data volumes grow. Therefore, there is a demand for automated pipelines that can not only segment
target regions (e.g., cell boundaries), but also efficiently store the results as binary masks.

However, traditional approaches to obtaining and storing masks face the problem of data redun-
dancy: even single objects in large fields of view can lead to significant memory costs [3, 4]. To solve
this problem, run-length encoding (RLE) and its various modifications – Foreground-Only, DRLE,
Z-order [2, 3, 4, 5] – are widely used. At the same time, not only the RLE method itself is important,
but also the quality of pre-segmentation, which directly affects the structure of the binary mask and
potential compression efficiency.

Интеллектуальные системы и технологии, искусственный интеллект

38

Medical and biological image processing imposes additional accuracy requirements: incorrectly
defined cell boundaries lead to errors in subsequent analyses (e.g., in cell concentration calculation,
cell shape estimation etc.) [2]. Consequently, in order to develop reliable automated processing sys-
tems, it is necessary to combine high segmentation accuracy with optimized storage. Methods such
as local threshold filtering and morphological post-processing, which have proved their effectiveness
when working with heterogeneous images1, can improve segmentation results and prepare them for
more efficient compression.

The relevance of the topic under study is driven by the need to improve performance and reduce
memory costs in image processing systems that require long-term storage of a large number of seg-
mented cell images. The development of this approach facilitates the scaling of laboratory and clinical
studies, enable rapid processing of microscopic observations and support the creation of databases for
subsequent analysis, diagnosis and training of neural network models [4]. This creates a practical demand
for a comprehensive solution: automatic cell segmentation followed by efficient mask encoding and com-
pressed storage.

The aim of this work is to develop a software pipeline that combines local threshold filtering and
morphological post-processing to obtain an accurate binary mask, and then encodes the result using
RLE to reduce storage space.

To achieve this goal, the following tasks were solved:
1.  To design an algorithm that combines adaptive segmentation and morphological operations

with further RLE.
2.  To create a prototype of a software package including filtering, contour extraction, binary mask

packing and quality metrics computation functions.
3.  To test the pipeline on real biological images and evaluate the achieved compression and the

compliance of the segmented regions to the reference data.
4.  To analyze the influence of filtering and morphology parameters on the error magnitude and

volume of encoded masks in order to formulate practical recommendations.

Description of the proposed algorithm

A system processing a discrete image Imm,n of size M×N pixels (where m = 1, 2, ..., M is the
row index and n = 1, 2, ..., N is the column index) will face the problem of brightness inhomoge-
neities (e.g., uneven illumination and noise). To solve this problem, we introduce a local threshold fil-
tering stage.

Block partitioning is performed as follows. A field of size M×N is divided into non-overlapping
fragments (blocks) of square B×B or rectangular shape Bh×Bw. In this case, the indices of pixels
belonging to the block with number (i, j), approximately satisfy the following expression:

where Bh and Bw are the block height and width, and the total number of blocks vertically is equal
to M/Bh, horizontally – to N/Bw.

Fig. 1 shows the partitioning of the original image into blocks of size B×B with a “step” of B,
meaning adjacent blocks follow one another without overlap. For each block {i, j}, the average brightness
      and local standard deviation σi, j are calculated. Next, the local threshold θi, j is formed using the
following formula:

1 Voxel Compression, Available: https://eisenwave.github.io/voxel-compression-docs/rle/space_filling_curves.html (Accessed 19.09.2025).

() ()1 1, , 1 1, ,h h w wi i B i B j j B j B∈ − ⋅ + ⋅ ∈ − ⋅ + ⋅       (1)

,Imi j

,, ,Im ,i ji j i jθ = −ασ (2)

Intelligent Systems and Technologies, Artificial Intelligence

39

Fig. 1. Schematic partitioning of the original image of size M×N into non-overlapping blocks B×B (step = B)

where α is the coefficient adjusting noise sensitivity. Similar expressions are used in a number of adap-
tive thresholding methods of object extraction2 [5].

Each pixel (mi, ni) inside the current block {i, j} is compared with the threshold θi, j (3). If

then the pixel is considered to belong to the “cell” region; otherwise, it is assigned to the “back-
ground”. As a result of this step, an intermediate binary map A is generated, where each pixel is as-
signed a value of 1 (object) or 0 (background).

The output of the local threshold filtering is a binary map A(M×N) (4), where

Subsequently, morphological processing is used to clean A and eliminate “gaps” or “outliers”.
Morphological closing (Close) is usually applied when it is necessary to “connect” adjacent white

regions (objects). In its classical form, the closing operation is defined by the following formula:

where A is the original binary map (see above); S is a structuring element, such as a circle (disk) or
ellipse;    is morphological dilatation (expansion);    is morphological erosion (reduction).

Visually, closing “fills in” small gaps inside an object, thereby merging segments.

Morphological opening                         is used to “clean” the map from random small

noises (outliers) that have a small area and do not belong to real cells [6].
The choice between closing, opening or their combination is determined by the characteristic sizes

of the cells and the noise content. If it is known that cells can be closely packed, applying closing is
advisable. If it is necessary to get rid of “point-like” fragments, adding opening is useful. The final
contour of each region, and therefore the structure of the final binary mask, directly depends on the
morphology settings.

When the morphologically processed binary map A (the “final mask”) is ready, it is subjected to
packing using RLE method.

Before encoding, a pixel traversal scheme is defined, for example:
1.  Row-major – left to right, top to bottom (by rows).

2 Voxel Compression, Available: https://eisenwave.github.io/voxel-compression-docs/rle/space_filling_curves.html (Accessed 19.09.2025).

, ,Im ,m n i ji i
≤ θ (3)

() () ,Close A A SS= ⊕  (5)

⊕ 

() ()()Open A A SS= ⊕

(4), ,
,

, ,

1: Im
.

0 : Im
m n i j

m n
m n i j

A
≤ θ=  > θ

Интеллектуальные системы и технологии, искусственный интеллект

40

2.  Z-order (Morton-order) – pixels are rearranged into a special sequence, more favorable for
certain object configurations [3, 8].

During RLE, each consecutive pixel fragment with the same value (0 or 1) is replaced with a “run”.
In its classical form, this is a pair (r, v), where r is the number of consecutive identical bits, and v is the
bit itself (0 or 1). In Foreground-Only encoding [4], where only the “runs” of units are stored, records
of the form (s, l) are used, where s is the start index of a block of unit pixels, and l is the length of this
continuous block. A variant of differential RLE additionally encodes the difference between the lengths
of consecutive runs, which sometimes reduces the overall data volume [6]. Z-order encoding is often
useful if objects are highly “clustered” and arranged in compact groups.

The criterion for choosing the encoding method (DRLE, Z-order, Foreground-Only etc.) depends
on the number of cells, their sizes, noise density and decoding frequency. If decoding needs to be per-
formed frequently, then the simplest format RLE(r,v), which does not require complex permutations or
calculations, is more convenient.

The final stage is packing and saving the run-length data (i.e., a set of pairs like (r, v) or (s, l) etc.)
in a form convenient for storage. In applied scenarios, this may be:

–  structured record;
–  serialization;
–  general “stream” compression.
The essence of “run-length data” is a list (or other structure) of segments with the same bit. Because

there are often extensive areas of background outside the cells, RLE achieves significant memory sav-
ings. When there are many disparate tiny objects, other options (e.g., Foreground-Only) are chosen to
avoid storing long chains of zeros.

The modular architecture of the developed solution provides flexibility:
1.  Local threshold filtering is easily adjustable to cell size and contrast.
2.  Morphological operations can be varied (use opening, closing or their combination, changing

the type of structuring element).
3.  RLE system can be replaced or supplemented with other compression methods (e.g., Quadtree,

Octree or ZIP archiving).
This simplifies the adaptation of the algorithm to different types of biological images, as well as

scaling for large data volumes. If other tools (non-Python) have to be used in the future, it is still con-
venient to have run-length data, as it is easy to import and unpack in most environments.

It is convenient to describe the technological pipeline using a diagram reflecting the sequence of
blocks and principles of interaction (Fig. 2).

The loading module accepts a list of source files stored in any available graphic formats and sends
each image sequentially to the local threshold filtering stage. A block-based or adaptive strategy is
used to flexibly adjust the brightness threshold when different frame zones have uneven intensity. The
morphological module eliminates minor defects that may arise from random noise or optical system
artefacts. Closing with a suitable structuring element allows merging adjacent objects to form more
solid cell regions, while opening filters out excess details protruding beyond the intended contours.

The resulting system is capable to operate in batch mode, sequentially processing an extensive col-
lection of images and generating grouped results in a convenient format for analysis or further trans-
fer. The practical significance lies in resource savings: storage capacity, transfer speed and processing
requirements become more manageable, while the preservation of contours allows for statistics on cell
number and shape to be conducted.

Architecture and implementation of the software package

The foundation of the work is implemented through a set of modules, each performing its own
functions for segmentation, packing the results and interacting with the user interface. One of the key

Intelligent Systems and Technologies, Artificial Intelligence

41

requirements is that the listed stages, including morphological correction and various RLE schemes,
are flexible in configuration and can be extended with additional procedures if necessary. The archi-
tecture diagram in Fig. 3 reflects the overall flow of transformations.

The calling process, initiated by user actions, involves reading the necessary files in the “Data
Loader” block. The local or remote directory access module is configured to read images in batch

Fig. 2. Algorithm for automation of biological image processing

Fig. 3. Architecture of the software package

Интеллектуальные системы и технологии, искусственный интеллект

42

mode, and all intermediate results and service metadata are collected into a single structure. Next, the
data enters the node responsible for threshold filtering and morphological operations. It is at this stage
that local brightness estimation, adaptive threshold calculation, closing of detected gaps and removal of
noise inclusions occur, if they do not match the expected cell contours.

Encapsulation of different RLE schemes within a separate module simplifies further maintenance,
as it is easy to add new packing variants or special optimization modes to the working pipeline, depend-
ing on the features of the images under study. All types of RLE conclude with the formation of a struc-
ture, which is packed using zlib or other compression methods. The “Compression and Storage” module
outputs the result in a form convenient for storage and transfer, while informational responces, e.g.,
statistics on the number of processed frames, final packet size, conversion time, are sent back to the
“Interface Module”.

The software implementation relies on image processing libraries (OpenCV, Pillow), as well as tools
for mathematical calculations (NumPy) and serialization (pickle). Such a suite ensures operation both on
local machines and on server systems, where it is necessary to scale the processing of large sets of micro-
photographs. At the same time, the same encoding module can work on data that has undergone different
types of morphological correction. This method is suitable for situations where different cell types have a
particular contour structure and require the selection of specific morphology or filtering settings.

Experimental results and analyses

The system pipeline was tested on a dataset consisting of 343 annotated biological images (Blood-
Image_XXXX). For each image, stored alongside the corresponding XML annotation, a binary mask
reflecting the location of cells (RBCs) in the frame was automatically generated. Local threshold
filtering with fixed block size and morphological closing to correct small gaps within regions were
the key steps. Subsequently, the resulting maps were subjected sequentially to classical RLE, Fore-
ground-Only, DRLE, Z-order RLE and a combined method incorporating local threshold filtering
with RLE. It was important to capture computational cost, compressed file size and accuracy metrics
to understand the relationship between packing efficiency and cell structure preservation. Table 1
shows the main results.

Table 1
Comparative analysis with the proposed method

Parameters Standard RLE
Foreground-
Only RLE

DRLE Z-order RLE
RLE Enhanced
Local Filtering

+ RLE

Total encoding time, seconds 9.4137 7.7363 9.3730 9.8173 10.2493

Total decode time, seconds 0.3608 0.1910 0.4326 0.9448 0.3835

Average size, bytes 406.36 2791.14 512.78 1525.84 391.92

Average accuracy, % 100.00 100.00 100.00 100.00 99.54

Average IoU 1.00 1.00 1.00 1.00 0.9873

Average Dice 1.00 1.00 1.00 1.00 0.9936

The full sample included 343 XML descriptions. The processing time recorded by the system took
approximately one minute at an average speed of about 6 images per second. Sequential encoding-de-
coding stages were considered, and the average size in bytes was calculated to get an idea of typical
compressed mask volumes. Improved local threshold filtering in the last method (the fifth variant) addi-
tionally allowed for the estimation of accuracy (acc), IoU and Dice, as its own procedure modified the
original boundaries.

Intelligent Systems and Technologies, Artificial Intelligence

43

Combined analysis of encoding costs and file size confirmed that classical RLE yielded a fairly mod-
est volume indicator (406.36 bytes on average) with a noticeably lower decoding time (0.3608 sec).
However, the Foreground-Only scheme presented a failure: the average size increased to 2791.14 bytes,
indicating a high number of disparate fragments requiring separate description. DRLE maintained a
moderate compactness (512.78 bytes) with a slight increase in decoding time (0.4326 sec). Z-order
increased the size to 1525.84 bytes, most likely because mixing local mask blocks did not always lead
to longer runs in the overall structure. The standard schemes (Standard RLE, Foreground-Only RLE,
DRLE and Z-order RLE) are lossless: they do not alter the binary mask and hence exhibit maximum
accuracy (acc = 100%, IoU = 1.00, Dice = 1.00). Nevertheless, their average size varies from 406 to
2791 bytes. The proposed “local threshold filtering + morphology + RLE” complex yields the small-
est average size of 391.92 bytes with near-maximum accuracy (acc = 99.54%, IoU = 0.9873, Dice =
= 0.9936), which we consider as an optimal compromise between memory savings and the preservation
of diagnostically significant contours. For each scheme, the accuracy metrics are equal to one because
the encoding-decoding operation does not change the original partitioning. We have included these
metrics in Table 1 to ensure a correct comparison by size + accuracy criteria.

Contour overlap (Dice = 0.9936) was particularly impressive, indicating that on average the final
mask matched the reference data almost without distortion. Hence, local filtering and morphology
not only preserved the integrity of cell regions, but also contributed to reducing the volume of the re-
corded mask due to larger homogeneous areas. The assumption that closing eliminates internal gaps
and thus increases run lengths was confirmed empirically. The data obtained for Z-order indicated
that Morton permutation is not always optimal, especially when cells are located in different regions
and their mutual geometry does not create large connected clusters.

A visual comparison of the segmentation is presented in Fig. 4, where the original frame contains
a blood fragment with individual cellular elements, and the resulting masks demonstrate the impor-
tance of merging closely located areas to improve boundary consistency.

The above example confirms the conclusions drawn from the encoding time and size statistics. The
improved local filtering that corrects illumination variations within the image eliminates minor noise
objects, resulting in a clearer binary map and longer sequences of 1’s or 0’s during subsequent RLE.

The results indicate the high efficiency of the proposed integrated approach, where filtering and
morphology prepare the image for RLE. The obtained metrics facilitate the large-scale automation of
cell analysis with big data volumes and help save memory or transmission channels without the risk of
losing key diagnostic details. This strategy is particularly appropriate in the biomedical field, where pre-
cise contours are required while the compactness of the recorded structures is also important.

Conclusions

The testing of the complex solution based on local threshold filtering, morphological post-process-
ing and subsequent mask encoding using different RLE schemes demonstrates a significant gain when

Fig. 4. Visualization of image processing by the proposed method

Интеллектуальные системы и технологии, искусственный интеллект

44

working with large arrays of microscopic images. Statistical data for 343 annotated images confirm that
careful noise removal within segmented regions and correct fragment smoothing have a noticeable ef-
fect on reducing the final volume, while improving accuracy metrics and preserving cell configuration.
Applying classical RLE to masks that have undergone additional local thresholding and morpholog-
ical closing procedures results in a relatively small file size and an almost complete match with the
reference boundaries.

The observed advantage over alternative methods is explained by the fact that local filtering adjusts
to the details of each image fragment, eliminating global thresholding errors, while closing merges dis-
parate pixels into large regions where the runs become longer. Morton (Z-order) permutation can be
convenient for strictly localized clusters, but in some cases does not provide improved compression.
Foreground-Only scheme is effective when the background occupies almost the entire area and cells are
concentrated in one region, but leads to redundant intervals for fragmented objects. The results confirm
the need for an integrated approach: each module (filtering, morphology, RLE) enhances the positive
effect of the other elements. The studied pipeline simplifies the large-scale automation of medical
analysis tasks and opens up opportunities for integration into laboratory and clinical systems oriented
to the rapid processing and storage of a large number of biological images.

REFERENCES

1. Haggere L.R., Alagarswamy R. HWCD: A hybrid approach for image compression using wavelet, en-

cryption using confusion, and decryption using diffusion scheme. Journal of Intelligent Systems, 2023, Vol. 32,

No. 1, Art. no. 20229056. DOI: 10.1515/jisys-2022-9056

2. Rahman M. Comparative analysis of run-length encoding techniques: Standard, modified, two-dimen-

sional, and bitwise approaches for efficient data compression with numerical example, 2025.

3. Thong Y.J. An introduction to bitmask representations and encodings: RLE vs REE. Datature, 2024.

Available: https://www.datature.io/blog/an-introduction-to-bitmask-representations-and-encodings-rle-

vs-ree (Accessed 19.09.2025).

4. Schmidt K., Horowitz J. Method and apparatus for double run-length encoding of binary data. European

Patent, No. EP0783208A2, 1997.

5. Haghighi K.G., Mirnia M.K., Navin A.H. Optimizing run-length algorithm using octonary repetition

tree. arXiv:1611.09664, 2016. DOI: 10.48550/arXiv.1611.09664

6. Samson A.Ch., Sastry V.U.K. An improved run length encoding scheme for image compression. In-

ternational Journal of Engineering and Computer Science, 2017, Vol. 6, No. 3, Art. no. 57. DOI: 10.18535/

ijecs/v6i3.57

7. York T. Quadtrees for image processing. Medium, 2020. Available: https://medium.com/@tannerwyo-

rk/quadtrees-for-image-processing-302536c95c00 (Accessed 19.09.2025).

8. Shen J. Run-length encode and decode. Medium, 2021. Available at: https://medium.com/@ccshen-

yltw/run-length-encode-and-decode-a33383142e6b (Accessed 19.09.2025).

INFORMATION ABOUT AUTHORS / СВЕДЕНИЯ ОБ АВТОРАХ

Kirill A. Turchinskii
Турчинский Кирилл Александрович
E-mail: turchin.sky@yandex.ru

Intelligent Systems and Technologies, Artificial Intelligence

45

Submitted: 21.04.2025; Approved: 24.07.2025; Accepted: 18.09.2025.

Поступила: 21.04.2025; Одобрена: 24.07.2025; Принята: 18.09.2025.

Andrey Ye. Krasnov
Краснов Андрей Евгеньевич
E-mail: krasnovmgutu@yandex.ru

