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Abstract. When analyzing images of biological cells, automated methods for segmentation 
and result storage are becoming increasingly in demand. Manual annotation is extremely labor-
intensive and does not scale to large volumes of data, while conventional segmentation algorithms 
create binary masks of substantial size. The objective of this work is to develop a software 
pipeline that combines local threshold filtering and morphological post-processing to obtain an 
accurate binary mask and then encodes the result using run-length encoding (RLE) to reduce 
storage space. Methods used are as follows: at the segmentation stage, local statistical criteria 
are applied, followed by morphological closing. For storing the result, several modifications 
of RLE (standard, Foreground-Only, DRLE and Z-order) are implemented along with their 
comparative analysis. The scientific novelty of the work lies in the comprehensive integration 
of block filtering and morphology with subsequent compression of binary segmentation masks 
in the task of erythrocyte (and other cells) segmentation. This approach significantly reduces 
storage requirements without substantial loss of accuracy. The proposed solution demonstrates 
high metrics (Accuracy, IoU, Dice) while substantial memory savings. The practical significance 
is that the developed software pipeline can be easily integrated into biomedical data analysis 
systems, accelerating the mass processing of cell images and reducing the demands on storage 
infrastructure.
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Аннотация. При анализе изображений биологических клеток все более востребован-
ными становятся автоматизированные методы сегментации и хранения результатов. 
Ручная разметка чрезвычайно трудоемка и не масштабируется на большие объемы дан-
ных, а обычные алгоритмы сегментации создают бинарные маски значительного объ-
ема. Целью работы является разработка программного конвейера, который сочетает 
локальную пороговую фильтрацию и морфологическую постобработку для получения 
точной бинарной маски, а затем кодирует результат отрезками разной длины (RLE) для 
уменьшения занимаемого пространства. Используемые методы: на этапе сегментации 
применяются локальные статистические критерии, за которыми следует морфологи-
ческое закрытие. Для хранения результата внедряются несколько модификаций RLE 
(стандартная, Foreground-Only, DRLE и Z-order) с их сравнительным анализом. Научная 
новизна работы заключается в комплексном объединении блоковой фильтрации и мор-
фологии с последующим сжатием бинарных сегментационных масок в задаче сегмента-
ции клеток, что позволяет существенно сократить объем хранения без значимого ущерба 
точности. Полученное решение демонстрирует высокие метрики (Accuracy, IoU, Dice) при 
существенной экономии памяти. Практическая значимость исследования состоит в том, 
что разработанный программный конвейер легко интегрируется в системы анализа био-
медицинских данных, ускоряя массовую обработку изображений клеток и снижая тре-
бования к инфраструктуре хранения.

Ключевые слова: сегментация клеток, биологические изображения, кодирование отрез-
ками разной длины, локальная пороговая фильтрация, морфологическая постобработка, 
автоматизация, точность
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Introduction

Digital processing of cell images is becoming increasingly important in biological and medical prac-
tice: from visualization of erythrocytes and leukocytes to analysis of tissues and micro-objects [1, 2]. 
Manual image annotation is an extremely labor-intensive process, which becomes more complicated 
as data volumes grow. Therefore, there is a demand for automated pipelines that can not only segment 
target regions (e.g., cell boundaries), but also efficiently store the results as binary masks.

However, traditional approaches to obtaining and storing masks face the problem of data redun-
dancy: even single objects in large fields of view can lead to significant memory costs [3, 4]. To solve 
this problem, run-length encoding (RLE) and its various modifications – Foreground-Only, DRLE, 
Z-order [2, 3, 4, 5] – are widely used. At the same time, not only the RLE method itself is important, 
but also the quality of pre-segmentation, which directly affects the structure of the binary mask and 
potential compression efficiency.
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Medical and biological image processing imposes additional accuracy requirements: incorrectly 
defined cell boundaries lead to errors in subsequent analyses (e.g., in cell concentration calculation, 
cell shape estimation etc.) [2]. Consequently, in order to develop reliable automated processing sys-
tems, it is necessary to combine high segmentation accuracy with optimized storage. Methods such 
as local threshold filtering and morphological post-processing, which have proved their effectiveness 
when working with heterogeneous images1, can improve segmentation results and prepare them for 
more efficient compression.

The relevance of the topic under study is driven by the need to improve performance and reduce 
memory costs in image processing systems that require long-term storage of a large number of seg-
mented cell images. The development of this approach facilitates the scaling of laboratory and clinical 
studies, enable rapid processing of microscopic observations and support the creation of databases for 
subsequent analysis, diagnosis and training of neural network models [4]. This creates a practical demand 
for a comprehensive solution: automatic cell segmentation followed by efficient mask encoding and com-
pressed storage.

The aim of this work is to develop a software pipeline that combines local threshold filtering and 
morphological post-processing to obtain an accurate binary mask, and then encodes the result using 
RLE to reduce storage space.

To achieve this goal, the following tasks were solved:
1.  To design an algorithm that combines adaptive segmentation and morphological operations 

with further RLE.
2.  To create a prototype of a software package including filtering, contour extraction, binary mask 

packing and quality metrics computation functions.
3.  To test the pipeline on real biological images and evaluate the achieved compression and the 

compliance of the segmented regions to the reference data.
4.  To analyze the influence of filtering and morphology parameters on the error magnitude and 

volume of encoded masks in order to formulate practical recommendations.

Description of the proposed algorithm

A system processing a discrete image Imm,n of size M×N pixels (where m = 1, 2, ..., M is the  
row index and n = 1, 2, ..., N is the column index) will face the problem of brightness inhomoge- 
neities (e.g., uneven illumination and noise). To solve this problem, we introduce a local threshold fil-
tering stage.

Block partitioning is performed as follows. A field of size M×N is divided into non-overlapping 
fragments (blocks) of square B×B or rectangular shape Bh×Bw. In this case, the indices of pixels  
belonging to the block with number (i, j), approximately satisfy the following expression:

where Bh and Bw are the block height and width, and the total number of blocks vertically is equal  
to M/Bh, horizontally – to N/Bw.

Fig. 1 shows the partitioning of the original image into blocks of size B×B with a “step” of B,  
meaning adjacent blocks follow one another without overlap. For each block {i, j}, the average brightness  
          and local standard deviation σi, j are calculated. Next, the local threshold θi, j is formed using the 
following formula:

1 Voxel Compression, Available: https://eisenwave.github.io/voxel-compression-docs/rle/space_filling_curves.html (Accessed 19.09.2025).

( ) ( )1 1, , 1 1, ,h h w wi i B i B j j B j B∈ − ⋅ + ⋅ ∈ − ⋅ + ⋅       (1)
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Fig. 1. Schematic partitioning of the original image of size M×N into non-overlapping blocks B×B (step = B)

where α is the coefficient adjusting noise sensitivity. Similar expressions are used in a number of adap-
tive thresholding methods of object extraction2 [5].

Each pixel (mi, ni) inside the current block {i, j} is compared with the threshold θi, j (3). If

then the pixel is considered to belong to the “cell” region; otherwise, it is assigned to the “back-
ground”. As a result of this step, an intermediate binary map A is generated, where each pixel is as-
signed a value of 1 (object) or 0 (background).

The output of the local threshold filtering is a binary map A(M×N) (4), where

Subsequently, morphological processing is used to clean A and eliminate “gaps” or “outliers”.
Morphological closing (Close) is usually applied when it is necessary to “connect” adjacent white 

regions (objects). In its classical form, the closing operation is defined by the following formula:

where A is the original binary map (see above); S is a structuring element, such as a circle (disk) or 
ellipse;      is morphological dilatation (expansion);      is morphological erosion (reduction).

Visually, closing “fills in” small gaps inside an object, thereby merging segments.

Morphological opening                                                is used to “clean” the map from random small  

noises (outliers) that have a small area and do not belong to real cells [6].
The choice between closing, opening or their combination is determined by the characteristic sizes 

of the cells and the noise content. If it is known that cells can be closely packed, applying closing is 
advisable. If it is necessary to get rid of “point-like” fragments, adding opening is useful. The final 
contour of each region, and therefore the structure of the final binary mask, directly depends on the 
morphology settings.

When the morphologically processed binary map A (the “final mask”) is ready, it is subjected to 
packing using RLE method.

Before encoding, a pixel traversal scheme is defined, for example:
1.  Row-major – left to right, top to bottom (by rows).

2 Voxel Compression, Available: https://eisenwave.github.io/voxel-compression-docs/rle/space_filling_curves.html (Accessed 19.09.2025).
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2.  Z-order (Morton-order) – pixels are rearranged into a special sequence, more favorable for 
certain object configurations [3, 8].

During RLE, each consecutive pixel fragment with the same value (0 or 1) is replaced with a “run”.  
In its classical form, this is a pair (r, v), where r is the number of consecutive identical bits, and v is the  
bit itself (0 or 1). In Foreground-Only encoding [4], where only the “runs” of units are stored, records  
of the form (s, l) are used, where s is the start index of a block of unit pixels, and l is the length of this  
continuous block. A variant of differential RLE additionally encodes the difference between the lengths  
of consecutive runs, which sometimes reduces the overall data volume [6]. Z-order encoding is often  
useful if objects are highly “clustered” and arranged in compact groups.

The criterion for choosing the encoding method (DRLE, Z-order, Foreground-Only etc.) depends 
on the number of cells, their sizes, noise density and decoding frequency. If decoding needs to be per-
formed frequently, then the simplest format RLE(r,v), which does not require complex permutations or 
calculations, is more convenient.

The final stage is packing and saving the run-length data (i.e., a set of pairs like (r, v) or (s, l) etc.)  
in a form convenient for storage. In applied scenarios, this may be:

–  structured record;
–  serialization;
–  general “stream” compression.
The essence of “run-length data” is a list (or other structure) of segments with the same bit. Because 

there are often extensive areas of background outside the cells, RLE achieves significant memory sav-
ings. When there are many disparate tiny objects, other options (e.g., Foreground-Only) are chosen to 
avoid storing long chains of zeros.

The modular architecture of the developed solution provides flexibility:
1.  Local threshold filtering is easily adjustable to cell size and contrast.
2.  Morphological operations can be varied (use opening, closing or their combination, changing 

the type of structuring element).
3.  RLE system can be replaced or supplemented with other compression methods (e.g., Quadtree, 

Octree or ZIP archiving).
This simplifies the adaptation of the algorithm to different types of biological images, as well as 

scaling for large data volumes. If other tools (non-Python) have to be used in the future, it is still con-
venient to have run-length data, as it is easy to import and unpack in most environments.

It is convenient to describe the technological pipeline using a diagram reflecting the sequence of 
blocks and principles of interaction (Fig. 2).

The loading module accepts a list of source files stored in any available graphic formats and sends 
each image sequentially to the local threshold filtering stage. A block-based or adaptive strategy is 
used to flexibly adjust the brightness threshold when different frame zones have uneven intensity. The 
morphological module eliminates minor defects that may arise from random noise or optical system 
artefacts. Closing with a suitable structuring element allows merging adjacent objects to form more 
solid cell regions, while opening filters out excess details protruding beyond the intended contours.

The resulting system is capable to operate in batch mode, sequentially processing an extensive col-
lection of images and generating grouped results in a convenient format for analysis or further trans-
fer. The practical significance lies in resource savings: storage capacity, transfer speed and processing 
requirements become more manageable, while the preservation of contours allows for statistics on cell 
number and shape to be conducted.

Architecture and implementation of the software package

The foundation of the work is implemented through a set of modules, each performing its own 
functions for segmentation, packing the results and interacting with the user interface. One of the key  
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requirements is that the listed stages, including morphological correction and various RLE schemes, 
are flexible in configuration and can be extended with additional procedures if necessary. The archi-
tecture diagram in Fig. 3 reflects the overall flow of transformations.

The calling process, initiated by user actions, involves reading the necessary files in the “Data 
Loader” block. The local or remote directory access module is configured to read images in batch  

Fig. 2. Algorithm for automation of biological image processing

Fig. 3. Architecture of the software package
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mode, and all intermediate results and service metadata are collected into a single structure. Next, the 
data enters the node responsible for threshold filtering and morphological operations. It is at this stage 
that local brightness estimation, adaptive threshold calculation, closing of detected gaps and removal of 
noise inclusions occur, if they do not match the expected cell contours.

Encapsulation of different RLE schemes within a separate module simplifies further maintenance,  
as it is easy to add new packing variants or special optimization modes to the working pipeline, depend-
ing on the features of the images under study. All types of RLE conclude with the formation of a struc-
ture, which is packed using zlib or other compression methods. The “Compression and Storage” module 
outputs the result in a form convenient for storage and transfer, while informational responces, e.g., 
statistics on the number of processed frames, final packet size, conversion time, are sent back to the 
“Interface Module”.

The software implementation relies on image processing libraries (OpenCV, Pillow), as well as tools 
for mathematical calculations (NumPy) and serialization (pickle). Such a suite ensures operation both on 
local machines and on server systems, where it is necessary to scale the processing of large sets of micro-
photographs. At the same time, the same encoding module can work on data that has undergone different 
types of morphological correction. This method is suitable for situations where different cell types have a 
particular contour structure and require the selection of specific morphology or filtering settings.

Experimental results and analyses

The system pipeline was tested on a dataset consisting of 343 annotated biological images (Blood-
Image_XXXX). For each image, stored alongside the corresponding XML annotation, a binary mask 
reflecting the location of cells (RBCs) in the frame was automatically generated. Local threshold 
filtering with fixed block size and morphological closing to correct small gaps within regions were 
the key steps. Subsequently, the resulting maps were subjected sequentially to classical RLE, Fore-
ground-Only, DRLE, Z-order RLE and a combined method incorporating local threshold filtering 
with RLE. It was important to capture computational cost, compressed file size and accuracy metrics 
to understand the relationship between packing efficiency and cell structure preservation. Table 1 
shows the main results.

Table  1
Comparative analysis with the proposed method

Parameters Standard RLE
Foreground-
Only RLE

DRLE Z-order RLE
RLE Enhanced 
Local Filtering 

+ RLE

Total encoding time, seconds 9.4137 7.7363 9.3730 9.8173 10.2493

Total decode time, seconds 0.3608 0.1910 0.4326 0.9448 0.3835

Average size, bytes 406.36 2791.14 512.78 1525.84 391.92

Average accuracy, % 100.00 100.00 100.00 100.00 99.54

Average IoU 1.00 1.00 1.00 1.00 0.9873

Average Dice 1.00 1.00 1.00 1.00 0.9936

The full sample included 343 XML descriptions. The processing time recorded by the system took 
approximately one minute at an average speed of about 6 images per second. Sequential encoding-de-
coding stages were considered, and the average size in bytes was calculated to get an idea of typical 
compressed mask volumes. Improved local threshold filtering in the last method (the fifth variant) addi-
tionally allowed for the estimation of accuracy (acc), IoU and Dice, as its own procedure modified the 
original boundaries.
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Combined analysis of encoding costs and file size confirmed that classical RLE yielded a fairly mod-
est volume indicator (406.36 bytes on average) with a noticeably lower decoding time (0.3608 sec). 
However, the Foreground-Only scheme presented a failure: the average size increased to 2791.14 bytes, 
indicating a high number of disparate fragments requiring separate description. DRLE maintained a 
moderate compactness (512.78 bytes) with a slight increase in decoding time (0.4326 sec). Z-order 
increased the size to 1525.84 bytes, most likely because mixing local mask blocks did not always lead 
to longer runs in the overall structure. The standard schemes (Standard RLE, Foreground-Only RLE, 
DRLE and Z-order RLE) are lossless: they do not alter the binary mask and hence exhibit maximum 
accuracy (acc = 100%, IoU = 1.00, Dice = 1.00). Nevertheless, their average size varies from 406 to 
2791 bytes. The proposed “local threshold filtering + morphology + RLE” complex yields the small-
est average size of 391.92 bytes with near-maximum accuracy (acc = 99.54%, IoU = 0.9873, Dice =  
= 0.9936), which we consider as an optimal compromise between memory savings and the preservation 
of diagnostically significant contours. For each scheme, the accuracy metrics are equal to one because 
the encoding-decoding operation does not change the original partitioning. We have included these 
metrics in Table 1 to ensure a correct comparison by size + accuracy criteria.

Contour overlap (Dice = 0.9936) was particularly impressive, indicating that on average the final 
mask matched the reference data almost without distortion. Hence, local filtering and morphology 
not only preserved the integrity of cell regions, but also contributed to reducing the volume of the re-
corded mask due to larger homogeneous areas. The assumption that closing eliminates internal gaps 
and thus increases run lengths was confirmed empirically. The data obtained for Z-order indicated 
that Morton permutation is not always optimal, especially when cells are located in different regions 
and their mutual geometry does not create large connected clusters.

A visual comparison of the segmentation is presented in Fig. 4, where the original frame contains 
a blood fragment with individual cellular elements, and the resulting masks demonstrate the impor-
tance of merging closely located areas to improve boundary consistency.

The above example confirms the conclusions drawn from the encoding time and size statistics. The 
improved local filtering that corrects illumination variations within the image eliminates minor noise 
objects, resulting in a clearer binary map and longer sequences of 1’s or 0’s during subsequent RLE.

The results indicate the high efficiency of the proposed integrated approach, where filtering and 
morphology prepare the image for RLE. The obtained metrics facilitate the large-scale automation of 
cell analysis with big data volumes and help save memory or transmission channels without the risk of 
losing key diagnostic details. This strategy is particularly appropriate in the biomedical field, where pre-
cise contours are required while the compactness of the recorded structures is also important.

Conclusions

The testing of the complex solution based on local threshold filtering, morphological post-process-
ing and subsequent mask encoding using different RLE schemes demonstrates a significant gain when  

Fig. 4. Visualization of image processing by the proposed method 
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working with large arrays of microscopic images. Statistical data for 343 annotated images confirm that 
careful noise removal within segmented regions and correct fragment smoothing have a noticeable ef-
fect on reducing the final volume, while improving accuracy metrics and preserving cell configuration. 
Applying classical RLE to masks that have undergone additional local thresholding and morpholog-
ical closing procedures results in a relatively small file size and an almost complete match with the 
reference boundaries.

The observed advantage over alternative methods is explained by the fact that local filtering adjusts 
to the details of each image fragment, eliminating global thresholding errors, while closing merges dis-
parate pixels into large regions where the runs become longer. Morton (Z-order) permutation can be 
convenient for strictly localized clusters, but in some cases does not provide improved compression. 
Foreground-Only scheme is effective when the background occupies almost the entire area and cells are 
concentrated in one region, but leads to redundant intervals for fragmented objects. The results confirm 
the need for an integrated approach: each module (filtering, morphology, RLE) enhances the positive 
effect of the other elements. The studied pipeline simplifies the large-scale automation of medical 
analysis tasks and opens up opportunities for integration into laboratory and clinical systems oriented 
to the rapid processing and storage of a large number of biological images.
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