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Abstract. The performance evaluation of Automatic Speech Recognition (ASR) systems
heavily depends on the availability of diverse and representative test datasets encompassing
a wide range of complexities in various domains. This work introduces a novel methodology
for collecting and preparing datasets for comprehensive ASR system evaluation. The proposed
dataset incorporates a modern vocabulary enriched with numerous unique terms and proper
nouns, facilitating an in-depth evaluation of overall ASR performance and the effectiveness
of context-biasing techniques in computer science. Additionally, the dataset retains critical
text features such as Punctuation and Capitalization (P&C), enabling a rigorous evaluation
of P&C prediction algorithms. We present a detailed account of the dataset creation process,
along with its statistical and qualitative analysis. Furthermore, we benchmark state-of-the-art
ASR models, context-biasing approaches, and P&C prediction techniques using the proposed
dataset, providing valuable insights into their relative performance.
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Annoramus. O1ieHKa IMPOU3BOIUTEIbHOCTH CUCTEM aBTOMAaTUUECKOI'0 paclio3HaBaHUS peun
(Automatic Speech Recognition, ASR) B 3HauMTeNbHOM CTEMEHU 3aBUCUT OT HaJIU4YUs pa3-
HOOOpa3HBIX M PENpPEe3eHTAaTUBHBIX TECTOBHIX HAOOPOB JaHHBIX, OXBATHIBAIOIIMX IITWUPOKUIA
CTIEKTpP CJIIOXXHOCTEN B pa3JMYHBIX JOMEHaxX. B maHHOM HMcciienoBaHUM MpencTaBieHa HOBas
METOMOJIOTHS cOOpa M MOATOTOBKY HAOOPOB MaHHBIX, IIpeIHAa3HAYCHHBIX IS BCECTOPOHHEH
oueHkn ASR cucrem. [IpensoxeHHbIli HAOOP JAHHBIX BKJIIOYAET COBPEMEHHBIN CIIOBAPHBIN
3amac, o0OoralieHHbIII MHOTOUMCACHHBIMU YHUKAJIbHBIMU TEPMUHAMU U UMEHAMU COOCTBEH-
HBIMHU, UTO MO3BOJISIET MPOBOAUTH YITYyOJEHHYIO OLIEHKY 0011Iei mpousBoauTeabHOCTH ASR u
9 HEKTUBHOCTU METOAOB CMEIIEHNST KOHTEKCTa (context-biasing) B 00JacT KOMIbIOTEPHBIX
texHosoruit. KpoMme Toro, B Habope JaHHBIX COXPAHSIIOTCS BaXKHbIE TEKCTOBBIE XapaKTEPUCTH -
KU, TaKMe KaK MyHKTyanuus u Kanutanuzauus (Punctuation & Capitalization, P&C), uto nena-
eT BO3MOXHOM CTPOTYIO OIIEHKY aJITOPUTMOB Tipencka3anusi P&C. MbI monpo0OHO ommichIiBaeM
Mpoliecc co3maHus Habopa MaHHBIX, BKJIOYas ero aHaaus. bojiee Toro, Mbl IpOBOAUM TECTHU-
poBaHue nepenoBbix ASR Moneneii, MeTOI0B cCMellleHUSI KOHTEKCTa U aJlITOPUTMOB Mpeackasa-
Hust P&C Ha ocHOBe IpeIoXKeHHOTO Habopa TaHHbBIX, TPEIOCTaBIsAS LIEHHBIE CBEICHMS 00 UX
OTHOCUTEIbHON TTPOU3BOIUTEIILHOCTH.

KiroueBbie ciioBa: aBTOMaTUYECKOE pacro3HaBaHUE peuyu, TECTOBBIM HAOOp HaHHBIX, OOJIbIINE
SI3BIKOBBIC MOJIE/IN, ITYHKTYAIMs U KalTuTaJIM3aius, CMellleHue KOHTeKCTa

Jlng marupoBanusa: Andrusenko A.Yu., Drobintsev P.D. Dataset creation for comprehensive per-
formance evaluation of automatic speech recognition systems // Computing, Telecommunica-
tions and Control. 2025. T. 18, Ne 2. C. 33—44. DOI: 10.18721/JCSTCS.18203

Introduction

The rapid advancements in deep learning techniques have driven the development of numerous end-
to-end Automatic Speech Recognition (ASR) systems [1]. A comprehensive evaluation of these models
necessitates using test datasets that span a wide range of linguistic and acoustic conditions across diverse
domains [2]. While the Word Error Rate (WER) remains the primary metric for assessing overall ASR
performance, specific tasks, such as evaluating context-biasing capabilities, are attracting increasing at-
tention. These tasks are designed to measure how effectively an ASR system recognizes domain-specific
keywords and terminology [3]. Achieving robust evaluation for context-biasing requires test datasets en-
riched with novel, domain-specific words, and phrases that may challenge recognition accuracy due to
their unfamiliarity.

The most widely used dataset for ASR tasks is LibriSpeech [4], a collection of English audiobook
recordings. However, its utility for evaluating high-performance ASR models, such as Whisper [5], is
limited due to the dataset's relatively simple data domain. Furthermore, LibriSpeech lacks a substantial
number of novel or rare terms, making it unsuitable for evaluating context-biasing capabilities, especial-
ly for ASR models trained on extensive datasets.

© AHgpyceHko A.10., ipobuHues M.4., 2025. U3aaTenb: CaHKT-MNeTepbyprckuii MonMTeXHUYeCkUin yHuBepcuTeT MNeTpa Benvkoro
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Other datasets, such as Switchboard [6] and CallHome [7], introduce greater complexity by focusing
on conversational telephone speech. Ted-Lium [8], GigaSpeech [9], and People’s Speech [10] target
ASR evaluation in scenarios resembling YouTube videos and online presentations. Mozilla Common
Voice [11] supports other scenarios, featuring dictated, pre-prepared phrases recorded on various per-
sonal devices. For more challenging use cases, datasets like AMI [12] and CHiME-5 [13] simulate envi-
ronments with significant noise, reverberation, and overlapping speakers, presenting additional difficul-
ties for ASR systems. While these datasets allow broader evaluations of model performance, they remain
incomplete in their coverage of diverse data domains. Critically, they also lack sufficient quantities of
curated keywords and structured lists required for rigorous context-biasing evaluation.

To address the issue of data diversity, the Earnings21/22 [14, 15] public datasets were introduced,
featuring earnings calls from nine financial sectors. Alongside the audio data, these datasets include a
list of named entities (keywords) designed to facilitate the evaluation of context-biasing techniques. De-
spite these contributions, the keyword set has notable limitations: it contains many trivial and high-fre-
quency words that most ASR systems already handle effectively, as well as short words (fewer than three
characters) that contribute to elevated rates of false acceptance in context-biasing tasks.

Additionally, the dataset lacks segmentation, comprising lengthy audio recordings ranging from five
to seventeen minutes. Processing such extended audio sequences can impose significant computational
demands on ASR systems, particularly those employing self-attention mechanisms, which often expe-
rience out-of-memory issues on GPU hardware during inference.

The ConEC [16] initiative sought to enhance the Earnings21/22 benchmark by segmenting long au-
dio recordings, refining the keyword list, and introducing a publicly available context-biasing solution
based on the shallow-fusion decoding approach. However, despite these improvements, the ConEC
benchmark remains constrained to a narrow domain focused exclusively on earnings presentations, lim-
iting its applicability for broader ASR evaluation.

This work introduces a novel approach to creating an ASR evaluation dataset, collected from public-
ly available YouTube channels under a Creative Commons license. The dataset focuses on the modern
technology domain, with a particular emphasis on computer science. It features manually annotated
transcriptions that preserve Punctuation and Capitalization (P&C), enabling robust evaluation of P&C
prediction tasks. Additionally, the dataset includes a diverse set of domain-specific terms, such as prod-
uct names, making it highly suitable for evaluating context-biasing methods. To further support these
evaluations, we also propose a method for generating keyword lists tailored to the context-biasing task.

The dataset preparation process is implemented using open-source tools within the NeMo frame-
work!. The preparation pipeline incorporates several key stages: text cleaning and normalization, au-
tomated punctuation insertion using a Large Language Model (LLM), segmentation of data through
the removal of non-speech segments, and additional filtering based on ASR accuracy thresholds. These
steps ensure a high-quality and domain-relevant dataset for ASR evaluation.

We conducted experiments on the proposed dataset using state-of-the-art ASR models from Hug-
ging Face. Our evaluations included assessments of overall ASR performance, the effectiveness of con-
text-biasing techniques using the proposed keyword list, and P&C prediction accuracy. The results
provide valuable insights into the capabilities and limitations of the evaluated models within this do-
main-specific dataset.

Data preparation pipeline

To enhance ASR evaluation benchmarks under modern conditions, we focused on data scenarios rel-
evant to the field of computer science. A prime example of such data is keynote presentations on various
technology topics from major tech companies, such as Google, Microsoft, Amazon, and others. Using

' GitHub — NVIDIA/NeMo: A scalable generative Al framework built for researchers and developers working on Large Language Models,
Multimodal, and Speech Al (Automatic Speech Recognition and Text-to-Speech), Available: https://github.com/NVIDIA/NeMo (Accessed
21.05.2025)
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the YouTube-dl library?, we collected 15 hours of full-length recordings from recent years, capturing
content directly from these events.

The collected recordings include manually created transcriptions with preserved P&C, making them
valuable for tasks, such as P&C prediction. However, the raw data required extensive preprocessing to
ensure its suitability for ASR evaluation benchmarks.

Text preprocessing

Even manually created transcriptions can contain numerous typos and non-standard characters,
negatively impacting ASR evaluation. To address this, we applied pattern-based substitutions using reg-
ular expressions to correct common errors and remove invalid characters.

Text normalization was performed to convert numerical values and auxiliary symbols into their text
representations. This process was implemented using the NeMo Text Processing toolkit?, which sup-
ports both forward and inverse text normalization. The normalization process ensured that only charac-
ters from the English alphabet were retained in the processed dataset. Additionally, NeMo Text Process-
ing supports audio-based text normalization, which leverages baseline ASR model outputs to enhance
numeral normalization. While this method can improve accuracy, it has the potential to introduce errors
in challenging acoustic conditions due to ASR recognition inaccuracies.

For punctuation, we standardized the dataset to include only three primary punctuation marks: peri-
ods, commas, and question marks. This simplification ensures consistency while maintaining sufficient
information for P&C tasks.

Punctuation reconstruction with LLM

Certain portions of the collected data lacked P&C. To address this, we employed the Llama-3-8B*
LLM, utilizing a carefully designed prompt. The prompt included standardized instructions: “Your task
is to punctuate the input text. You can only use a period, comma, or question mark as punctuation. Add
capitalization to the beginning of new sentences.”

To process entire text files, we adopted a chunk-based approach, dividing the text into segments of
250 words per iteration. However, this method introduced a potential issue: chunks could end mid-sen-
tence, leading the LLM to erroneously assign an end-of-sentence punctuation mark (e.g., a period or
question mark) to the last word in the chunk. To mitigate this, we extracted only the first n-1 complete
sentences from each processed chunk, avoiding disruptions caused by mid-sentence breaks. The subse-
quent chunk then began at the last valid sentence boundary of the previous segment.

While the LLM effectively added punctuation and restored missing capitalization, it slightly altered
the original text. In our evaluation, the WER between the input transcription and the normalized LLM
output was approximately 2%. This discrepancy was primarily due to the LLM’s removal of repetitive
words typical in spoken language and its attempts to correct typos introduced during manual transcrip-
tion. These issues suggest potential improvements with prompt refinement.

Table 1 illustrates an example of text correction during punctuation restoration using the Llama-3-
8B model.

Segmentation

The original dataset comprises full-length recordings ranging from 1 to 2 hours. Such lengthy inputs
pose challenges for ASR systems utilizing global attention mechanisms, as their quadratic complexity
with respect to input sequence length can lead to significant computational overhead. Additionally, the
presence of prolonged musical segments in the recordings may degrade speech recognition accuracy.

Although the source data includes original timestamps associated with the corresponding text (sub-
titles), direct segmentation based on these timestamps often results in errors at segment boundaries,

>

2 GitHub — ytdl-org/youtube-dl: Command-line program to download videos from YouTube.com and other video sites, Available: https://github.
com/ytdl-org/youtube-dl (Accessed 21.05.2025)

3 GitHub — NVIDIA/NeMo-text-processing: NeMo text processing for ASR and TTS, Available: https:/github.com/NVIDIA/NeMo-text-pro-
cessing (Accessed 21.05.2025)

* meta-llama/Meta-Llama-3-8B-Instruct - Hugging Face, Available: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct (Accessed
21.05.2025)
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Table 1
Example of original transcription and Llama-3-8B punctuation reconstruction.
Reference typos, LLM corrections, and removed words are highlighted in red and green colors

before we thought it was a perfect perfect name black wealth

after We thought it was a perfect perfect name, Blackwell.

before ..this software and it compress it dimensionally reduce it..

after ..this software and it compresses it, dimensionally reduces it..
before ..the new micr service now the thing that’s that’s emerging here..
after ..the new microservice. Now, the thing that’s emerging here..

thereby increasing the WER of the segmented dataset. Consequently, we utilized these timestamps sole-
ly to remove extended non-speech segments at the beginning and end of the audio files.

For more accurate data segmentation, we employed CTC-segmentation [17] using the NeMo
toolkit. This method aligns ground truth transcriptions with corresponding audio files effectively. We
used Citrinet [ 18], a convolutional neural network ASR model, for segmentation. Citrinet is particularly
well-suited for handling long audio files without encountering GPU memory limitations. Furthermore,
its CNN-based architecture ensures more precise alignments, avoiding the late or early prediction er-
rors common in attention-based models.

To streamline the segmentation process, all text data was initially divided into individual sentences
based on punctuation. This allowed us to determine sentence boundaries and obtain alignment confi-
dence scores for each segment. However, short sentences often exhibited boundary errors during align-
ment (Fig. 1, a). To mitigate these issues, we merged consecutive sentences if the silence between them
was less than one second and their alignment confidence score exceeded —5.0. This approach produced
final audio segments with durations ranging from 2 to 40 seconds (Fig. 1, b).

This refined segmentation strategy reduced the WER from 12.68% to 11.78% on the processed data-
set. However, it also shifted the duration distribution toward the upper limit of 40 seconds, reflecting a
bias toward longer segment lengths.

To enhance the diversity of segment lengths, we implemented a probabilistic sentence merging ap-
proach. Instead of enforcing mandatory sentence merging up to a predefined length threshold (based
on the previously described conditions), we applied a probabilistic mechanism. Specifically, each subse-
quent sentence was merged with the current segment with a probability of 0.8, provided that the condi-
tions for silence duration and confidence score were satisfied.

The outcomes of this probabilistic sentence merging approach are illustrated in fig. 1c. This meth-
od successfully increased the diversity of segment lengths while maintaining comparable ASR perfor-
mance, as no significant degradation in WER was observed.

Data filtering

Manual analysis of the recognition results revealed that examples with high WER were predomi-
nantly caused by segmentation errors or inaccuracies in the reference transcriptions. To address this, we
applied a filtering process based on ASR performance metrics.

As a baseline ASR model, we utilized the Fast Conformer-Transducer Large (114M parameters)>,
trained on 20,000 hours of English speech data. We filtered out examples where the WER exceeded
80%, or the Character Error Rate (CER) exceeded 30%. This process resulted in a cleaner, segmented
evaluation dataset with a total duration of 12.4 hours.

° nvidia/stt_en_fastconformer ctc_large - Hugging Face, Available: https:/huggingface.co/nvidia/stt_en_fastconformer ctc_large (Accessed

15.06.2024)
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a) Separate sentences (WER=12.67) b) Sentence merging (WER=11.78)
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Fig. 1. Duration distribution of segmented data according to the different merge methods:
separate sentences, sentence merging, and probabilistic sentence merging. WER of the data sets
obtained by considered segmentation methods is 12.67%, 11.78%, and 11.81%, respectively

To prepare for the evaluation, we divided the obtained dataset into two subsets: a 4-hour development
(dev) set and an 8.4-hour test set, ensuring non-overlapping talks between the two subsets. All subse-
quent evaluation results are reported exclusively for the test set.

Named entities (keywords)

The proposed dataset includes a substantial number of named entities suitable for context-biasing
tasks. To analyze Named Entity Recognition (NER) statistics, we used SpaCy®, following a similar
methodology to previous works. SpaCy assigns entity tags to words based on predefined classes, such
as ORG (organization), PERSON (person), DATE, and CARDINAL (numbers). The proposed data-
set contains a significant number of examples for these tags (e.g., ORG=3,534, CARDINAL=1,457,
PERSON=846, DATE=987, etc.).

However, SpaCy’s tagging process introduces challenges, including overlapping classifications (e.g.,
the word “Al” being tagged as both ORG and PERSON) and classification errors. Additionally, most
words in this entity list achieve high recognition accuracy, when evaluated using the baseline ASR mod-
el, making them less relevant for assessing context-biasing performance. For our analysis, we focused on
identifying words with low recognition accuracy.

To construct a more appropriate context-biasing keyword list, we applied the following methodology:

1. ASR Evaluation: The dataset was transcribed using the baseline ASR model, and recognition ac-
curacy was calculated for individual words (monograms) and phrases (bigrams).

2. Entity Filtering: Only words present in the named entities identified by SpaCy were retained.

3. Error Word Identification: We observed that most misrecognized phrases contained a single error
word already represented in the monogram statistics. Consequently, we prioritized individual words over
bigrams, selecting only a limited number of bigrams.

4. Short Word Exclusion: Words shorter than three characters were excluded, as these often contrib-
ute to high false acceptance rates during context-biasing recognition.

This process resulted in a refined list of 200 keywords with low recognition accuracy, suitable for
evaluating context-biasing techniques. Additionally, we incorporated 800 distractor words — terms likely
absent from the dataset — sourced from the Earnings benchmark. This combination allows for a more
rigorous evaluation of context-biasing performance.

6

spaCy - Industrial-strength Natural Language Processing in Python, Available: https://spacy.io (Accessed 21.05.2025)

38



4 Intelligent Systems and Technologies, Artificial Intelligence >

Experimental setup

Speech recognition

To assess speech recognition accuracy, measured by WER, on the obtained dataset, we evaluated a se-
lection of top-performing public models listed on the Hugging Face ASR Leaderboard’. This leaderboard
ranks ASR models based on their average WER across multiple public test sets and includes metrics for
inference speed. At the time of evaluation, the leading models included those from the NeMo toolkit (e.g.,
Conformer, Fast-Conformer, Parakeet, and Canary) and OpenAl (Whisper-large-v1/v2/v3).

To ensure fair comparison across models, we applied consistent normalization to all recognition out-
puts, following the data preparation procedure. This included expanding numerical symbols into their
textual representations, removing punctuation, and converting all text to lowercase.

Punctuation and capitalization

To evaluate the capabilities of ASR models in P&C prediction, we selected public models that in-
herently support P&C functionality. From the NeMo toolkit, we chose the three highest-performing
models with P&C capabilities at the time: Fast-Conformer Hybrid with P&C (operating in Transducer
decoding mode), Parakeet-tdt ctc-1.1b, and Canary-1b. Similarly, we selected the top three models
from OpenAl’s Whisper series (Whisper-large-v1/v2/v3). All these models are available on the Hugging
Face platform.

To measure P&C performance, we used two key metrics:

« WER C — Word Error Rate calculated with capitalization preserved in the text.

* PER — Punctuation Error Rate, focusing exclusively on punctuation errors:

PER:ﬂ, (1)
I+D+S+C

where 1, D, S, and C are the number of insertions, deletions, substitutions, and correct punctuation
predictions during a backtrace matrix calculation. More details about WER C and PER metrics can be
found in [19].

Context-biasing

To assess context-biasing performance, we explored the available techniques from the NeMo toolkit
using a Hybrid Transducer-CTC model®. Notably, this model was not trained on data from the computer
science domain, ensuring a fair evaluation of context-biasing methods.

One method to enhance keyword recognition accuracy is word boosting, supported via pyctcdecode’.
This technique employs a shallow fusion approach during the CTC beam-search decoding process. We
applied the default parameters, setting the keyword boosting weight (hotword weight = 10) and beam
size (beam_size = 5).

Another approach is the fast context-biasing method using the CTC-based Word Spotter (CTC-WS)
[19]. This method decouples keyword recognition from the broader recognition process by leverag-
ing fast decoding of CTC logits based on a graph constructed exclusively from context-specific key-
words. The Word Spotter identifies the desired keywords along with their time intervals and confidence
scores, which are subsequently merged with the results from greedy decoding. When used with a Hybrid
CTC-Transducer model, this technique enables keyword boosting within Transducer predictions. For
this evaluation, we applied the default boosting parameters.

7 Open ASR Leaderboard — a Hugging Face Space by hf-audio, Available: https:/huggingface.co/spaces/hf-audio/open_asr leaderboard (Ac-
cessed 21.05.2025)

8 STT En FastConformer Hybrid Transducer-CTC Large Streaming Multi | NVIDIA NGC, Available: https://catalog.ngc.nvidia.com/orgs/nvid-
ia/teams/nemo/models/stt_en_fastconformer hybrid large streaming multi (Accessed 21.05.2025)

? GitHub — kensho-technologies/pyctcdecode: A fast and lightweight python-based CTC beam search decoder for speech recognition, Avail-
able: https://github.com/kensho-technologies/pyctcdecode (Accessed 21.05.2025)
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As metrics for context-biasing evaluation, we used the standard WER for the entire text and F-score
for words from the context-biasing list:

>

_, Precision - Recall

score

2

Precision + Recall

In addition, we measured the speed performance of the considered methods excluding the encoder
work time. All runtime measurements are averaged over 10 runs.

Experimental results

Speech recognition

Table 1 presents the WER performance of the previously discussed ASR models on both the Hugging
Face Leaderboard (HF LB) test sets and the proposed dataset (first two columns). The results indicate
that the top-performing models on the HF LB also exhibit strong performance on the proposed test set,
achieving WER values of approximately 6—7%. This high accuracy may be attributed to the extensive
training data utilized by these models, which likely includes diverse sources such as YouTube content.

The best WER on the proposed dataset set was achieved by the Canary-1b model, which was also the
top-ranked model on the HF LB at the time of evaluation.

Table 2
Performance results (%) of public ASR models from Hugging Face
ASR model Size, B HF LB, WER Proposed dataset

WER WER C PER
C_transducer L 0.12 10.2 15.4 - —
FC_transducer_L 0.12 9.8 12.1 - -
FC_hybrid_L_pc 0.12 — 9.4 13.3 37.5
Parakeet-tdt_ctc 1.10 8.1 6.7 10.1 25.4
Canary-1b 1.00 7.7 6.4 9.7 26.3
Whisper-large-vl1 1.55 10.4 6.5 10.3 27.1
Whisper-large-v2 1.55 9.0 6.8 9.6 27.4
Whisper-large-v3 1.55 8.6 6.6 9.5 27.5

Note: HF LB WER is the average WER for other test sets in the HF LB; WER C is the WER with capitalization left in
the text; PER is Punctuation Error Rate

However, smaller models (about 120M parameters) based on Conformer and Fast-Conformer archi-
tectures with only public training datasets (20k+ hours) showed WER above 10% for the proposed test
set. This fact confirms the absence of the proposed computer science domain in public datasets.

Punctuation and capitalization

The results for P&C prediction are presented in the rightmost columns of Table 2, which include
metrics for WER C and PER. While these metrics correlate with the standard WER, discrepancies can
arise in specific cases. For instance, when comparing the Parakeet and Canary models, a model with a
better WER may perform worse in terms of PER. This highlights the importance of evaluating punctua-
tion and capitalization effectiveness independently, enabled by datasets that preserve P&C information,
in addition to standard transcription accuracy.

An ablation study on punctuation prediction is illustrated in Fig. 2. This analysis examines the pre-
diction error rates for individual punctuation marks: periods, commas, and question marks across the
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Comparison of punctuation prediction
B Fast-Conformer PC [l Canary-1b [l Whishper-L-v3 Llama-3-8B
50.0 457

40.0 359
30.0

20.0

10.0

Punctuation Error Rate (PER), %

0.0

Period (.) Comma (,) Question mark (?)

Fig. 2. Comparison of punctuation prediction (PER) for three considered punctuation classes over the
proposed test set except samples with Llama-3-8B punctuation. The overall PER is presented in the legend

three evaluated ASR models. Additionally, the study includes a comparison with punctuation predic-
tions generated by the Llama-3 LLM, which was employed during the dataset preparation process. To
ensure fairness in comparison, test set examples containing punctuation generated by the LLM were
excluded from the evaluation.

The results demonstrate that commas have the lowest prediction accuracy compared to periods and
question marks, which are recognized with relatively high accuracy. This finding highlights the inherent
difficulty of predicting commas in ASR systems. As a potential improvement, it may be preferable to omit
comma prediction and focus solely on sentence-end punctuation, such as periods and question marks.

Punctuation accuracy achieved by the LLM model was lower than that of the top-performing ASR
models. This discrepancy underscores the advantage of leveraging audio cues, which significantly en-
hance punctuation accuracy, particularly for question marks. Nevertheless, the LLM performed rea-
sonably well when relying solely on textual input, making it a viable option for simplifying punctuation
tasks in long audio files. Using ASR models for punctuation in such scenarios can be computationally
intensive, as it requires chunk-wise decoding, alignment of ASR outputs with the original text, and the
subsequent merging of results. The LLM offers a simpler alternative for such use cases.

An additional analysis investigated how the number of sentences within test examples affects the
accuracy of end-of-sentence punctuation predictions. For single-sentence test examples, this task is
relatively straightforward, as the model can predict sentence-end punctuation with high confidence at
the end of the input. However, for test examples containing multiple sentences, the task becomes in-
creasingly complex.

To quantify this effect, we measured the PER for sentence-end labels (periods and question marks)
across all test examples. We then grouped the results based on the number of sentences in the reference
transcriptions and averaged the PER for each group. The findings, presented in Fig. 3, confirm the
hypothesis: as the number of sentences in test examples increases, the accuracy of sentence-end punc-
tuation predictions decreases. This observation supports the utility of grouping multiple sentences into
single test examples to increase the overall complexity of punctuation evaluation tasks.

Context-biasing

The results of the context-biasing evaluation for the proposed dataset are summarized in Table 3.
Both context-biasing methods demonstrated improvements in recognition accuracy. However, pyctcde-
code exhibited relatively poor performance compared to the CTC-WS method.

One significant limitation of pyctcdecode is its sensitivity to the size of the context-biasing list. Due
to a marked degradation in processing speed with larger lists, we were constrained to use a list of 200
words instead of the initially intended 1000 words. This limitation aligns with observations from prior
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Punctuation Error Rate (PER), %
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Number of sentences in reference examples

Fig. 3. PER distribution for the period and the question mark over a number of sentences
in reference examples in the proposed test set. Canary-1b was used as an ASR model

work, which similarly reported performance issues when scaling the context-biasing list size in pyctc-
decode.

The CTC-WS method, when applied with the proposed context-biasing list, improved recognition
accuracy for both CTC and Transducer decodings by over 4%, with minimal additional decoding time
overhead. These results highlight the abundance of keywords in the proposed dataset, making it highly
suitable for evaluating context-biasing tasks, particularly in scenarios involving novel domains.

Table 3
CTC and Transducer decoding results for the proposed test set
Method CB Time, s F-score (P/R) WER, %
CTC
greedy no 4 0.36 (0.96/0.21) 16.44
no 21 0.37 (0.97/0.23) 16.57
pyctcdecode
yes 1498 0.66 (0.87/0.54) 15.41
CTC-WS yes 31 0.82 (0.82/0.82) 12.07
Transducer

greedy no 15 0.41 (0.97/0.26) 15.89
CTC-WS yes 44 0.82 (0.82/0.82) 11.69

Note: CB is the presence of context-biasing; P is Precision; R is Recall.

Overall assessment of the proposed methodology

Based on the conducted analysis of the ASR systems evaluation, we can draw a conclusion about the
effectiveness of the proposed methodology. For example, the use of LLM allows us to arrange and evalu-
ate the accuracy of P&C recognition, which is also important when segmenting long audios by sentenc-
es. Probabilistic sentence merging allows us to simultaneously reduce the number of segmentation errors
at the edges of segments and make examples with several sentences that improve P&C evaluation. The
choice of keywords allows us to test various context-biasing methods, which are extremely important at
this time. The proposed methodology for collecting and processing data allows us to obtain a versatile
high-quality test set for broad performance evaluation of modern ASR systems in three main areas.

Conclusion

This study introduced a novel methodology for preparing evaluation datasets tailored to the com-
puter science domain. The resulting dataset features a rich set of domain-specific terms and retains
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punctuation and capitalization (P&C), enabling its use for comprehensive ASR model evaluation. It
supports a broad range of tasks, including standard speech recognition (WER), context-biasing, and
P&C prediction scenarios.

We provided a detailed description of the data preparation pipeline, utilizing open-source frame-
works to ensure reproducibility and accessibility. Furthermore, we evaluated state-of-the-art public
ASR models across the three primary use cases and conducted ablation studies on punctuation predic-
tion using the proposed dataset. This work offers a robust resource and valuable insights for advancing
ASR evaluation benchmarks.
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