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Abstract. At present, communication has reached an unprecedented level of activity thanks
to online social platforms that have overcome geographical and linguistic barriers. However, the
shift to online communication is accompanied by the spread of hate speech, which negatively
affects the social environment of these platforms. In the field of natural language processing,
research is being conducted to develop models for detecting and classifying hate speech, aimed
at improving the safety and quality of the online environment. However, many of these studies
are based on commonly used datasets that turn out to be unbalanced and insufficiently adapted
to the new grammatical features of hate speech. This article presents a comparative study of
the effectiveness of machine and deep learning algorithms in detecting hate speech based on a
synthetic dataset. Three separate experiments were conducted using original and synthetically
perturbated data. The findings indicate that employing a synthetic dataset enhances the
representation of extremely negative or infrequently encountered communication scenarios,
contributing to their more effective detection. Deep learning algorithms demonstrated superior
performance in all experiments. The top-performing models in the first and second experiments,
both using zero-shot learning, yielded accuracies of 52.04% and 62.13%, respectively. The
last experiment revealed that the BIGRU + fastText architecture outperformed other models,
achieving an accuracy of 72.68%.
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AnHotamus. B HacTos1iee BpeMs 00IieHre JOCTUTIIO OeCTIpelleIEeHTHOTO YPOBHS aKTUBHO-
cTH G6aromapst OHJIaliH-COLMAIBHBIM IUIaTGOpMaM, KOTOPEIE TIPEOa0JIeIn TeoTpaduiecKre 1
SI3BIKOBBIC Oapbephbl. OQHAKO 3TOT MEPEeXOa COMPOBOXKIACTCS pacIIpOCTpaHEHUEM HEHABUCT-
HUYECKUX BBICKA3bIBaHUI, KOTOPbIe HETaTUBHO BJIMSIOT Ha COLMAIBHYIO Cpely 3THUX IaT-
¢dopmMm. B obnactu 06pabOTKM eCTeCTBEHHOTO SI3bIKa BEAYTCS MCCAEIOBaHUS IO pa3paboTke
MOJeJIel JUTS BBISIBJICHUS U KiIacCuUKaIMy HEHAaBUCTHUYECKUX BhICKa3bIBaHUI, HaIpaBIeH-
HBbIE Ha yJydllleHue 0e30TacHOCTH U KayecTBa OHJaiH-cpeabl. OMHAKO MHOTHE M3 3TUX HC-
cllemoBaHUIT OCHOBaHBI Ha HabOpax MaHHBIX, KOTOPHIE YAaCTO MCIOIB3YIOTCSI U OKa3bIBAIOTCS
HecOaTaHCUPOBAaHHBIMM M HETOCTATOYHO afalTUPOBAHHBIMU K HOBBIM I'PaMMaTHUICCKUM OCO-
OEHHOCTSIM HEeHaBMCTHUYECKUX BbICKa3bIBaHUM. B 3T0i1 cTaThe MpencTaBieHO CpaBHUTEIbHOE
ucciaenoBaHue 3¢ GeKTUBHOCTA aITOPUTMOB MAIIMHHOTO U TJyOOKOTO OOyYyeHMs B BBISIBIC-
HUM HEHaBUCTHUYECKUX BbICKA3bIBAHM HA OCHOBE CUHTETUYECKOT0 Habopa JaHHBIX. Tpu OT-
JIeJIbHBIX 9KCIIepUMEHTa OB ITPOBENEHBI C MCITOJb30BAHUEM OPUTUHAIBHBIX U UCKYCCTBEHHO
MCKaXXEeHHBIX JaHHBIX. Pe3yIbTaThl TOKa3bIBAIOT, YTO NCIIOIb30BaHNE CHHTETUUECKOT0 Habopa
MaHHBIX TTO3BOJISICT JIyUIlle MPEACTAaBUTh KpaliHe HeTaTUBHBIC WJIM HEYACTO BCTPEUAIOIIMECS
CcleHapU KOMMYHUKAIIUM, YTO CITOCOOCTBYET ux Ooyice 3(p(eKTUBHOMY BBISBIEHUIO. AJITO-
PUTMBI TTyOOKOro 00y4YeHHsI MPOAEeMOHCTPUPOBAIU MPEBOCXOAHYIO MPOU3BOAUTEIHLHOCTD BO
BCeX 9KcIepuMeHTax. Jlydire Moaean B IIepBOM M BTOPOM 3KCIIEPUMEHTaX, OCHOBaHHBIC Ha
«00y4yeHnHr 6e3 MPUMEPOB», MoKa3aau ToUHOCTh 52,04% u 62,13% cooTrBeTcTBeHHO. [Tocaen-
HUI 9KCTIEPUMEHT moKa3ai, 4yTo apxutekrypa BiGRU + fastText mpeB3ouia apyrue Mojenu,
JIIOCTUTHYB TOYHOCTH 72,68%.

KiioueBble coBa: aHaaW3 TOHAJbHOCTU TEKCTa, paclo3HaBaHME SMOLMI B TEKCTE, MEXaHU3M
BHUMaHus, sMoeaaunru, CNN, LSTM, GRU
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learning algorithms and neural networks for analyzing the influence of data type in hate speech
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Introduction

One of the challenges in modern online communication environments, such as forums, blogs and
social media, is hate speech. Directed at individuals or groups of people, it is often based on char-
acteristics such as skin color, religion, gender, nationality and others. The level of toxicity on the
internet, measured by the amount of hate speech, has increased since the beginning of the COVID-19
pandemic in 2020 [1, 2], when a significant portion of social interactions shifted to online platforms.
A number of international organizations, such as UNESCO, reported an increase in hate speech and
conspiracy theories against specific communities on social media. According to a UNESCO/Ipsos
report conducted in 2023 in 16 countries, 67% of internet users have encountered toxic messages and
comments.
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To create safe digital spaces where hate speech will be automatically detected, extensive research has
been conducted [3—6]. An analysis of these studies suggests that the use of machine learning algorithms
and neural networks for hate speech detection is becoming critical in modern conditions. For instance,
multilayer neural network architectures enable the learning of hierarchical data representations, which
is highly valuable for understanding the context and nuances of human language. Hate speech detec-
tion relies on two main approaches: supervised learning and unsupervised learning. In the context of
this work and the available dataset, a supervised learning approach will be employed, where models are
trained on labeled datasets containing examples of both hate speech and ordinary statements.

The work [7] explores a research direction that has not yet been widely covered in scientific literature
— namely, the use of synthetic data as a non-traditional approach to overcoming the difficulties associat-
ed with collecting and annotating real data. Synthetic datasets enable the generation of a wide range of
scenarios and hate speech instances that may be underrepresented in real datasets. In [8], the developed a
method to maintain baseline model performance in case of future perturbations, instead of training and re-
training the model on data with introduced perturbations as a mitigation method. However, this method is
effective only for perturbations that preserve text semantics and exclude those that alter semantics, which
are prevalent in [7]. Furthermore, this approach is suitable only for large language models with numerous
parameters and high training costs. Experiments in [9] demonstrated that within fine-tuning, the perfor-
mance of large language models improved by 7—19% partly due to the use of a specific synthetic dataset
from [7]. Similarly, the work [10], also based on [7], focused on the automatic detection of dehumanizing
statements and achieved promising results. However, it relied exclusively on large language models with
extensive parameters. While the studies aim to enhance classifier performance using synthetic data with in-
troduced perturbations, none of them investigate the impact of data type on the performance and robust-
ness of machine learning and deep learning classifiers that do not require a large number of parameters.

Our work continues the line of research initiated in [7]. The central idea is to evaluate the influence
of data type (original and synthetically perturbated) on classifier performance in binary classification,
where the input is one-dimensional textual data.

The key contributions of this work are as follows:

« Utilization of a synthetic dataset.

» Application of binary classification through the training and testing of various classifiers, includ-
ing traditional machine learning models (Linear Support Vector Classifier, Logistic Regression, Sto-
chastic Gradient Descent, XGBoost) and deep learning models (CNN, LSTM, GRU, BiGRU, BiGRU
+ CNN) for hate speech detection.

* Investigation of the impact of static context-independent embeddings models (fastText and
GloVe) on classifier performance.

» Examination of how original and synthetically perturbated data influence classifier performance,
as this issue has not yet been sufficiently addressed in scientific literature.

Experimental Framework

Dataset

Hate speech detection typically involves the use of various benchmark datasets (e.g., Wikipedia
Detox, 2016; Jigsaw Toxic Comment Classification, 2018; SemEval-2019 Task 5) for heuristic studies.
However, it should be noted that most of these datasets, although some are relatively large and of high
quality, gradually become outdated and lose relevance over time. Therefore, in this work we employ
the Dynamically Generated Hate Speech Dataset from Vidgen et al. (2021), which has not yet been
widely utilized or extensively discussed in scientific literature.

Dataset description

The Dynamically Generated Hate Speech Dataset comprises approximately 40000 entries (~10000
per round), generated and annotated by trained annotators across four rounds of dynamic data creation
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using a human-in-the-loop process. The dataset is balanced, with hate speech instances constituting
54%. All entries are labeled as either hateful or non-hateful. For entries labeled as hateful, secondary
annotations are provided, specifying the fype and target of hate speech.

The dataset contains both original and synthetically perturbated data (~15000 complex pertur-
bations). The original data consists of unmodified instances (e.g., without altered annotations). The
synthetically perturbated data, available in the version used in our work, comprise statements that
were initially considered non-hateful but, after modification (typically syntactic), were re-annotated
as hateful.

As noted in [7, 11], perturbations are generally described as sufficient manipulations of the original
text to alter the label (e.g., from hateful to non-hateful). Such perturbations can significantly change
the meaning of a sentence and, consequently, the model’s predictions. According to [11], perturba-
tion-based methods applied to text remain in their early stages. Nevertheless, recent studies [8, 12—15]
have proposed several semantic-preserving and semantic-altering perturbation techniques. When ap-
plied to the text, these techniques allow models for developing robustness against future or adversarial
perturbations that might otherwise cause misclassification.

Dataset analysis

The dataset consists of 12 columns, including label, type and farget.

The label column takes two values: hateful or non-hateful, indicating whether a given utterance con-
stitutes hate speech.

The type column provides an additional annotation for hateful utterances. If an utterance is labeled
hateful, the type column can take one of five values: animosity, derogation, dehumanization, threatening
Or Support.

The farget column specifies the group subjected to hate speech. Examples include wom (women),
bla (black people) and mus (muslims). The target column contains more than 400 unique values. For
example, the phrase “ There are so many black women at my workplace, it really annoys me” in the dataset
is labeled as hateful, with type = animosity and farget = bla.wom (referring to black women).

The distribution of entries across the /abel and type columns is illustrated in Fig. 1. The presence
of the “not given” category in relation to type is explained by the absence of hate-type annotation in
round 1. Among the fype categories, derogation (utterances that explicitly attack, demonize, humiliate
or insult a group) is the most frequent, while support (utterances that praise or endorse events, organ-
izations, actions that propagate hate) is the least frequent.

Fig. 2 presents the distribution of words and characters across the /abel column. The maximum ut-
terance length does not exceed 600 characters or 150 words. Both hateful and non-hateful labels show
a similar distribution in terms of word and character length. However, there is a notable difference:
approximately 28% of non-hateful utterances contain words with lengths between 1 and 25 characters,
compared to ~35% of hateful utterances.

Data preprocessing

The data preprocessing procedure was designed to reduce vocabulary size without removing essential
content. A smaller vocabulary not only decreases the memory required for analysis, but also enhanc-
es the reliability of estimated word parameters. In this work, standard preprocessing operations were
applied, albeit with some modifications. As noted in [16, 17], these operations included lowercasing,
tokenization, punctuation handling, stop-word removal, part-of-speech (POS) tagging (to improve se-
mantic understanding of text and facilitate more accurate lemmatization) and lemmatization.

However, to provide classifiers with a more favorable learning environment, we followed the ap-
proach of [18] and replaced contracted negative forms with their full equivalents. In addition, emojis
were substituted with their corresponding semantic meanings. Furthermore, as part of the preprocessing
pipeline, the maximum length of individual posts was limited to 100 words and 500 characters, respec-
tively, for subsequent operations.

>
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Fig. 2. Distribution of words and characters by label

Models

The primary focus of this work was on deep neural network architectures. For comparative analy-
sis, several traditional machine learning methods were employed as baseline models, including Linear
Support Vector Classifier (Linear SVC), Stochastic Gradient Descent (SGD), Logistic Regression
(LR) and Extreme Gradient Boosting (XGBoost).

The rationale for selecting these algorithms is as follows: Linear SVC, a specific case of Sup-
port Vector Machines, assumes a linear decision boundary (effective when classes are well-separated
in feature space, as in our case), handles high-dimensional spaces efficiently and thereby mitigates
overfitting. SGD serves as an optimization algorithm that updates model parameters incrementally,
allowing for faster convergence compared to batch gradient descent. LR is effective in tasks where the
relationship between features and class labels can be approximated linearly, as demonstrated in our
experiments. Finally, XGBoost excels at handling missing values, prevents overfitting and can capture
complex feature interactions and non-linear relationships.

Neural networks

In this work, we employed five neural network architectures: Convolutional Neural Networks
(CNNs) [19, 20], Long Short-Term Memory networks (LSTM) [19], Gated Recurrent Units (GRU),
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Bidirectional GRU (BiGRU) and a hybrid CNN + BiGRU model. All these models were implemented
with word embedding methods (fastText and GloVe) [19]. To enhance the effectiveness of the neural
networks, we hypothesized that performance could be improved using attention mechanisms and pool-
ing operations within the network architecture. The attention mechanism assigns different weights to
sequence elements, allowing models to focus on specific parts of the input data, thereby improving their
ability to generate accurate and contextually relevant predictions. Pooling, in turn, reduces computa-
tional complexity and facilitates the handling of long sequences.

The choice of deep neural network architectures is motivated by the fact that traditional machine
learning methods largely rely on manual feature engineering, whereas deep learning models are capable
of learning abstract data representations and automatically extracting features [18, 21].

CNN

CNNs were originally developed for computer vision tasks and are highly effective in image clas-
sification [22, 23]. However, CNNs have also demonstrated strong applicability in natural language
processing (NLP), particularly for text classification tasks [24, 25]. While CNNs are primarily designed
for processing data represented as matrices rather than sequences, they can outperform recurrent neural
networks (RNNs) [22], especially in their ability to capture higher-level features. The role of a CNN
layer is to extract meaningful substructures that are useful for solving the overall prediction task. In this
work, we implemented a CNN with a global max pooling mechanism to reduce computational complex-
ity and the number of outputs [26].

LSTM and GRU

LSTM and GRU networks are types of recurrent neural networks [24, 26]. In text classification
tasks, each LSTM or GRU block processes both the embedding vector of the current word and the
output of the previous block, recursively accumulating information from all other words in the text.
Unlike traditional RNNs, LSTM and GRU networks are specifically designed to overcome the prob-
lems of long-term dependencies and the issues of exploding and vanishing gradients [18, 26].

These models employ more advanced mechanisms for computing hidden states at each step to
mitigate gradient-related problems [27]. Both LSTM and GRU incorporate gating mechanisms that
enable selective retention or forgetting of information from previous inputs. LSTMs feature a more
complex structure consisting of four components: input gate, forget gate, cell state and output gate.
In contrast, GRUSs represent a generalized approach, with LSTMs being a special case [27]. GRUs
typically require fewer filters and fewer computational operations than LSTMs [26, 27].

BiGRU and BiGRU + CNN

The concept of bidirectionality was applied in cases where the meaning of certain words depends on
subsequent words in the sentence. This is particularly relevant for synthetically perturbated data, where
adding a word at the end of a sentence may alter its entire meaning. In addressing this issue, a choice
was made between BiGRU and BiLSTM. Ultimately, BIGRU was selected, primarily due to the sim-
pler architecture and faster training of GRUSs, as well as their ability to be effectively trained to preserve
information over long sequences without loss of temporal dependencies [3]. To further improve key
aspects of our work — such as addressing CNN limitations in capturing inter-word semantics, enhanc-
ing prediction accuracy, modeling complex relationships, extracting features and patterns, managing
long-range dependencies and ensuring robustness to noise and outliers — we adopted a hybrid approach
[23, 28] that combines CNN and BiGRU. We hypothesized that this hybrid architecture leverages the
strengths of both models while compensating for their respective weaknesses.

Experimental Setup

In [16], it was demonstrated that word embedding methods (such as fastText and GloVe), which are
most used in deep learning models, can also yield strong results when applied within machine learning
frameworks. Following this line of reasoning, we adopted the same approach in our baseline machine
learning experiments. Alongside word embedding methods, we also employed the TF-IDF bag-of-words
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model [19, 29] to extract features from textual sequences. The same word embedding techniques were
consistently applied across all deep learning models.

The performance of classifiers was evaluated using several metrics, including accuracy, macro-pre-
cision, macro-recall and macro-F1 score. Additionally, as in [18], to better handle the influence of
true negatives — which are of limited utility in detecting hate speech — we incorporated the area under
the precision-recall curve (AUC-PRC), in addition to the area under the receiver operating charac-
teristic curve (AUC-ROC).

In this work, we focused on binary classification (hate / non-hate) and trained and evaluated the
models across three experimental settings:

* Models were trained exclusively on synthetically perturbated data, but developed and tested on
original data.

* Models were trained solely on original data, but developed and tested on synthetically pertur-
bated data.

* Models were trained, developed and tested on a combination of both synthetically perturbated
and original data.

The corpus was split into training, cross-validation and test sets in accordance with the nature of the
data (original and synthetically perturbated).

For experimentation, we employed the Google Colab environment, which supports TensorFlow
(version 2.15.0) and provides access to fast, high-performance computing resources such as GPU and
TPU. The programming language used was Python 3.10, and computations were run on an MSI Katana
17 (i7-12650H, 16 GB RAM). The source code is publicly available!.

The table below presents the configuration parameters for all classifiers. All parameters were ob-
tained through hyperparameter tuning.

Table 1
Hyperparameter settings of the baseline models

Models Parameters

Linear Support Vector Classification | C = 0.1, max_iter = 1000

Logistic Regression C =1, penalty ="12’, solver ="liblinear’, max_iter = 10000

Stochastic Gradient Descent loss:’hinge’, alpha: 0.0001, penalty: ‘12’

learning rate = 0.1, n_estimators = 100, max_depth = 5, min_child_weight = 1,
Extreme GBOOST gamma = 0, subsample = 0.8, colsample bytree = 0.8, objective = 'binary: logistic’,
nthread = 4, scale_pos_weight = 1, seed =27

filters = 512, kernel_size = 6, dropout_rate = 0.5, dense_units = 512, emb_dim =

CNN = 300, optimizer = ‘Adagrad’, learning rate = 0.00001
LSTM Istm_units = 64, dense_units = 512, k_regularizer = 0.001, dropout rate = 0.3,
recurrent_dropout = 0.0, emb_dim = 300, optimizer = ‘Adam’, learning rate = 0.001
GRU gru_units = 64, dropout_rate = 0.5, k_regularizer = 0.00001, recurrent _dropout =
= 0.0, emb_dim = 300, optimizer = ‘Adam’, learning rate = 0.001
BiGRU gru_units = 256, k_regularizer = 0.00001, dropout_rate = 0.5, recurrent_dropout =

= 0.0, emb_dim = 300, optimizer = ‘Adam’, learning_rate = 0.001

filters = 16, kernel_size=6, dropout_rate= 0.5, dense_units= 64, gru_units = 256,
BiGRU + CNN k_regularizer = 0.00001, recurrent dropout= 0.0, emb_dim = 300, optimizer =
= ‘Adam’, learning rate= 0.003

! GitHub — LucasMbele/Hate-speech-synthetic-dataset: In this repository, we train and test some classifiers on original and perturbated data from
a synthetical dataset for hate classification tasks in binary and multiclass case. Available: https://github.com/LucasMbele/Hate-speech-synthet-
ic-dataset (Accessed 12.09.2025)
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Results

Experiment 1: Training on original data, development and testing on synthetically perturbated data

The data were split as follows: 25813 for the training set, 10332 for the development set and 4429 for
the test set.

Based on the results presented in Fig. 3, among all machine learning methods, the logistic regression
algorithm combined with fastText generally outperforms and achieves the best results in terms of accu-
racy (45.3%), F1-score (44.2%) and AUC-ROC (45.2%). It is worth noting that the differences between
the results of other machine learning algorithms and those of logistic regression are negligible.

It is evident that neural networks outperform machine learning algorithms, as expected. BiIGRU +
CNN + GloVe (52.04% accuracy, 51.09% F1-score) achieves better performance than other models;
however, its loss function value is considerably high. Measuring the difference between the model’s pre-
dictions and the actual values, the loss function plays a crucial role in the efficiency of neural networks.

Accuracy score Fi-score ROC score
Models Folds Training set Y Dev Test Trainingset | Dev Test Training set Dev Test
CVFold1 0,726 0,777
. . CVFold2 065 071
Logistic Re TrIoR CVFold3 0718 0,805
CV Average 0,456 0429 | 0,409 0,764 0455 0,436
CVFold 1 0,619 0,684
Logistic Reg CVFold2 0,634 0,655
CVFold3 0,689 0,676
CV Average 0,647
CV Fold 1 0603 054 0,658
Logistic CVFold2 0,620 0,601 0,633
CVFold3 0,686 0,645 0,644
CV Average 0,639 0453 | 0,448 0,595 0433 | 0,425 0,645 0452 0,447
CVFold 1 0,726 0,708 0,777
CVFold2 0,649 0,598 071
Linear SV +TF-IDF CVFold3 0714 0,676 0,806
CV Average 0,696 0452 | 0,437 0,661 0417 | 0402 0.764 045 0436
CVFold 1 0.62 0572 0.682
Linear SVM + FastText [Cvfodz | 0634 062 0688 |
CVFold3 0,601 0,666 0,681
CcV Average 0,648 0467 | o452 0,619 0455 | 0.4 0673 0467 0452
CV Fold 1 0,599 0,53 0,654
i CVFold2 0,627 0,597 0.632
Linear SVM + GloVe CVFold3 0,686 0,639 0,647
CV Average 0,637 0453 | 0,447 0,589 0431 | 0,419 0,644 0452 0,446
CVFold 1 0,716 0,683 0,783
Stochastic Gradient Descent + TF-IDF [ o092 0635 0554 o7t |
CVFold3 07 0,646 0,813
CV Average 0,684 045 | o448 0,628 0354 | 0,356 0448 0,447
CV Fold 1 0619 0,587 0,669
Stochastic Gradient Descent £V Fold 2 053 9615 0658
CVFold3 0,669 0,614 0,686
CV Average 0,639 0464 | 0,443 0,605 0458 | 0,436 0,669 0463 0,442
CVFold 1 0,603 0,511 0,643
Gtove |_CVFold2 0,613 0,552 0.632
CVFold3 0693 0,504 0,663
CV Average 0,636 0452 | 0,42 05522 0401 | 0,386 0,646 045 o441
CVFold 1 0,672 0,641 0,711
XGBOOST+ TF-IDF CVFold 2 0626 0,569 0,662
CVFold3 0,703 0,658 0,726
Ccv Average 0,667 0417 | o042 0,623 0373 | 0377 07 0416 042
CVFold 1 0,662 0,652 0.714
CVFold2 0,633 0,623 0.688
XGBOOST + Fastext CVFold3 0,695 0,678 0,749
CV Average 0,663 0393 | o391 0,651 0388 | 0,386 0,717 0392 0,39
CVFold 1 0,658 0,648 0,714
XGBOOST+ GlOVE CVFold2 0,629 0,617 0.675
CVFold3 0697 0678 0,746
CV Average 0,661 0391 | 0,406 0648 0387 | 0,401 0,712 0391 0,406
Accuracy score Precision score Recall score Test
Models Folds ov Loss Test  Loss v Test  lov Test AUPRC score AUCscore  Fi-score
CVFold1 05096 | 0,7207 0,5083 0,3897
NN+ FastToxt CVFold 2 0503 | 0,7286 0,4995 0,3057
CVFold3 05028 | 0,7311 0,4992 0,2919
CV Average/ BestLoss 0,5051 | 0,7207 51,46% 0,7205| 0,5023 |51,62% 0,3291 51,52% |[0,644201|10,51831| 50,76%
CVFold1 05069 | 0,6988 0,5026 0,7048
CV Fold 2 04994 | 0,6977 0,4952 0,4014
CVFold3 05031 | 0,699 0,996 0,2627
CVAverage/BestLoss 0,5031 | 0,6977 | 50,62% [0)6998] 0,4991 | 50,60%  0,4563 50,51% | 0.4952  0.5017  48,74%
CVFold 1 04441 | 0,9449 0,4054 0,2555
CVFold 2 05022 | 0,938 0,4991 0,582
Lo+ FastText CVFold3 04875 | 0,9916 0,4864 0,5688
CV Average/ BestLoss 0,477 | 0,938  49,97% 0,9471| 0,4636 | 49,92% | 0,46877 49,92% | 0.4834  0.4861 _ 49.58%
CV Fold 1 04654 | 0,9853 04571 0,4072
ST Glove CV Fold 2 05109 | 0,9413 0,51 0,3911
CVFold3 05063 | 0,9342 0,504 0,3843
CVAverage/ Bestloss 0,4942 | 0,9342 50,87% 0941 | 0,4904 | 50,99% 0,3942 50,94% | 0,5104  0,5074  50,21%
CVFold 1 04714 | 0,9326 0,459 0,3589
CV Fold 2 04808 | 0,9175 04772 0,4739
GRU + FastText
CVFold 3 0,4867 | 0,992 0,4838 0,4971
CV Average/ Best Loss _0,47963 | 0,9175 | 48,97% 0,9878 | 0,4733 | 48,97% 0,443 _48,97% | 0,4938 _ 0,4915 _ 48,96%
CV Fold 1 04977 | 0,8744 0,4934 04215
SRU GlovE CV Fold 2 04562 | 0,9203 0,4502 0,4289
CVFold3 04678 | 0,9602 0,4597 0,4078
CVAverage/ BestLoss 0,4739 | 0,8744 50,08% 0,877 | 0,4678 | 50,12% 0,4194 50,12% | 0,4898  0,4866  49,82%
CVFold 1 04838 | 0,8684 | 0,4708 0,3161
CV Fold 2 04828 | 0,9147 0,4723 0,3525
CVFold3 0,494 | 0,946 0,4906 0,4875
CVAverage/ BestLoss 0,4869 | 0,8684 | 48,66% 0,9556 | 0,4779 | 48,65% 0,3854 48,65% | 0,492  0,4803  48,65%
CV Fold 1 04991 | 0,9206 0,4944 0,373
BIGRU + GloVE CV Fold 2 0479 | 0959 0,4465 0,2042
CVFold3 04833 1,023 0,4783 0,4447
CVAverage/ BestLoss 0,48713 | 0,206 | 50,96% 0,913 | 0,4731 | 51,08% 0,34063 51,03% | 0,5011  0,5091  50,31%
OV Fold 1 04383 | 0,9533 0,4101 0,2983
OV Fold 2 04691 1,087 0,4106 0,158
CVFold3 04666 | 1,1431 04174 0,1865
CVAverage/ Bestloss 0,458 | 0,9533  46,67% 1,0986 0,4127 | 45,10% 0,2143 46,84% | 04407  0,4412  41,58%
CVFold1 04775 | 1,0201 0,4021 0,1064
BIGRU + CNN + GOVE CV Fold 2 05227 | 1,0387 0,527 0,3825
CVFold3 05098 | 1,1369 0,5091 0,3693

CVAverage/BestLoss _0,5034 | 1,0201 |52,04%) 1,0402 | 0,4794 152,349 0,2861 ||52,12%1 0,5053 _ 0,5159 |1154,00%1]

Fig. 3. Performance of machine learning and deep learning models in Experiment 1
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Models Folds Accuracy score F1-score | ROC score
Trainingset | Dev Test Trainingset | Dev | Test | Trainingset Dev [Test
CVFold1 0,686 0,686 0,741
CVFold 2 0,651 0,645 0,716
Logistic Regression + TF-IDF
© © CVFold3 0,58 0,556 0,65
CV Average 0,639 0454 0,454 0,620 0,448 | 0,449 0,702 0,448 | 0,449
CV Fold 1 0,627 0,627 0,661
CVFold 2 0,647 0,647 0,697
Logistic R ion + FastText : : :
ogistic Regression + FastTex! CVFold3 0579 0576 | T oe09 |
CV Average 0,618 0,465 0,46 0,617 0,461 | 0,456 0,656 0,462 | 0,a56
CVFold 1 0,637 0,637 0,602
CVFold2 0,627 0,626 0,667
+
Logistic Regression + GloVE VI 000 | B -
CV Average 0,607 0472 0,477 0,606 0,465 | 0,469 0,645 0,465 | 0,469
CV Fold 1 0,685 0,685 0,738
Linear SVM + TFIDF CV Fold 2 0,649 0,642 0.714
CVFold3 0,577 0,551 0,648
CV Average 0,637 0453 0,453 0,626 0,448 | 045 0,7 0,448 | 045
CVFold 1 0,624 0,624 0,661
. CV Fold 2 0,647 0,647 0,698
Linear SVM + FastText
CVFold3 0578 | 0575 | | oe07 |
CV Average 0,616 0462 0,458 0,615 0,458 | 0,454 0,655 0,459 | 0,455
CV Fold 1 0,638 0,638 0,691
CV Fold 2 0,627 0,626 0,666
Linear SVM + GlovE CVFold3 0554 | | 0,551 | [ os74 |
CV Average 0,606 0475 0479 0,605 o468 | 047 0,644 0,468 | 0,47
CVFold1 0,674 0.67 0741
Stochastic Gradient Descent + TF-IDF | C FO\d2 0.817 0.577 0,72
CVFold3 0548 | 0488 | | oeso |
CV Average 0,613 0,434 0,446 0,578 0,433 | 0,444 0,707 0,447 | 0,459
CV Fold 1 0,619 0,664 0,664
Stochastic Gradient Descent + OV Fold 2 0.648 | [—2894 |
CVFold3 0,564 0,616 0,616
CV Average 0,610 0,442 0,443 0,658 0,443 | 0,aa2 0,658 0,452 | 0,a51
CvFold1 0,648 0,503 0,699
: ] CVFold2 0,627 0,59 0,664
.
Stochastic Gradient Descent + GloVE | 1t/ % o oa oanr e
CV Average 0,608 0,55 0,651
CV Fold 1 0,709 0.764
CV Fold 2 0,678 0,731
+TF- o781 |
XGBOOST +TF-IDF CVFold3 0,621 0.663
CVAverage [IINO/GESINN 0457 | 0.6 0457 | o4c |IINOZISINN 0,463 | 0,466
CVFold 1 0,611 0,611 0,659
XGBOOST+ FastText CVFold 2 0,618 0,617 0,66
CVFold3 0,558 0,552 0,581
CV Average 0,596 0379 0,392 0,503 0378 | 039 0,633 0,379 | 0,392
CVFold 1 0,636 0,684 0,684
XGBOOST+ GloVE CVFold 2 0617 | 0658 | | oess
CVFold3 0,569 0,59 0,59
CV Average 0,607 0,421 | 0,427 0,644 0,419 | 0,424 0,644 0,42 | 0,424
Accuracy score Precisionscore | Recall score Test
Models Folds
cv Loss  [Test Loss |CV Test  |cv Test |AUPRCscore| AUCscore | Fi-score
CvFold1 | 0496 | 0728 | | 0,449 0.5949
NN+ FastText CVFold2 05024 | 0.72a4 0.4482 0.5576
CVFold3 05035 | 0.7214 0.4452 05132
GV Average/ BestLoss | 0,5018 | 0,7214 |50,72% | 0,72 | 0,447 | 50,93% | 0,555 | 50,95% | 0,439 0,507 | 50,61%
CVFold 1 0,503 | 06986 0,3934 02353
CVFold2 04887 | 0,6999 03976 03106
CNN+ Glove CVFold3 0,4826 | 07009 0.4027 0.3596
CV Average/ BestLoss | 0,4914 | 0,6986 | 50,05% 0,3979 | 46,91% | 0,3018 | 47,11% | 0,402 0449 | as42%
Fold 70,5351 | 0.9364 0.4744 0.5066
CVFold2 05720 | 0,905 0517 0.4747
LSTH + FastText CVFold3 | osse2 | 0,9327 | | 05001 | 05280 |
CV Average/ BestLoss | 0,5557 | 0,905 | 57,39% 0,91 | 0,4972 | 56,52% | 0,5034 | 56,45% | 0,494 0571 | 56.47%
CVFold1 0.4849 | 08501 0.432 05352
CVFold2 05487 | 0.8494 0.4874 0.4595
LSTM * Glove CVFold3 [T0.5a20 | 08675 | 0,4844 05733
CVAverage/ BestLoss | 0,5255 | 0,8494 |54,79% 0,85 | 0,4679 | 53,94% | 05227 | 53.92% | 0,474 0545 | 5392%
CvFold 1 05022 | 0.8773 0.4339 0.42a1
CVFold2 05163 | 0,8892 0.4535 0.4746
CVFold3 05468 | 0.8438 0.486 0.4886
CVAverage/ BestLoss | 0,5218 | 0,8438 | 55,58% 0,9 | 0,4578 | 54,47% | 0,4624  54,35% | 0,468 055 | 54,33%
CVFold1 0,5451 | 0,8036 0,478 0,3465
CvFold 2 05233 | 0.4549 0,a549 0.4112
ORU+clove CVFold3 05629 | 0.5045 05045 0.4703
CV Average/ BestLoss | 0,5438 | 0,4549 | 55,73% | 0,81 | 0,4791 | 54,88% | 0,4093 | 54,84% | 0,466 0554 54,85%
CVFold 1 ["0.5374 | 0.9361 0.4756 0.4821
CVFold2 05035 | 0.9822 0.4435 0.4954
BIGRU + FastText CvFold3 | 05341 | 1.0889 | | 0.4639 0.3659 |
CV Average/ BestLoss | 0,5250 | 0,9361 | 53,62% 0,94 | 0461 | 53,13% | 0,4478  53,16% 0,46 0528 | 53,11%
CVFold1 0.5286 | 0.8264 0.465 0.4611
CVFold2 05642 | 0.8131 0.5066 0.4355
CVFold3 05210 | 0,8702 | 0.4545 0.4218
CV Average/ BestLoss | 0,53823 | 0,8131 | 56,46% 0,81 | 0,4754 | 5534% | 0,43947 5517% | 0,476 0557 | 5515%
CVFold1 055 | 1.0202 0.4836 0.4306
CVFold2 05867 | 1.0314 05318 0.4576
BIGRU+ CNN + FastText GVFold3 0.6197 | 0.9674 0.57 0.5298
CVAverage/ Best Loss | 0,58547 | 0,9674 |[B2jig0ll 0,98 | 0,5285 0,4727
Fold | 0528 | 07952 0,4445 0,3185 ‘
CVFold2 05406 | 0.8138 0.4699 0.3948
BIGRU * CNN+ GloVE CVFold3 0.4903 | 0.8455 0.4219
GV Average/ Bestioss | 0.5196 | 0.7952 | 55,76% | 0:98 | 0.4454 | 54.77% | 0.3870 | 54.50% | 047 | 0,535 | 54de%

Fig. 4. Performance of machine learning and deep learning models in Experiment 2

The higher the loss function value, the harder it is for the model to make accurate predictions, thereby
indicating the need for further improvements. In the experiment conducted, the loss function reached
1.0201. CNN models (CNN + fastText and CNN + GloVe, as reported in [4]), particularly due to
their robust feature extraction capabilities, show a clear improvement in the loss function (0.6993 with
GloVe), comparable accuracy (51.46% with fastText) and superior results in terms of AUPRC-score
(51.42% with fastText) and AUC-ROC score (51.83% with fastText).

The perturbations introduced into the validation and test datasets proved difficult for the models to
learn, resulting in poor performance.

Experiment 2: Training on synthetically perturbated data, development and testing on original data

The data were split as follows: 14761 for the training set, 19359 for the development set and 6454
for the test set.

As shown in Fig. 4, neural networks significantly outperform machine learning models. Among ma-
chine learning algorithms, XGBoost and SGD stand out. XGBoost combined with TF-IDF achieved
the best results on the training set, while SGD with GloVe obtained the best results on the test set (48.5%
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accuracy, which is +3.2% higher than the accuracy of the best algorithm in Experiment 1; 47.3% F1-
score, which is +3.1% higher than the F1-score of the best algorithm in Experiment 1; and 47.3% AUC-
ROC score, which is +2.1% higher than the AUC-ROC score of the best algorithm in Experiment 1).

BiGRU + CNN + fastText, as in Experiment 1, outperformed all other algorithms, achieving
62.13% accuracy, 61.29% precision, 61.33% recall, 61.33% F1-score, 53.77% AUPRC and 60.54%
AUC-ROC. Training models on synthetically perturbated data and testing them on original data sub-
stantially improved the performance of neural networks compared to Experiment 1. Overall, an im-
provement of +10.9% in accuracy and +10.24% in F1-score was observed when comparing the best
model from Experiment 2 to the best model from Experiment 1.

Experiment 3: Training, development, and testing on both original and synthetically perturbated data

The data were split as follows: 19475 for the training set, 16230 for the development set and 4869 for
the test set.

As shown in Fig. 5, among all machine learning algorithms, XGBoost (combined with TF-IDF),
as in Experiment 2, achieved the best performance (65.8% F1-score, 65.9% AUC-ROC). Logistic
regression combined with TF-IDF achieved the highest accuracy (66.2%).

>

Accuracy score Fi-score ROC score
Models Folds
Training set Dev | Test Trainingset | Dev | Test Training set Dev  [rest
CVFold1 0,641 0623 0.716
Th10F CVFold2 0,654 0,635 0.729
CVFold3 0,646 0,628 0.717
CV Average 0,647 o656 |MNOGGZNN| o620 0,643 0651 NI 0,645 0,652
CVFold 1 0,608 0,587 0,641
CVFold2 0612 0,591 0,653
CVFold3 0,612 0,594 0,648
CVAverage 0,611 0,614 0,627 0,591 0595 0,609 0,647 06 0,614
CvFold 1 0,588 055 0,63
CVFold2 0,583 0,537 0,641
CVFold3 0,599 0,556 0,639
v Average 059 0,595 0,607 0,548 0557 0574 0,637 0575 | o589
CVFold 1 0,638 0614 0715
Linear SVM + TF-IDF CvFola2 065 0626 0.728
CVFold3 0,639 0617 0716
CVAverage 0,642 0,637 0,655 0,619 0637 o681 0,720 0,64 0,644
CVFold1 0,606 0,583 064
Linear Sy FastText CVFold2 0,609 0,585 0,652
CVFold3 0613 0,593 0,648
CVAverage 0,609 0,612 o624 0,587 0591 0,604 0,647 0,598 o061
CvFold1 0,583 0,54 0,629
Linear SYM+ GloVE CvFold2 0,578 0526 0,639
CVFold3 0,595 0,547 0,638
CVAverage 0,585 0,591 06 0,538 0,549 | 0,561 0,635 0,57 0,58
CVFold1 0,616 0,547 0713
CVFold2 0,619 0,552 0.724
Stochastc Oradient Descent +TF-1DF | ~C' 2242 oete Voe o7e
CVAverage 0,617 0,618 0,621 0,551 0555 056 0,717 0592 | 059
CVFold 1 0,59 052 0,639
CVFold2 0,606 0,552 0,652
CVFold3 0,608 0,483 065
CVAverage 0,603 0,595 0,607 0,518 0552 0,568 0,647 0574 | o587
CVFold 1 0,564 0,406 0,627
Stochastic Gradient Descent+ GloVE O 02 055 QA7S 084
CVFold3 0,558 0,411 0,637
CVAverage 0,557 0,546 0,546 0,431 039 0,393 0,635 0,509 051
CVFold 1 0,658 0,657 0,709
GBOOST+ TH-IDF CVFold2 0.664 0,664 0715
CVFold3 0,651 0,651 0,702
cvaverage [INNOESENNNINNGESTNN oocss  [MNGESZNNN|CESINNGESENN oo [NGEEZNN| WG|
CVFold1 0,605 0,597 0,653
XGBOOST+ FastText CVFold2 0,604 0,597 0,662
CVFold3 06 0,593 0,656
CVAverage 0,603 0,605 0,611 0,59 0598 0,604 0,657 059 | 0604
CVFold 1 0616 0,609 0.667
XGBOOST+ GloVE CVFold2 0,607 (X 0,663
CVFold3 0,663 0,603 0,664
CvAverage | 0,620 0,607 0,627 0,604 06 o062 0,665 (X3 0,62
Accuracy score Precisionscore | Recall score Test
Models Folds T
ov Loss  Test loss  |ov Test cv Test  AUPRCscore (AUCscore  [Fl-score
CVFold 1 0,5473 | 0,7001 I 0,5086 | 04144
CVFold2 05492_| 0,6095 0512 0,415
CVFold3 0,555 | 0,6986 | | 0513 o416 [
CVAverage/ BestLoss| 0,5505 | 0,6986 | 55,58% | 069 | 05112 |54,39% | 0,4151 | 54,11% 0,506 | 0,5608 | 53,76%
CVFold1 05463 _| 0,6876 I 05104 | 0.3254
CVFold2 05468 | 0,6874 05112 0,326
NN Glove CVFold3 05473 | 0,6874 05122 0,3208
CVAverage/Bestloss| 0,5468 | 0,6874 | 5529% | 0,69 | 0,5113 | 54,45% 0,3236 | 53,60% 0,509 0552 | 52,07%
CVFold1 06972 | 0,7062 | 0,725 0.5427
CVFold2 07004 | 0,6966 0,7007 0,608
LSTH *+ FastText CVFold3 0,7047 | 0,698 0,7014 0,623
CVAverage/ BestLoss | 0,7008 | 0,6966 |_70,63% | 0,60 | 0,7105 | 70,58%  0,59123 | 70,08% 0,758 0775 | 70,16%
CVFold1 06999 | 0,6568 07112 0,5847
CVFold2 07002 | 06519 0,7352 0,5437
LS+ Glove CVFold3 07049 | 0,6552 0.7394 0,5532
GVAverage/ BestLoss| 0,7017 | 0,6519 | 70,32% | 0,65 | 0,7286 | 71,05% 0561 | 69,28% 0,75 0776 | 69,23%
CVFold1 07131 | 0,5806 0,7165 0,6221
CVFold2 07087 | 05773 0,669 0.7321
CVFold3 07166 | 05774 0,7069 0,6553
GV Avenage/Bostions| 0733 | 0,6773 | 75575 [ o.cv0e [71% | o0 |isen| ogei | on | Fiewm
CVFold1 07126 | 0,577 0,7288 0,5969
ORU+ GloVE CVFold2 07116 | 05782 0,719 0,6108
CVFold3 07136 | 0,5818 07117 0,6336
| CVAverage/Bestloss| 07126 | 0577 | 71,64% | 0,58 | 0,7200 | 71,59% 0614 | 71,12% 0,77 0795 | 71,1%
CVFold 1 07215 | 0,6688 0.7221 0,641
CVFold2 07228 | 0,6784 072 0,6497
BIGRU» Fastext CVFold3 0,7205 | 0,6625 0,724 0,6329
CVAverage/ BestLoss| 07216 | 0,6625 |G 0.c0 | 072> |FEESH 041> BSOS NN NNOSTINNTZESH|
CVFold1 07145 | 0,5873 0,707 0.6459
CVFold2 0,7042_| 0,6102 0,7662 0,5133
BIGRY+ GlovE CVFold3 0.7087 | 0,6066 07181 0,6035
CVAverage/Bestloss| 0,709 | 0,5873 | 72.27% | 050 | 0,7307 | 72,16% 0588 | 71,87% 0,772 0797 | 71.08%
CVFold1 07091 | 0,7234 0,7319 05797
CVFold2 07123 | 0,7479 0.724 0.5705
CVFold3 071 | 07673 0.7269 05917
CVAverage/Bestloss| 0,7105 | 0,7234 | 71,04% | 074 | 0,7343 | 71,73% | 0,5806 | 70,05% 0,77 0788 | 70,04%
CVFold1 06477 | 0,622 07713 0,3322
CVFold2 06779 | 0,5886 0,7321 04724
CVFold3 068477 | 0,5764 | 06798 [To.5041
CVAverage/Bestloss| 06701 | 0,5764 | 68,72% | 0,57 | 0,7277 | 68,61% | 0,4662 | 68,16% 0,74 076 | 6822%

Fig. 5. Performance of machine learning and deep learning models in Experiment 3

32



4 Intelligent Systems and Technologies, Artificial Intelligence

We observe that the best results across all experiments combined were obtained by BiGRU + fast-
Text, achieving 72.68% accuracy, 72.65% precision, 72.19% recall, 72.29% F1-score, 79% AUPRC
and 81% AUC-ROC. By combining original and synthetically perturbated data, we achieved the highest
performance across various models.

Conclusion

This work achieved several key objectives.

First, it demonstrated the relevance of using a synthetic dataset as a novel approach for hate speech
classification, offering greater flexibility compared to traditional, outdated datasets commonly em-
ployed in literature. The experiments indicate that synthetic data circumvent limitations related to sen-
sitive content and enable training on texts featuring highly negative or rarely occurring communication
scenarios that are underrepresented in real-world datasets. Consequently, the resulting models exhibit
improved effectiveness in detecting hate speech.

Second, the work investigated the impact of data type on model performance. The lowest accura-
cy (52.04%) was observed when models were trained on original data and evaluated on synthetically
perturbated data. Training synthetically perturbated data and evaluating original data improved per-
formance (62.13% accuracy). The highest performance (72.68% accuracy) was achieved when models
were trained and evaluated on a combined dataset, regardless of the data’s original or synthetically
perturbated nature.

Neural networks consistently outperformed traditional machine learning algorithms. In particular,
the BiGRU + fastText model achieved the best overall classification results, highlighting the effective-
ness of bidirectional architectures, GRU units and fastText word embeddings. The first two experiments
can be interpreted as involving zero-shot learning, suggesting that further performance improvements
may require alternative architecture or larger datasets.

Finally, future work could focus on leveraging pre-trained large language models [30] on expanded
synthetic datasets, as proposed in [7], to further enhance model performance.
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