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Abstract. This study proposes a page-based approach to organize the storage for vector
embeddings combined with the use of general-purpose lossless compression algorithms. The
proposed approach organizes vector embeddings into pages of a configurable number of entries
that contain vector embeddings and all necessary metainformation, and then the page files are
compressed using general-purpose compression algorithms. This approach allows configuring
page size and specific compression algorithm, to balance retrieval speed and storage efficiency.
Experiments on three datasets, including PyEmb-50GB with more than 28 million dense vector
embeddings, showed that the proposed solution reduces the occupied disk space by 14—40%
compared to existing storage formats, such as ORC and Parquet, and up to two times compared
to SQLite and H2. In addition, the suggested approach demonstrates a comparable to SQLite
and H2 vector retrieval time, which is also a hundred times faster than ORC and Parquet. The
results indicate that increasing the page size logarithmically reduces the storage size, while
linearly increasing retrieval time. The proposed storage format supports thread-safe vector
access, reducing both the necessary disk space and retrieval time, making it a robust solution for
large-scale vector data management. It can also be used in approximate nearest neighbor search,
provided the correct way of sharding vector embeddings between pages.
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AnHoTamusA. B maHHOM uMcclienoBaHUU TIPEUTOXEH CTPAHWUYHBINA MOIXOJ K OpraHM3aIluu
XpaHeHUs BEKTOPHBIX MPEICTaBICHUI B COYETAHUU C MUCTIOTb30BaHNEM YHUBEPCAJIBHBIX ajiTro-
PUTMOB cxXaTus 0e3 moTepb. [1peaTokeHHBIN MOAX0 OPraHn3yeT BEeKTOPHBIC TIPEACTaBICHMUS
B CTPaHMIIBI M3 KOH(PUTYpUPYEMOT0 YMCIIa 3aliceil, XpaHSIIINX BEKTOPHBIC TIPEACTaBICHUS U
HEOo0XOaAMMYI0 MeTauH(MOPMAIIUIO, TIOCJIEC UeTO CKMMAET (paiiyIbl CTpaHUIL aITOPUTMAaMU CXKATUS
ob1ero HazHaueHUs. Takoil MoaXoa MO3BOJISIET 3alaBaTh HACTpauBaeMblil pa3Mep CTpaHULbI U
BBIOMpPATh HEOOXOMMMBII aJITOPUTM CXKaTHsI, obecIieunBasi 6ajJaHC MEeXIy CKOPOCThIO U3BJIeUe-
HUS TaHHBIX 1 3P (HEKTUBHOCTHIO UCITOJb30BAHUST TUCKOBOTO TTPOCTPAHCTBA. DKCIIEPUMEHTBI
Ha Tpex Habopax gaHHbIX, BKJouass PYEmb-50GB ¢ 6onee yem 28 MumimoHaMu MJIOTHBIX BEK-
TOPHBIX TIPEICTaBICHUN, TTOKa3aIM, 9YTO MPEIIOXKECHHOE PEIIeHNEe YMEHbBIIAeT 3aHUMaeMbI
00beM IUCKOBOIO IpocTpaHcTBa Ha 14—40% 1o cpaBHEHUIO C CYLIECTBYIOIIMMU (hopMaTaMu
xpaHeHus, Takumu kak ORC u Parquet, u go aAByx pa3 no cpaBHeHuIo ¢ SQLite u H2. [Tomumo
3TOro, NpeaJIoXKEHHOe pellleHue N1eMOHCTpupyeT conoctaBumoe ¢ SQLite m H2 u Ha nBa mo-
psinka MeHblee o cpaBHeHWIo ¢ ORC u Parquet BpeMst n3BJieueHUs] BEKTOPHOTO MPEICTaB-
JieHusl. Pe3ynpraThl IeMOHCTPUPYIOT, UYTO YBEIWUYCHHUE pa3Mepa CTPaHUIIBI JIoTapuMUIEeCKU
CHIXKAeT 00beM XpaHWIUINA, TIPA 3TOM BpeMs M3BJIICUCHUS JaHHBIX YBEINUMBACTCS JTUHEIHO.
[IpennoxeHHBI hopMaT XpaHEHUs 0OecIieurMBaeT MTOTOKOOE30MaCHbBIN TOCTYIT K BEKTOPHBIM
MpeacTaBIeHUIM, YMEHbIIIasl 3aHUMaeMOoe JMCKOBOE MPOCTPAHCTBO U BpeMsl 1OCTymna. DTo ae-
JIaeT ero HaJeXHBIM pelIeHUEeM ISl YIIPaBICHUS OOJIbITMMU 00beMaMU BEKTOPHBIX JaHHBIX.
®opMaT TakkKe MOXET OBITh MCIOJIB30BaH IJIs 3a/1a4 MTOUCKa MPUOIU3UTETbHBIX OJIMKaWIITNX
coceleil MpU KOPPEKTHOM paclipeae/ieHNI BEKTOPHBIX IIPEICTABICHUM TT0 CTpaHUIIaM.

KnoueBblie cjioBa: BEKTOpHbIE TPEACTABICHMS, CXaTWe BEKTOPHBIX MpencraBieHuit, ORC,
Parquet

Jlng murmposanmst: Tomilov N.A., Turov V.P. A page-based approach for storing vector em-
beddings // Computing, Telecommunications and Control. 2025. T. 18, Ne 2. C. 45—55. DOI:
10.18721/JCSTCS.18204

Introduction

Humanity generates vast amounts of data in various formats and requires rapid access to this infor-
mation. Machine learning-based search algorithms have gained significant popularity, as they create
representations that capture the semantic structure of both textual [1] and multimodal documents in
the form of vector embeddings — sequences of floating-point numbers. Thus, the information retrieval
process is organized by performing operations on these vectors [2]. Our previous work explored reduc-
ing data storage requirements through scalar quantization, resulting in lossy compression, followed by
clustering and further quantization [3]. As the term itself suggests, lossy compression, such as quanti-
zation, transforms a vector embedding into a more compact representation that is still suitable for ma-
chine learning tasks [4]. However, such transformation comes at the cost of precision, which negatively
impacts search quality metrics compared to the original dataset [5]. This approach becomes unsuitable
when exact vector search is required, rather than an approximate nearest neighbor search. Preserving
vector embeddings in their original form demands significant disk space, motivating the use of lossless
compression and encoding techniques.
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To store large volumes of data, specialized serialization data formats and libraries are often used,
with Apache ORC and Apache Parquet being the most prominent examples [6]. These libraries store
data as records characterized by predefined fields and field types. The records are divided into smaller
chunks and saved to storage, often using various compression algorithms. However, these libraries have
significant drawbacks, primarily the lack of support for random access to data. Retrieving a record by a
specific index is possible only with a query and additional tools, such as bloom filters or dictionaries, which
could result in iterating over multiple records to find the necessary one, slowing down the access time [7].

We propose an approach to storing vector embeddings as collections of files, called pages, each con-
taining a fixed number of vector embeddings. These pages are indexed to store the offsets of vector em-
beddings belonging to the original documents. Our hypothesis suggests that such paginated storage of
vector embeddings will enable more efficient data compression compared to compressing embeddings
individually, while achieving a balance between compression efficiency and minimal retrieval time for
individual embeddings.

Page-based approach for storing vector embeddings

In this and our previous work, we define a vector embedding to be represented by an array of float-
ing-point numbers, identified by a primary identifier, also called a document index, which maps the
vector embedding to the original document from which this vector embedding was acquired. An addi-
tional metadata can also be present for vector embeddings, such as a secondary identifier, that maps the
embedding to a specific section or sentence in the document, or a cluster identifier of the embeddings
based on the document, in case a single original document was turned into multiple embeddings [8].

The essence of the approach lies in grouping and serializing vector embeddings on disk as specified
below. First, the original set of vector embeddings is grouped into M groups based on a certain rule being
a hyper-parameter of this approach. As an example of such a rule, it could be k-means clustering [9],
meaning the groups are resulting clusters, or a rule, according to which the number of vectors in a target
group does not exceed a certain threshold. In this research, we use the latter with the threshold value V.

Then, the embeddings belonging to the same original document are grouped together to form an
entry. Entries are serialized to byte arrays, so that such serialized entries contain all the necessary meta-
data, apart from the document index, which is shared across all embeddings within the entry, as well as
all vector embedding values represented as 32-bit floating-point numbers. All serialized entries within
the group form a page. The page is then written to a page file on disk. A secondary file for a page, called
page index, is also written on disk. This page index contains a list of pairs that map the document index
to an offset on the disk where the entries with this document index are stored.

Finally, a page file, being a plain binary file, is compressed using any general-purpose compression
algorithm. This results in the necessity to decompress the entire page file to access vector embedding,
which increases the access time, however, this drawback is offset by lowering storage space necessary to
store the data.

The steps described above are shown in Fig. 1.

According to the rule mentioned above, each storage page can contain no more than N vector em-
beddings, where N is specified during the storage creation. If the number of embeddings associated with
a particular primary identifier exceeds /V, they are divided into multiple entries distributed across differ-
ent storage pages. It means that a single primary identifier may appear in multiple entries across various
pages. However, within a single page, each primary identifier corresponding to an entry is unique. The
hierarchy between the embeddings, entries and pages is represented in Fig. 2.

Accessing a vector embedding for a given document index involves two stages. In the first stage, all
page index files are scanned sequentially to find the necessary entry. If there is such a possibility, those
page index files can be loaded into memory beforehand to lower the access time. If an index file contains
the target primary identifier, the corresponding entry is retrieved from the page: the page data file is
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decompressed, and the entry is read starting from the specified byte offset. Since the page index file
stores tuples containing a primary identifier with byte offset in the data file, ordered by byte offset,
the entry size is determined as the difference between the offsets of the next and current entry. Then,
the necessary vectors are fetched from the entry. If a more complex query is necessary, like fetching by
primary and secondary index, an additional filtration of embeddings within the entry will be necessary.

Modification or deletion of embeddings or their metadata is not supported. However, it is possible
to create a copy of the page, excluding the data that should be deleted or modified, while adding new,
modified data. This lowers the applicability of this approach to use only for long-term storage.

Since pages are independent from each other, it is possible to operate concurrently over multiple
pages with multiple threads, while ensuring that a single thread is performing writing operations over a
single page at a time. Concurrent reading operations over a single page by multiple entries is possible,
allowing for multithreaded full traversals, similar to a full table scan operation [10] in relational data-
bases. This is crucial for exporting data to other storage systems or performing exact nearest-neighbor
vector searches.
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Benefits and drawbacks

The main difference between the proposed storage implementation and well-known serialization
formats, such as Parquet and ORC, is its ability to improve the random access to the entry by its index.
Even though both Parquet and ORC support indexing, it is limited [6] and it did not work reliably in our
experiments. Another key benefit is the use of the grouping rule. In this work, we focused on grouping
vector embeddings to pages just by the number of vectors per page. However, as stated above, there could
potentially be other mechanisms of grouping, for example, using k-means clustering. Such clustering
makes the approximate nearest neighbor search possible, reducing the full scan of the entire storage
to the full scan of the pages closest to the search query [11], making the proposed solution suitable for
systems requiring such search.

The main drawback of this approach is the number of separate files on the filesystem. Each page is
stored as a couple of separate files, which means that in instances with a large number of small pages the
overhead of storing small files will be significant. This could be mitigated by merging multiple pages into
a single file, but it was beyond the scope of this research.

Another drawback is the access slowdown caused by decompressing page files on every access, which
could be mitigated by having a decompressed cache of the most or least used pages. It is worth men-
tioning that the proposed solution describes only a storage layer and cannot serve as a dedicated vector
database without most of the features associated with these databases, such as remote access, and thus
cannot replace or compare with databases, such as Milvus or Pinecone. Instead, implementing this ap-
proach results in replacing the built-in application-level storage, such as the SQLite or H2.

Approach implementation

To test the viability of the proposed approach, it was implemented in Kotlin programming language
as a storage library for use in the JVM ecosystem. The data in the pages is serialized into a byte array
using the Apache Avro format. As the additional metadata a secondary identifier was chosen. The Avro
schema that is used to serialize individual entries is presented in Fig. 3. Such entries are then joined into
page files and compressed as explained above.

Run-length encoding [12] is used to serialize page offsets. Several compression algorithms, such as
deflate [13], LZMA, LZMA?2 [14] and ZStd [15] were chosen, because they are provided by Apache
Commons libraries, and were configured to maximize the compression ratio. The maximum page size
N and lossless compression algorithm is configurable during storage creation.

Experiment setup

To evaluate the proposed solution, we selected three test datasets. The first two datasets, NYT-256-an-
gular and fashion-mnist-784-euclidean, were sourced from the ANN-Benchmarks suite [16]. The third
dataset, Pyemb-50GB, contains 28440005 vector embeddings of dimensionality 384. It was compiled
during prior research [17] and was specifically chosen to test the proposed solution’s ability to handle
large volumes of vector embeddings. Compared to the other two datasets, vectors stored in PYEmb-50GB
also have a secondary identifier, representing the index of one of ten vector embedding clusters produced
based on the contents of that document.

For the comparison, each dataset was stored in the described storage system, having the document
index as a primary identifier of the vector embedding. As explained above, the additional metadata con-
tains a secondary identifier, the value of which was taken from the actual secondary identifier for the
PyEmb-50GB dataset, and zero for the first two datasets.

For each of the resulting storage instances, the time required to access a single vector using its primary
and secondary identifiers was benchmarked.

The proposed solution is compared to general-purpose data storage systems: SQLite3 [18], H2
[19], Apache ORC and Apache Parquet. For all four libraries, a so-called VectorStorage interface was
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Fig. 3. Avro schema of the entries on the page

implemented in Kotlin, along with the fifth implementation that uses the proposed storage approach.
Then, these five implementations were benchmarked.

Each test dataset was stored in the specified storage systems using the available compression algo-
rithms with settings providing the best compression, meaning the smallest possible storage size. For
SQLite3, individual vectors were compressed, for Parquet and ORC, their own compression was used.
For Parquet and ORC, their key-based indexing methods were also enabled to speed up data retrieval by
the vector embedding document index. For H2, its built-in database-level compression was used. For
Parquet and ORC, a simple entry structure with three fields was used: document index, segment index,
and vector embedding, — while the document index was selected as the primary identifier. For SQLite
and H2, a table with these three fields was created, and the identifiers were selected as the composite
primary key.

The test server has the following specifications: AMD Ryzen 7 7700X (8C16T); 32GB RAM; Oper-
ating System: Ubuntu 22.04; OpenJDK 22; a framework of comparing vector search algorithms, imple-
mented in previous research [20], that uses the Java Microbenchmark Harness (JMH).

Experiment results

The first dataset, fashion-mnist-784-euclidean, consists of 50000 sparse vector embeddings with the
size of 784, each being a grayscale 28 by 28-pixel image. This dataset compresses well due to the presence
of repeated zero components, representing black pixels, in the vector embeddings.

The file sizes of the storage systems and the average retrieval time for a single vector are presented
as raw data in Table 1 and visualized in Fig. 4. A dash indicates that the measurement is unavailable
because the compression algorithm is not supported for that storage system. For this dataset, the best
solution in terms of disk space usage is Parquet storage with the deflate compression algorithm. Parquet
occupies the smallest memory volume even without using any compression algorithms due to its built-in
RLE mechanism, which performs well on repetitive data, such as sparse vectors.

The proposed solution, with N = 100 and the LZMA compression algorithm, slightly outperforms
Parquet in terms of disk space usage (by 0.9 MB, or 3%), but significantly reduces the vector retriev-
al time by a factor of 100. Increasing the page size with any compression algorithm results in a slight
reduction in disk space usage, but retrieval time increases linearly. The retrieval time is comparable to
SQLite and H2, except for compressed H2, but they require more disk space than the proposed solution.
Compressed H2 demonstrates much slower retrieval time due to the overhead necessary to decompress
the entire database.

The second dataset, NYT-256-angular, contains 290000 vector embeddings with the size of 256. Un-
like the first dataset, NYT-256-angular consists of dense vector embeddings created from text articles.
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Table 1
Disk size (in megabytes) and single vector retrieval time
(in milliseconds) for the fashion-mnist-784-euclidean dataset
Storage used, megabytes Average vector retrieval time, milliseconds
L D
Storage § % g § % § % % § %
Sl =3 N =) — N N
SQLite 235.7 | 46.1 | 37.5]40.6 | 44.5 0.1+0.0 0.1£0.0 0.3+0.0 0.3+0.0 0.1+0.0
H2 190.3 | 40.3 | — - - 0.5+0.0 1000.0 + 160.9 - —
ORC 181.0 | 39.8 | — - - 85.6 £5.0 112.3 £ 1.5 — - -
Parquet 348 | 266 | — — | 26.8 1304.1+21.0| 360.8+27.3 — — 313.8 £22.0
;aieclibo 180.1 | 349 | 27.4|27.5| 32.3 0.2x+0.0 0.9+0.0 35+ 1.1 34+0.1 0.7+0.2
Paged,
N = 1000 180.1 | 34.8 126.9]26.9 | 30.6 0.2£0.0 64102 27.3£1.6 245+1.5 4.1%0.1
Paged,
N = 2000 180.1 | 34.8 | 26.8 ] 26.8 | 30.2 0.3+0.0 13.3+0.5 53.8+4.3 58.2+4.5 8.3+0.3
Paged,
N = 5000 180.1 | 34.8 | 26.7 ] 26.7 | 29.7 0.7%+0.0 345+ 1.6 136.2+13.1 | 1495+ 143 209+1.0

The file sizes of the storage systems and the average retrieval time for a single vector are presented as
raw data in Table 2 and visualized in Fig. 5. For this dataset, the proposed solution achieved the smallest
storage size among all the available solutions. Using the ZStd compression algorithm and a page size of
N = 100, the proposed solution uses 0.3 MB less (1%) than Parquet with the same compression algo-
rithm, while the retrieval time for a vector is reduced by a factor of 163. In the task of compressing dense
vector embeddings, the best results were obtained with the ZStd compression algorithm as the page size
N increases. However, the retrieval time for a single vector also increases linearly with N. SQLite and
H2 still provide comparable retrieval time, except for compressed H2, while requiring significantly more
disk space.

The third dataset, PyEmb-50GB, contains 28440005 dense vector embeddings with the size of 384.
Unlike previous experiments, for this dataset, larger values of N were used to prevent an increase in the
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Table 2
Disk size (in megabytes) and single vector retrieval time
(in milliseconds) for the NYT-256-angular dataset
Storage used, megabytes Average vector retrieval time, milliseconds
L L
ti - ~ - =
S = 3 N = — N N
SQLite 382.6 | 288.3 | 382.3 | 382.3 | 327.5 0.1+0.0 0.1£0.0 0.3+0.0 0.3+0.0 0.1£0.0
H2 380.5 | 306.7 — — - 0.5+0.0 3663.0 = 311.8 — - —
ORC 285.9 | 265.4 — — — 30.4+0.8 55.9+22 - - —
Parquet 289.8 | 265.5 — — 2649 | 137.2+11.6 | 186.0+17.3 - - 147.0 £ 9.4
]I\)]agze?z)() 286.5 | 264.6 | 264.1 | 264.2 [ 263.9 | 0.6+ 0.1 1.0+0.1 72404 | 49+02 | 09+0.1
Paged,
N = 1000 286.5 | 264.5 | 263.4 | 263.5 | 263.5 0.2£0.0 3.6+0.1 57.1+4.6 42.1+4.0 3.0x0.1
Paged,
N = 2000 286.5 | 264.5 | 263.1 | 263.2 | 263.1 0.3+0.0 6.9+0.2 1132+ 11.3 | 111.6 £ 12.7 | 6.3%£0.2
;aiegboo 286.7 | 264.7 | 262.4 | 262.5 | 262.4 0.7+0.0 18.4+0.7 278.8+34.6(197.0+34.3 | 152+0.8

number of files in the storage, which would lead to a significant growth in disk space usage due to the
specifics of storing very small files.

The file sizes of the storage systems and the average retrieval time for a single vector are presented as
raw data in Table 3 and visualized in Fig. 6. For this dataset, the proposed storage solution uses less disk
space for every combination of page size and compression algorithm tested. With N = 10000 and the
Z.Std compression algorithm, the proposed solution reduces the storage size by 3.7 GB (15%) compared
to Parquet with the same compression algorithm, while the retrieval time for a single vector is 14 times
faster. Although SQLite Storage still requires the least time to retrieve a single vector, it uses the largest
memory volume, and its memory size does not decrease significantly, when compression algorithms are
applied, due to inefficiencies of compressing individual vectors. H2 demonstrates better compression
due to the database-level compression, but suffers from significantly slower access times.
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Table 3
Disk size (in gigabytes) and single vector retrieval time
(in milliseconds) for the PyEmb-50GB dataset
Storage used, gigabytes Average vector retrieval time, milliseconds
Storage 2 § = 2 2 =
al | YN a = N N
SQLite 54.8 | 54.8 | 54.8 [ 54.8 | 54.8 0.3£0.0 02£0.0 0.7£0.0 0.6 £0.0 0.3£0.0
9832.5
— + — —
H2 148.0 | 92.5 0.6 £0.0 761.9
ORC 41.1 | 35.1 — — — 141.0 £ 7.8 286.0 £ 21.3 — — —
Parquet 41.1 | 347 | — — [ 29.1| 1132.54+32.5|1553.6 £191.1 — — 1582.5 £ 956.6
I}zlaie(llz)o 409 | 3452541254254 12.12+25 125.4+£15.5 | 690.7 + 361.1 529.7 £223.3 113.3£16.5
;ag:e%oo 40.9 | 34.5125.1]25.1]25.0 11.3£0.7 241.0£7.0 |1321.2+816.1| 1543.2£782.1 202.1 £34.5
;aie%oo 40.9 | 34.5125.0(25.0]24.6 3.0+0.5 552.8 £ 108.9 | 3632.5+ 2137 | 4389.0 +1725.9 | 394.7+73.3
;aie(;boo 409 | 34.5124.9(24.9|24.3 47+0.4 1149.9 £ 94.0 | 8754.4 + 808.1 | 5674.9 +3995.1 | 722.4+248.0
Conclusion

Using the proposed a page-based storage approach for vector embeddings, combined with the
use of general-purpose lossless compression algorithms, reduces the occupied disk space by 14—40%
compared to existing solutions for big data storage, such as ORC and Parquet, and up to two times
compared to the universal SQLite solution and H2. This was demonstrated in the experiment with the
PyEmb-50GB dataset. The solution also reduces the access time by up to a hundred times compared
to ORC and Parquet, although it is still slower than SQLite. The ZStd compression algorithm showed
good results in experiments with dense vector embeddings, while sparse vector embeddings were more
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efficiently compressed using the LZMA and LZMA?2 algorithms. Increasing the value of N results in
a linear increase in access speed to a single vector embedding, while the storage size decreases loga-
rithmically.

The presented storage organization approach can be used in various applications where it is nec-
essary to store vector embeddings, such as information retrieval systems or recommendation systems.
Due to its ability to group vector embeddings, it can also be used when implementing average nearest
neighbors search systems, which sets it apart from other data formats popular in the industry.
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