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Annoramusa. CorjacHO CTaTUCTHKE, (haKTUISCKOE BpeMsI BBHITTOJTHEHMST OOJBIIMHCTBA 3a1a-
HUIl Ha CyIIepKOMIIBIOTEPHOM KJIacTepe CYIIECTBEHHO OTIMYAeTCS OT BPEMEHH, 3aIlpOIIeHHO-
ro mnoJjb3oBaTesieM. MccienoBanue pacipeneieHU BpeMeH UCIIOJIHEHUs 3a1ad Ha CyIlepKOM-
MbIOTEPE C MCIIOJIb30BAHUEM CTAaTUCTUYCCKUX METOAOB WJIM METOIOB MAIIIMHHOTO OOydYeHMUs
MO3BOJISIET ONTUMU3UPOBATh PabOTy CYNEePKOMITbIOTEPHOTrO KjiacTepa. Mbl M3ydyaeM pe3yJIbTaThl
WCITOJTHEHUST BBIYMCIUTEIBHBIX 3aa4 B CYIIepKOMITbIoTepHOM IIeHTpe CaHKT-IleTepOyprckoro
IMomurexandeckoro yHuBepcuteTa Ilerpa Benukoro. Hamu pa3spa®oran HelrapaMeTpHIeCKUin
MMOIXOM IJIsT OOHAPYKEHUS W MOATBEPKIACHUS CTATUCTUUECKON TOCTOBEPHOCTHU CIA0BIX CTOXA-
CTMYECKUX MOPSIKOB. JlaHHBIN MOIX0M OCHOBAaH Ha KaTeropraJabHOM HellapaMeTPUIEeCKOM Me-
TOJle CpaBHEHMIM Ha 0a3e olieHOK Karrana—Meiliepa, TOCTPOSHHBIX 110 HE3aBUCUMBIM I'pyMIiaM
LIEH3ypPUPOBAHHbBIX CIpaBa HabaoaeHU. 11 KOPPEKTUPOBKMU YPOBHSI JOCTOBEPHOCTU OOHA-
PYXEHHBIX CJTA0BIX CTOXaCTUUYCCKHX MOPSIIKOB MBI IIPUMEHSIEM MOTIpaBKy boHdeppoHn Ha Bce
paccMaTtpuBaeMble cpaBHeHMs. [IpoBeneH CpaBHUTEIBHBINA CTATUCTHMYECKUIT aHAIW3 pacIipe-
IeJICHUI BpeMeH, HeOOXOMUMEBIX IS KOPPEKTHOTO 3aBepIICHUS 3amad, B Pa3IMYHBIX TPYIIIIAX
HaOJIIOACHUI, HAaliIeHbl U CTATUCTUYCCKU MOATBEPKICHBI HEKOTOPbIE CIa0ble CTOXaCTUYECKUE
MOPSIIKHU.

KaroueBble ciioBa: 1aHHbIE TUMA BpEMCHMU XKN3HU, OLICHKA KarmaHa—MeI?Iepa, KpI/ITCpI/Iﬁ TUIIAa
Banbz[a, CTOXaCTUYCCKHUE MMOPAIKH, Cyr[epKOMHI:IOTCpHBIﬁ KJIacTep, MJIaHNPOBIIMK 3a1a4

®unaHcupoBanue: VccienoBaHue BBIIIOJTHEHO MPY YaCTUYHOM (PMHAHCOBOM MOAepKKe Mu-
HUCTEpCTBAa HayKW W BhIcIIeTo obOpaszoBaHmst Poccuiickoit Demgepanum B pamMKax rocymap-
CTBEHHOTO 3amaHus «Pa3paboTka m mccliemoBaHUE MoeNieil MaIIMHHOTO OOYYeHUS IJIsI pe-
meHus GpyHIaMeHTaIbHBIX 3a1a4 UCKYCCTBEHHOIO MHTE/IEKTA B TOILIMBHO-2HEPreTUYECKOM
komrutekce» (FSEG-2024-0027). Pe3yabraTtsl pabOTHI MOJIYYEHBI C MCTIOJIb30BAaHMEM BBIUMC-
JIMTEJIbHBIX PECYPCOB LIEHTPA KOJJIEKTUBHOTO IMOJb30BaHUs «[loJUTEXHUYECKUN CyTepKOM-
MbIOTepHBIN LIeHTP» CaHKT-IleTepOyprckoro moJMTeXHUYeCKOoro yuusepcurera I[lerpa Benu-
koro (Ne 500675, https://ckp-rf.ru/catalog/ckp/500675/).

Jlnga mutupoBanua: Misharina T.A., Malov S.V. Categorical survival analysis of the required job
execution times in the hybrid supercomputer center // Computing, Telecommunications and
Control. 2025. T. 18, Ne 2. C. 7—20. DOI: 10.18721/JCSTCS.18201

Introduction

High performance computing is becoming increasingly important in different areas of scientific re-
search and industry. Collective supercomputer centers allow to perform calculations of any complexity
to a wide range of users. The operation of a supercomputer center is a complex parallel queuing process
of execution of computational jobs over time. An optimal scheduling of entire jobs leads to increasing
performance of computations. The most important characteristic of a job is the required supercomputer
resource involving the required time for its execution, the number of cores allocated to provide sufficient
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Random-Access Memory (RAM) and the job execution quickness. A job scheduled on supercomputer
can be divided into computational tasks that can be executed in parallel on different cores. An exit code is
obtained at the end of the execution of each job.

The optimization of jobs management systems was discussed by a number of authors. The most
famous subject of interest is the job running time and its prediction time given by user. In most cases
user overestimate significantly job running time that implies non optimality in job scheduling. A ma-
chine learning regression-based method to predict mean running time by a vector of observed futures
was studied in [5]. It was shown that the prediction of job running time allows the correction of run-
ning times obtained from users that increases sufficiently efficiency of job scheduling. Applications
of supervised machine learning algorithms to predict the job running time based on information sub-
mitted by user at high performance computing centers was discussed in [17]. Machine learning clas-
sification methods to predict a class of running time distribution was under consideration in [4, 18].
The underestimation effect of running time by user was studied in [6]. Note that the most important
characteristic of job processing is the required execution time to complete successfully the job, which
can be equal to the running time or not available, if the job is terminated. Using the observed running
time instead of the required execution time as well as just removing jobs, which was not completed
successfully, lead to sufficient underestimation of the required execution time if the number of “un-
successful” jobs is valuable in compare with the total number of jobs. The right-censored survival data
model, which is also applicable in the reliability theory, allows to estimate correctly the distribution
of required execution time by using the running time and the indicator, which displays, if the job is
completed successfully. Machine learning algorithms to predict the distribution of required execution
time and its characteristics based on semiparametric and nonparametric regression models of survival
analysis were studied in [14, 21].

Note that machine learning methods are more flexible in compare with statistical ones. The statisti-
cal conclusions are restricted to the probabilistic model of the experiment, but the statistical conclusions
yield another kind of reliability of obtained results.

Categorical methods for survival right-censored data analysis are widely presented in the literature.
In [20], likelihood ratio test for right-censored grouped survival data was studied and the chi-square
limit distribution of the likelihood ratio test statistic was obtained. In [10], the chi-square test and the
Wald’s type test for right-censored survival data was obtained and the comparative analysis of the tests
under Pitman alternatives was performed. A parametric Pearson’s type test for right-censored survival
was studied in [8]. In [1], modified versions of goodness of fit chi-square tests for simple and composite
parametric null hypotheses in the nonparametric survival data models under presence or absence of
the right censoring were obtained. Presence of one extra degree of freedom of the limit distribution in
compare with the classical version of the chi-square test is noted and some examples are given. In [12],
another approach was used to obtain chi-square test for complex parametric null hypothesis and the
comparative analysis in Pitman’s efficiency of the test with another version of chi-square test obtained
in [1] was performed. An adaptive version of the chi-square test obtained in [10] with a random da-
ta-based choice of grouping intervals is given in [2]. The chi-square tests for testing the null hypothesis
that the failure time distributions agree with some known parametric model for hazard rates was given in
[9], and the chi-square test for agreement of the failure time distributions with some known semipara-
metric regression model (e.g., the semiparametric accelerated failure time model) in general case under
time dependent covariate was obtained in [3]. Wald-type categorical tests for testing homogeneity null
hypotheses in the nonparametric right-censored survival data model used in this work was studied in
[15], which is universal and can be more efficient than the linear rank tests commonly used in nonpar-
ametric survival analysis under some alternatives.

Moreover, machine learning methods also use for survival right-censored data analysis. Random
forest-based algorithms were used to analyze right-censored survival data in [7, 11]. In [19], the authors
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propose a new Transformer-based survival model, which estimates the patient-specific survival distri-
bution. Another example of the application of machine learning methods to the analysis of randomly
censored survival data is presented in [13]. Here, the authors propose a method based on the Beran
estimator using neural kernels to estimate the conditional average treatment effect.

In this work, we study the results of users’ jobs processing in the supercomputer center of Peter the
Great St. Petersburg Polytechnic University. Since the limitations for the running time and the resource
of supercomputer used to execute a job should be determined in advance, it is important to evaluate
distributions of main characteristics of a job, which cannot be predicted exactly. We are interested in two
important characteristics of the required resource: the execution time required to complete successfully
the job in seconds, without taking into account the number of cores allocated, and the required com-
puter execution time that is obtained by multiplying the required execution time by the number of cores
allocated. We investigate the distributions of the required execution times and required computer times
and perform a comparative analysis of the distributions in different groups of users.

Each observation contains the supercomputer resource used to perform the job: the job processing
time (observed execution time), the number of cores and the amount of memory allocated and the exit
code, which indicates whether the job was completed successfully or it was interrupted due to an error,
user request, lack of memory or time allocated for the job execution. In the latter cases, the job is incom-
plete and the job execution time is assumed to be censored. We relate the execution time (or computer
time) required to complete successfully the user’s job with the failure time in right-censored survival
data model. Then the job execution time and the indicator of successful completion of user’s job, which
is determined by the exit code, is the right-censored observation.

We apply categorical nonparametric statistical framework based on contrasts obtained from the
Kaplan—Meier estimators in d independent groups of right-censored observations to obtain advanced
statistical conclusions on distributions of failure times in different groups of observations. Let T be
the job execution time or computer time and U be the censoring time. Each observation (X, d) con-
tains the job processing time X = min (7, U) and the indicator 6 = | 7y thatis equal to 1, if the exit
code indicates that the computational task is completed successfully and 0 otherwise. We study the
distribution of 7" and its dependence on the grouping factor, which reflects the user’s area of expertise.
We create advanced categorical methods for right-censored survival data and apply them to perform
comparative analysis of the distributions of job execution times and computer times 7'in 11 groups of
user’s domain of scientific expertise [16].

Wald’s type categorical tests for survival data

The main object of statistical analysis is the distribution of the required execution time (or com-
puter time) 7. The required execution time 7' is not observed exactly, if the corresponding job is not
completed successfully, in this case, we explain the true execution time of the job as an independent
censoring time. A single observation consists of the true execution time X = min (7, U) and the binary
job exit code 6 = I‘TS o which indicates whether the job was completed successfully or censored. We
allow the distributions of the required execution times to differ in different groups of jobs and use a
categorical covariate z € {1, ..., d} for grouping the data. The observed data contain the true execution
times X, = min (7, U)) and the binary exit codes o, = I{T,. )’ where T’ is the required execution time
of i-th job, Ul is the independent random censoring time, and the covariate z, € {1, ..., d}, which deter-
mines the group, to which a corresponding observation belongs, i = 1, 2, ..., n. Let Sz(t) = PZ(T > 1) be
a completely unknown survival function of the required execution time in group z, z =1, 2, ..., d. The
homogeneity null hypothesis is as follows:

H,:8,(1)=8,(t)=--=8,(t), te(—w0,).

10
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We consider a weaker version of the null hypothesis, which requires the equalities of the survival
functions Sj at some fixed points:

Hy:8,(T)=8,(F)==8,(7), T=(t,, ... t,)".

Let SZ be the Kaplan—Meier estimator of the survival function SZ in different groups, z=1, 2, ..., d.
The asymptotic properties of the Kaplan—Meier estimators imply weak convergence

Jn (8.(7)-S.(7))= N(0.Z,), z=1,2, ... d
for any fixed vector of time points , where N (0, Zj) is the mean zero Gaussian distribution with the
matrix of covariance ZZ , 1_is the number of observations in group z.
The matrix of covariance EZ has the following form:

z=(o) s

v=l,u=1

where G(vi) is the element of the limit covariance matrix of the values of the Kaplan—Meier estimator at

time points £ and ¢, v,u =1, ..., k.
The term G(VZ) of the covariance matrix can be estimated by the following Greenwood formula:

~(2) _ A A min(v,u) D] —1 k
o n Z(tv) Z(tu)Z:l=1 —Y,*(Y]*—D,)’ vu=1, ..., k,

where D ,is the number of jobs completed successfully at Tl, Y,* is the number of jobs not completed and
not censored before 7.
Then the estimate of the covariance matrix X_has the following form:

A k.k
_ A(Z)) ’

2. =6
z ( v v=l,u=1

Taking into account the independence of observations in different groups, we obtain the following
joint weak convergence:

Ju(87(7)-$"(7))= N (0.0 D),

where S” = (Sn S,y e, Sd) is the Kaplan—Meier estimator of the vector of survival functions ™ =

=(S), Sys s S,)';

> 0 .. O

0 .. O
5o O = O

O 0 .73,

D = diag(n*) is the normalizing diagonal matrix with the elements of the vector n* = (”1* s eees T ) n, =

= \/(nz, n,, ..., n, )/n, z=1, ..., d, at the diagonal; DX"D is the limit covariance matrix; O is the

matrix of zeroes of size kxk.

11
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Denote S*(7)=6"=(6,, 0,, ..., 6, )T and 0, =(6_, 0,_,, ..., sz)T , z=1,...,d. Then the null
hypothesis can be written as follows:

Hy 0, =0, ==0,, ..., 0, =0, =--=0,.

Let y = C" 0", where C" is the matrix of contrasts of size ¢ x m, 0" = (0,, 0,, ..., 0 ), is the vector
of size m x 1. The contrasts matrix y = (y/, ..., \|/q)T contains linear functions of parameter v, such that:

m
Vv, =¢,0,+¢,,0,+-+c,0 Zi:lcij =0,

J mj = m?

where ¢, are the elements of the matrix Ci=12,.mj=12,..q.
We use the following pairwise contrasts:

V=35, (11)_S2(t1);

Vg = Saa (tk ) -5, (tk )

In terms of the parameters Gij = Sl.(tj), i=1,2,..,d,j=1,2, .., k, the vector function of contrasts
\ can be rewritten in the following matrix form:

e11

0,
E -E O 0O 0)]6,

w—cfe*—o E -E 0O O

eZk ’
O 0O O E -EJ|

6dl

edk

where FE is the identity matrix of k x k, O is the k x k-matrix of zeroes, the matrix of contrasts C” is of
size kd x k(d — 1), the parameter 0" is of size kd x 1 and the contrasts vector \ is of size k(d — 1) x 1.
In terms of the contrasts y the null hypothesis can be written as follows:

H; V=V, :'":Wk(dfg =0.

12
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The asymptotic normality of the estimators 0" = S* (f) implies immediately the asymptotic nor-
mality of the estimators \J of the corresponding contrasts :

Jn(§-y)=N(0.C"DT" DC). (1)

Let ", =C DY DC and f'w =C"DY DC, where 2 is a consistent estimate of the asymptotic
variance of the estimator \J under the null hypothesis. The Wald’s type test statistic for testing H, g .

" T =2,

2 *
has asymptotical X,-distribution under the null hypothesis. Under the fixed alternative H , : y =y,
the Wald’s type test statistic has an asymptotical non-central X, 4 -distribution with the non-centrality
parameter

p=ny Ly,

Detection and testing significance of stochastic orders

Let X and Y be random variables. The random variable X is stochastically less than the random
variable Y (X <y ) if

F,(t)2F,(¢) forall te(—o0,),

where F (1) = P{IX <t} and F' () = P{Y < 1}, t € (—, ), are the distribution functions of X and Y,
respectively. In case of X and Y are failure times, it is convenient to rewrite the same property as follows:

Sy (t)<8,(t) forall 7e(—o0,),

where S () = P{X >} and S (1) = P{Y > {}, t € (=00, ), are the survival functions of X and Y,
respectively. The relation X <* Y determines the partial non-strict order on the set of distributions
of random variables. In a similar manner, we say the random variables Xl, X2, s Xd are completely
stochastically ordered

X, <X, <L <X
if X, <X ., fori=1, ..., d— 1. By the transitivity property of the stochastic order the random varia-
bles are stochastically ordered X; <" X, <" ... <" X, if X, <" X forall 1 <i<j<d. We say that
random variables X B X2, s X are completely stochastically ordered, if there exists a permutation
(c, ..., ) of indices (1, 2, ..., d), such that X_ < XGZ <L <X 5, 1f the stochastic orders
X <” X hold for some pairs ofcs and o, only, then we report the incomplete stochastic order.

We use a spec1a1 nonparametric approach to state stochastic orders of failure times in different groups
of observations with high reliability. Since the survival function of failure time is equal to 1 at point zero
and is tending to 0 as the argument is tending to infinity, the stochastic order cannot be checked in the
nonparametric model. The stochastic ordering condition can be relaxed. We say that the random vari-

able X is stochastically smaller than the random variable Y in the weak sense (X SX Y ) with respect to
the set A, if

Sy (1)<Sy(¢) forall teA, 2)

13



4 MHTennekTyasnbHble CUCTEMBI U TEXHOSOTNN, I/ICKyCCTBeHHbIl‘/JI NHTENNEKT

where A is some bounded set of positive real numbers. Similarly, the complete stochastic order
X, <" X, <L <" X, holds, if

>

S (1)<8,(1)<---<8,(r) forall te(—o0,),
whereas the corresponding weak stochastic order X, <} X, < --- <\ X, with respect to A holds, if

S, (1)<8,(1)<--<8, (1) forall reA,

The weak stochastic order X, < X, <\ -+ < X, can be obtained from d —1 pairwise stochastic
orders X, SSAt X,..,i=1,..,d—1,or, in terms of survival functions,

Sy (1)<8y (¢r) forall reA and i=1, ..., d-1.

Let A={t,1,, ..., 1} be a finite set. Then (2) can be rewritten as follows:

Se(8,)<8,(,), s=1, ..., k.

It seems natural to choose the checkpoints 7, which cover each of the supports of X and Y, but the
statistical framework is inefficient, if the distribution of X is highly biased with respect to Y in this case.
In order to increase the efficiency of the statistical analysis, we choose the checkpoints empirically
from the combined distribution for each pair of distributions Xl and Xj, i#j.Let(6,,0,,..,0),8< d,

N - -
be an arrangement of the indices (1, 2, ..., d); {A(”)} A = A6 < (0,00) is determined for
i,j=1
each pair of distributions ofX[ and X/, i,j e{l, .., d}. We say the conditional weak stochastic order

Y
X < < ) Xo with respect to {A(”J )} holds, if
s i,

o1 SA(01.0;) T Aoy 1.0, -

(7)<5, (F) forall TeA™) 1<i<j<s 3)

J

SU

i

In other words, the conditional weak stochastic order X _ SX L < x_ with respect to
1 (01,02) Ao, y.0,) 7o

.y d
{A("’)} holds, if S_ S‘Z( ) S, forall 1 <i<j<s. Note that the pairwise relation of the condi-
i,j=1 i 0i>6; J

tional stochastic order is not transitive in general case, since the stochastic order in each pair is deter-
mined in a different weak sense.

Let the survival data contain d groups of independent right-censored observations with fail-
ure times 7 having completely unknown survival functions Sl, within i-th group, i = 1, ..., d. Set

7d) = (tl(i"j ), tg’j ), . t,i’j ) are checkpoints (that can be data based in general case) for weak pairwise
stochastic ordering of distributions T, and 7; for each pair of groups i and j; A([’j ) = (tl(i’j ), téi’j ), ey t,i’j )

We confirm the pairwise weak stochastic order 7, SSAt(i 7 T, at the confidence level 1 — a, if each of

the particular left sided confidence intervals of level 1 — o/d for all of k contrasts \uii’j ) y eees wsf’j ),

where wﬁi’j) =S, (ts(i’j))— S, (tb(,i’j)), are located entirely to the left of zero. In other words, we obtain
joint confidence intervals for the contrasts by using the Bonferroni method. The particular right sided
asymptotic confidence intervals are obtained from the asymptotic normality (1). The conditional sto-
chastic order including more than two groups can be confirmed at some confidence level in a similar man-
ner by using the right sided confidence intervals for the contrasts related to all the pairwise orders that de-

termine the conditional stochastic order with the Bonferroni correction on the total number of contrasts.

14
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We also report the p-value that allows to estimate the true confidence of the statistical conclu-
sion. Note that a pairwise weak stochastic order can be confirmed with some confidence, only if (2)
holds for the Kaplan—Meier estimators for each ¢t € A. If the pairwise weak stochastic order for the
Kaplan—Meier estimators fail, we report the p-value is equal to 1 and the corresponding confidence is
estimated equal to 0. Otherwise, the p-value is determined as the infimum of a, such that the pairwise
weak stochastic order holds at the confidence level 1 — a. Since a conditional weak stochastic order
of 3 and more distributions is determined by the corresponding weak pairwise stochastic orders, the
p-value of the conditional weak stochastic order is given as the maximal of p-values of the pairwise
stochastic orders. The pairwise stochastic orders are obtained by using the confidence intervals for
the contrasts with the correction to the number of weak pairwise stochastic orders that determines the
conditional weak stochastic order. Finally, the estimator for the true confidence of a weak stochastic
order is equal to 1 — p-value.

Another application of the contrasts method is the detection of available stochastic orders and the
confirmation. Note that the whole range of (non-conditional) weak stochastic orders can be deter-
mined by using d(d — 1)/2 pairwise weak stochastic orders and both the alternative pairwise stochastic

orders X, <\ X ; and X ; <\ X, related to the same pair (i, j) can be obtained by using the same k
(i.7)

)

contrasts ., s =1, ..., k. If all the two-sided joint confidence intervals for the contrasts lie en-

1

tirely to the left of zero, we confirm that 7 SSA(Z. 7 Tj, whereas if all they lie entirely to the right of

zero, we confirm that Tj SSA’(i 7 T with the same confidence as the joint confidence level of the in-

kd (d 1) |

tervals. Hence, only contrasts are required to detect all the pairwise weak stochastic or-

ders for any distributions of 7', ..., T ,.

The conditional weak stochastic orders of 3 and more distributions can be obtained from pairwise
weak stochastic orders. We consider the combination of all pairs for which there are the arrangements
(6,,0,,...,0),8 < d of indices (1, 2, ..., d), such that (3) holds. For example, based on pairwise weak

stochastic orders T, < < < T, we construct conditional weak

6; ~A(c,6,) T6,° Top TA(o;,05) T037 "0, TA(0,.,03) " O3

stochastic order 7 < T < T_ . In addition, we confirm the following pairwise weak sto-
6 —A(o;,0,) "6, TA(0,,65) 03

chastic orders: Tcyz < T .7 <" TG4. Then we obtain the conditional weak stochastic or-

~A(o,,04) 7047 T03 TA(0;,04)

ders T, <} T <! T, and T, < T <! T,,, but not the conditional weak sto-

o1 ~4(0y,0;) T 03 TA(0,.03) TA(05,03) T 03 TA(03,04)
. t t . . .
chastic order T < g g T, since we do not confirm the pairwise weak sto-
1

~A(0,,06,) 0, TA(0,,03) T03 TA(c3,04) 04

chastic order 7, <\ .\ T, .
o kd (d 1)

We consider the whole range of the two-sided joint confidence intervals for all the con-

trasts and confirm all available conclusions on the pairwise weak stochastic orders at the confidence lev-
el (1 — o). Since we detect conditional stochastic orders, we are ready to reject all inconsistent pairwise
stochastic orders.

Statistical data and planning of statistical analysis

The statistical data contains the results of users’ jobs processing at the supercomputer center of Peter
the Great St. Petersburg Polytechnic University. For each run initiated by the corresponding user’s job,
we have the processing time of computational task, the number of cores allocated and the exit code,
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which allows to determine, whether the user’s job was completed successfully. Runs of duration less than
5 seconds were removed. Finally, we use information on 1338565 runs from 01.09.2021 to 31.08.2023.
Runs that were not completed or not completed successfully are assumed to be censored.

We analyze distributions of the execution time required to complete successfully user’s job, in sec-
onds, and the computer time (spent processor time), in processor seconds (sec.* CPU). All user jobs and
corresponding runs were classified to 11 groups by user’s area of expertise:

« astrophysics;

* bioinformatics;

* biophysics;

* energetics;

» geophysics;

< IT

* mechanical engineering;

* mechanics;

* physics;

* radiophysics;

» aspecial group called geovation [10].

The Kaplan—Meier estimators of the survival functions of the required times and computer times to
complete successfully user’s job are visualized in Figs. 1 and 2.

First, we test the homogeneity null hypothesis that the distributions of the required times (or com-
puter times) to complete successfully user’s job in different groups are all the same, as well as the pair-
wise homogeneity null hypotheses each pair of groups separately by using Wald’s type tests. If the null
hypothesis of homogeneity is rejected, we perform advanced statistical analysis using contrasts method
for each pair of the groups, for which significant differences in distributions of the required times (or
computer times) to complete successfully user’s job were found, adjusted to the total number of pairs.
The conditional weak stochastic orders of 3 and more distributions are obtained from the confirmed
pairwise stochastic orders according to (3).

The checkpoints for pairwise homogeneity testing and further advanced analysis of contrasts are
obtained in the following way:

1. We obtain #__is the largest observed failure time of for each of samples.

2. The group with the smaller value of £ is assumed to be a baseline group.

3. The checkpoints are defined as 7 octiles (12.5%; 25%; 37.5%; 50%; 62.5%; 75%; 87.5%) of the
Kaplan—Meier estimator related to the baseline group and the midpoint between the last octile and
t . totally k = 8 of the checkpoints.

The checkpoints are consistent estimates of the corresponding numerical characteristics that de-
pend on the joint distribution of failure and censoring times. Then the asymptotic normality of the
Kaplan—Meier estimators at the checkpoints is preserved under the null hypothesis and under a fixed
alternative.

We use the significance level oo = 0.05 (5%) and the joint confidence level 1 — o0 = 0.95 for all statis-
tical conclusions.

Results of statistical analysis

Testing the homogeneity null hypotheses displays significant differences in distributions of the
required times and computer times to complete successfully user’s job both with the p-value not
exceeding 1073, the minimal available value in R. Testing the pairwise homogeneity null hypothesis
displays highly significant differences in distributions of the required times and computer times to
complete successfully user’s job for each pair of times and computer times as well with the maximal
p-value 8.3-10-%" for times in astrophysics and mechanics groups.
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Fig. 1. Kaplan—Meier estimators of the required job execution times
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Fig. 2. Kaplan—Meier estimators of the required job execution computer times

The results of detection and confirmation of the obtained pairwise weak stochastic orders in the dis-
tributions of the required times and computer times to complete successfully user’s job are visualized by
using directed graphs in Figs. 3 and 4, respectively: each vertex represents a group by the user’s area of
expertise; an edge exists, if the stochastic order is confirmed at the joint confidence level of 0.95 adjusted
to the total number of pairs; each edge is directed from a larger distribution to a smaller one.

We detect and confirm 21 pairwise weak stochastic orders for the required times to complete suc-
cessfully user’s job and 23 pairwise weak stochastic orders for the required computer times to complete
successfully user’s job.

The graph shows that we also detect and confirm weak stochastic orders for the three groups, for ex-
ample, the required times in the geophysics group is stochastically larger than the required times in the
biophysics group, which is stochastically larger than that in the geovation group.

We detect and confirm 4 triple weak stochastic orders for the required times to complete successfully
user’s job and 10 triple weak stochastic orders for the required computer times to complete successfully
user’s job.

Discussion

In this study, we develop the statistical framework for detection and confirmation, at some confi-
dence level, of weak stochastic orders in distributions of failure times from right-censored survival data.
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Fig. 4. Significant conditional pairwise weak stochastic orders
in distributions of the required computer times to complete successfully user’s job

The set of tools for nonparametric categorical analysis of right-censored survival data based on the
Kaplan—Meier and the Nelson—Aalen estimators, as well as the contrasts methods for detection and
confirmation of weak stochastic orders, were implemented in the R software development environ-
ment. The Bonferroni correction is applied to adjust the confidence level for all contrasts under con-
sideration.

We analyze the results of users’ jobs processing obtained at the supercomputer center of Peter the
Great St. Petersburg Polytechnic University. We group users’ jobs into 11 groups by the user’s area of
expertise. The main objects of interest are the required times and computer times to complete suc-
cessfully the user’s job in different groups of users. We associate these characteristics with the failure
time in right-censored data model. Testing the homogeneity null hypotheses of failure time distri-
butions in different groups of users, as well as each of pairwise homogeneity null hypotheses, reveals
non-random differences in the corresponding estimators in different groups of users with extremely
high significance, close to absolute, for both required times and computer times to complete success-
fully user’s job.
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We detect and confirm at the 95% confidence level 21 pairwise weak stochastic orders for the
required times to complete successfully user’s job and 23 pairwise weak stochastic orders for the re-
quired computer times to complete successfully user’s job.

Note that the obtained stochastic orders are a much more informative result than simply estab-
lishing the significant differences in the distributions. In particular, 7; < T, implies that the mean
value and all quantiles of T1 are smaller than the corresponding characteristics of T2~ In some cases,
weak stochastic order does not guarantee the existence of a corresponding stochastic order, but it is
useful, because it allows us to draw conclusions for the corresponding quantiles. These conclusions
are applicable to optimize user’s jobs processing.
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