Computing, Telecommunication and Control, 2025, Vol. 18, No. 2, Pp. 120-136.
4 MHdopMaTurKa, TeNeKOMMyHUKaumm 1 ynpasnexme. 2025. Tom 18, N2 2. C. 120-136.

Software and Hardware of Computer,
Network, Telecommunication, Control,
and Measurement Systems

KoMnbloTepHbIE CETU, BbIYUCIUTENBLHLIE,
TENEKOMMYHUKALUUMNOHHDbIE, yrpaBndouwmne
N NSMEPUTEJIbHbIE CUCTEM

Research article @ 018
DOI: https://doi.org/10.18721/JCSTCS.18210 R
UDC 004.896

A SOFTWARE SYSTEM FOR SURROGATE-BASED
PROTOTYPING OF GAS TURBINE BLADES USING
SERVERLESS CONTAINERS IN THE CLOUD

G.A. Zhemelev ® @, P.D. Drobintsev

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

= wws.dev@gmail.com

Abstract. Design optimization of gas turbine blades is a complex multidisciplinary task
requiring computationally expensive physics simulations. To perform them, a multitude
of computer-aided engineering tools are used, often with machine-learning surrogates for
rapid prototyping, all integrated into the optimization cycle. However, current approaches
to such integration are hindered by the need for labor-intensive manual setups, vendor lock-
in and a lack of scalable, automated workflows. We present a novel cloud-based architecture
for building flexible optimization pipelines using containerized components. The proposed
solution employs serverless containers, asynchronous messaging and cloud services to ensure
the system’s scalability, portability and resilience. Additionally, it follows MLOps principles to
achieve reproducibility and efficient lifecycle management of machine learning models used
in the optimization process. Unlike existing frameworks, our solution minimizes user setup
complexity, allows easy integration of various software into the optimization cycle, and avoids
vendor lock-in through open-source technologies and standard cloud APIs. Experiments with
aerodynamic design optimization of gas turbine blades demonstrate the system’s scalability,
fault tolerance and successful integration of surrogate models for rapid blades prototyping.
Furthermore, the system’s flexibility and extensible architecture make it applicable to a broader
range of engineering design optimization tasks beyond gas turbine blade acrodynamics.

Keywords: gas turbine blades, engineering design optimization, serverless containers, cloud
computing, surrogate models, machine learning, MLOps

Citation: Zhemelev G.A., Drobintsev P.D. A software system for surrogate-based prototyping
of gas turbine blades using serverless containers in the cloud. Computing, Telecommunications
and Control, 2025, Vol. 18, No. 2, Pp. 120—136. DOI: 10.18721/JCSTCS.18210

© Zhemelev G.A., Drobintsev P.D., 2025. Published by Peter the Great St. Petersburg Polytechnic University

https://orcid.org/0000-0001-7126-6787
https://orcid.org/0000-0003-1116-7765

Software and Hardware of Computer, Network, Telecommunication,

4 Control, and Measurement Systems
I
Hay4dHasa cTaTbs —(D@
DOI: https://doi.org/10.18721/]JCSTCS.18210 & T
YK 004.896

NMPOrPAMMHASA CUCTEMA
AnA NPOTOTUNMUPOBAHUSA JTONATOK FA30BbIX TYPBUH
C UCNOJIb3OBAHUEM CYPPOTATHbIX MOJEJIEN
U BECCEPBEPHbIX KOHTEMHEPOB B OBJIAKE

[A. XKemene6= ®, .4. JpobuHuel

CaHKT-lMeTepbyprckmii MoAUTEXHUYECKUI yHMBepcUTeT MeTpa Beankoro,
CaHKT-lMeTepbypr, Poccuitickan Pepepaums

= wws.dev@gmail.com

AnHotamms. ONTUMU3AIUSI KOHCTPYKIIMY JIOMTATOK Ta30BBIX TYPOMH — 3TO CJIOXHAsT MYJb-
TUIUCUMIIMHADHAS 3aj1ada, TpeOylolias pecypcoeMKux dusndeckux pacuetoB. Jlis ux
BBITIOJIHEHUSI TTPUMEHSIIOT MHOXECTBO MHKEHEPHBIX MPOTPAMMHBIX MaKEeTOB, YaCTO BMECTE
C CYppOraTHBIMM MOJCISIMU MAIlIMHHOIO OOYYEHMUS B IEJIsSIX OBICTPOTO MPOTOTUIIMPOBAHUS.
OpHako Ha HaHHBI MOMEHT 3(hdeKTUBHAs MHTErpalus IMUPOKOro crekTpa MporpaMMHOro
obecnieueHus (I1O) B LiMKIIe ONTUMU3ALMU OCTACTCS aKTyaIbHOM Mpo0JIeMOi BBUAY TPYAOEM-
KOCTH YCTAaHOBKU M HACTPOWKU KOMIIOHEHTOB, MPUBSI3KU K KOHKPETHBIM TTocTaBiukam I10,
a TakKe HeI0CTaTKa MacllTabupyeMOCTH U aBTOMATU3allM1 BIYUCIUTEIbHBIX KOHBeliepoB. B
JAHHOM CTaThe MpenaraeTcsi OPUrnHaAIbHAS apXUTEKTypa CUCTEMbl, OCHOBAaHHAsI HA UCTIOJb-
30BaHUU O0JIAUHBIX CEPBUCOB U KOHTEMHEPU30BAHHBIX KOMIIOHEHTOB C 1I€JIbI0 MOCTPOCHUS
TMOKWX BBIYMCIUTEIbHBIX KOHBEHEPOB [Isi MHXEeHEepHOU ontuMuzauuu. [lpesiaraemoe pe-
IIEHUE BKJIIOYAeT B ce0s MpUMeHeHe OeccepBEepHbIX BIUMCICHUI Ha KOHTEeHEepax U acuH-
XPOHHBI OOMEH COOOIIEHUSIMU, YTO BMECTE C UCIOJIb30BAHUEM TUIIOBBIX OOJAaUHBIX PECyp-
COB TO3BOJISIET 00ECIEUYNTh MaCIITAOMPYEMOCTh, TIEPEHOCUMOCTb U YCTOMYMBOCTH CUCTEMBI.
Kpowme Toro, B Heil npumensercs noaxon MLOps nist ahdbexkTruBHONK opraHU3aLuy KU3HEH-
HOTO IIMKJIa CYypPOraTHBIX MOJIeJIeii, YTO MOBBIIIAET KAYECTBO U MOBTOPSIEMOCTh PE3yJbTaTOB
MalllMHHOro o0yyeHus. [lpeanoxkeHHoe pelleHUe MPEBOCXOAUT CYLIECTBYIOILIME Oiarogapsi
MPOCTOTe MHTeTpaluu pazHoodbpazHoro 1O B nMKIe ONTUMU3ALIMU U TIPOCTOTE B YCTAHOBKE
JUTS TIOJIb30BaTeei, a TAKXKe MUHUMU3UPYET 3aBUCUMOCTh OT KOHKPETHBIX MTOCTABUIUKOB 3a
CYET UCIOJIb30BAHUS TOJILKO OTKPBITOTO U CBOOOIHO pacmpocTpaHseMoro [10 un ctanmapTHbIX
00s1auHbIX pecypcoB. [IpoBeneHHbIE IKCIEPUMEHTHI IO ONTUMU3ALNN a3POANHAMUKY JIOTIa-
TOK Ta30BbIX TYPOUH MO3BOJINIU yOSIUTHCSI B MACIITAOUPYEMOCTHU 1 OTKA30YCTOMYMBOCTHU CU-
CTEeMbI, a TAKXE B €€ MPUMEHUMOCTHU JJIs OBICTPOTO MPOTOTUIUPOBAHUSI C UCTIOIb30BAHNEM
CypporaTHbIX Moneeii. boyiee Toro, ruOKOCTh pa3pabOTaHHON CUCTEMbI U PaCIIUPSIEMOCTb
€€ apXUTEKTYphl OTKPHIBAIOT BO3MOXHOCTU MO MPUMEHEHUIO MPEATOKEHHOTO PEIlleHUS U B
JIPYTUX 3a/ladyax WHXEHEePHOW ONMTUMU3AIMN, HE OTPAHUYUBASICh TPOCKTUPOBAHUEM JIOMATOK
ra3oBbIX TYpOUH.

KioueBbie ciioBa: JIOMATKW Ta30BBIX TYPOWH, WHKEHEPHOE MPOCKTUPOBAHNE W ONTUMU3ALINS,
OGeccepBepHbIE KOHTEWHEPHI, 00JJaYHbIe BRIYUCIICHUSI, CYyppOraTHBIE MOIENH, MalllMHHOE 00Y-
yenne, MLOps

Jng mutupoBanusa: Zhemelev G.A., Drobintsev P.D. A software system for surrogate-based pro-
totyping of gas turbine blades using serverless containers in the cloud // Computing, Telecom-
munications and Control. 2025. T. 18, Ne 2. C. 120—136. DOI: 10.18721/JCSTCS.18210

Introduction

Blades are key components of a gas turbine: their shape heavily affects the efficiency of extracting useful
work from the gas flow and ultimately the performance of the entire energy generation unit. Finding the
optimal shape of blades for each turbine stage is a time-consuming procedure that requires complex and
resource-intensive calculations that model the physical processes in and around the blades.

© Xemenes I".A., pobuHues MN.4., 2025. U3paTenb: CaHKT-MeTepbyprckuii NOAUTEXHUYECKUI YHUBEPCUTET NeTpa Benmkoro

https://orcid.org/0000-0001-7126-6787
https://orcid.org/0000-0003-1116-7765

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,

ynpasnsawowme n U3MepuTenbHble CUCTEM >

The multitude of disciplines involved and the need to optimize hundreds of parameters that define
the geometry and other properties of each blade — all add up to the labor and time required to bring
new turbine models to market. Therefore, the industry is looking for ways to speed up computations, in
particular, by using machine learning (ML) to construct surrogate models [1], as well as to increase the
degree of automation of the entire blade prototyping process by integrating a variety of software into the
continuous optimization cycle. This, in turn, leads to the need to organize the interaction of computer
systems that participate in the design optimization of gas turbine blades. Fig. 1 shows a simplified work-
flow of MultiDisciplinary Optimization (MDO) of a gas turbine blade. Arrows indicate data flows and
“P” blocks stand for optional postprocessing routines for each stage.

We can divide the depicted systems into two groups: inside and outside the optimization loop. Steps
inside (on a gray background in Fig. 1) form a pipeline, which may include parallel steps. Surrogate
models usually replace the pipeline by approximating functions that map design variables into objectives
and constraints.

Surrogate models, also known as meta-models or meta-functions, are mathematical models that
approximate the behavior of a complex system or function in order to speed up computation or simplify
analysis by replacing the original model in relevant problems [2, 3]. Typically, the construction of surro-
gate models is based on experimental data and is implemented using ML techniques' [2—4]. Computa-
tional Fluid Dynamics (CFD), Conjugate Heat Transfer (CHT) and Finite Element Analysis (FEA) are
perfect examples of disciplines involving long and costly computations, for which surrogate modeling
can be used in the process of optimizing blade shapes in terms of their aerodynamics [5]. In that case
surrogate models usually take blade design variables as input [6, 7], but it is not mandatory, and 3D
blades shape (e.g., represented as a mesh) may be passed directly to a surrogate model, if its architecture
is tailored to such inputs, as in [8]. It is up to the optimizer to decide on when to use a surrogate model
and when to run the whole pipeline.

The first step of the pipeline usually involves calling the API of a Computer-Aided Design (CAD)
system or some other shape generation software (e.g., a generative model as described in [9]) to produce
a 3D shape of the blade out of the passed design variables values. Then, follows the meshing step required
for further physics calculations like CFD, CHT and/or FEA. Every step may have some post-processing
routine to adjust, validate and/or extract results relevant to a specific task.

In practice every step in the design optimization cycle is done using specialized software. This leads
to the fact that all steps may have different operating system (OS) requirements, dependencies for
third-party libraries and execution environments needed to run the software. The multitude of various
technologies involved poses a certain challenge to achieve seamless integration of the steps and effec-
tive interaction of the systems inside and outside of the optimization cycle. Also, it is often desirable to
avoid vendor lock-in and support proper deployment of the resulting system so that engineers can easily
utilize powerful cloud-compute environments to solve optimization tasks submitted from regular PCs
or laptops.

The above-mentioned characteristics are often missing in solutions described in literature. For ex-
ample, a surrogate-based integrated framework by A. Benaouali and S. Kachel [10] is based on SIE-
MENS NX, ICEM CFD and ANSYS FLUENT software and tailored to corresponding data formats.
That makes it tightly coupled to the vendors of those systems and hard to setup, as any potential user
would have to install all the required software on their PC together with GRIP and Tcl/Tk tools that
are used in the framework for steps integration. In the updated solution [11], the authors enriched the
framework’s possibilities by supporting multidisciplinary optimization, but that resulted in an even wid-
er set of software to install in order to use that framework, so that all the scripts that do the integration
and automation work can run (e.g., a user would need to install MATLAB just to make fluid structure
interpolation).

! What is Surrogate Model. Available: https://www.deepchecks.com/glossary/surrogate-model (Accessed 18.12.2024)

122

Software and Hardware of Computer, Network, Telecommunication,
4 Control, and Measurement Systems

@,
o)

User

Obijective(s) and C i
Surrogate Optimizer Values
Model P
Parametric
3D Model (shape) Configuration
s

Design D
Variables @
Values L)

Meshing for FEA-
FEA Structural
CFD - Aero P
Conditions 1

CFD - Aero
Conditions 2

Meshing for CHT -
CHT Thermal

MDO pipeline e

Tasks &
Training Data for Machine Learning <«——— Results

MLOps
Platform

AutoL &
Framework
ML Engineer

Fig. 1. Simplified workflow of MDO of a gas turbine blade

Another existing solution for surrogate-based design optimization, DADOS [12], is cloud-based,
which makes it much easier to use, but on the other hand, it is not an integrated solution: DADOS au-
tomates creation and use of surrogate models but does not provide a full optimization cycle with CFD
and/or other physics computations. It is expected from a user to upload the computation results to the
web-interface of DADOS via Excel files. This fact significantly limits the applicability of the overall
solution, because it involves manual steps, and then, surrogate models cannot be run in parallel or with-
in the optimization cycle that involves resource-intensive tasks like CFD.

Even industrial-grade solutions, like HEEDS?, while having a lot of support for integration with oth-
er products, still imply they all are installed on a user’s PC, which makes it challenging to run a complex
optimization pipeline, as it requires a user, who is typically a mechanical engineer, not an IT specialist,
to setup a lot of software and custom scripts with all their dependencies that may have conflicts during
installation, may be incompatible with the user’s OS etc. This makes creating an integrated solution a
challenging task, and while some researchers [5] have successfully built surrogate-based optimization
pipelines using HEEDS and their own ML-models, that software is neither portable nor flexible enough
for usage in scenarios and environments other than those described in the original paper [5], and does
not support cloud deployments. A way to solve these problems is presented in this paper.

Another important part of the surrogate-based design optimization, that is missing in the known
solutions, is proper lifecycle management for custom ML models, designed by an ML engineer and/
or some AutoML framework. It includes a model registry and datasets storage that support versioning,
linked to experiments results and history, as well as serving the learnt models in containers and/or on
“as a service” basis. Lack of these characteristics forms technical debt for ML-based systems that lead
to big maintenance costs [13]. In response to this problem, the MLOps paradigm has recently emerged.
As stated in [14], incorporating MLOps practices is essential for bringing any ML-based solution to a
production-grade quality level.

Last but not least, to avoid vendor lock-in and modern challenges of using foreign commercial soft-
ware in Russia, it is important to make use of open-source and free technologies and software as much
as possible, when designing new software solutions, as well as domestic providers for cloud services.

2 Simcenter HEEDS. Available: https://plm.sw.siemens.com/en-US/simcenter/integration-solutions/heeds (Accessed 25.12.2024)

123

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,

ynpasnsawowme n U3MepuTenbHble CUCTEM >

Methods

Containerization and Clouds

One of the key aspects of the suggested solution is extensive use of containers. A container is a unit
of software that packages application code together with all required dependencies (libraries, execution
environment etc.) and is managed by a container engine®. That engine, like a hypervisor for virtual
machines (VMs), isolates containerized applications from the host OS, enabling the portability to run
them across various infrastructures that support containers, including clouds and regular PCs*. The key
difference between a container and a VM is that the former does not start a complete OS on top of the
host system, but shares a kernel with it while keeping isolation in the user space’ [15]. In addition, con-
tainers can be restricted in resources allocated to them, which is mainly achieved by using the cgroup
mechanism®. The lightweight nature of containers, i.e., smaller infrastructural footprint and faster start-
up times (compared to VMs) significantly contributes to cost reduction, especially when using cloud
resources’, and improves developer experience and productivity® [16]. Containers are widely used in
ML and Al companies’, as well as in various scientific applications, from software engineering research
[17—19] to bioinformatics, where containers have been successfully applied to build infrastructure-ag-
nostic human genome sequencing pipelines [20].

In recent years, a new cloud technology has emerged, known as serverless containers'’. These can be
considered as a more powerful kind of cloud lambda functions (that are usually considered, when refer-
ring to serverless computing), where a cloud provider accepts a complete Docker image to run instead
of just source code to be executed in a selected environment. Still, no server provisioning is required
from the user, and all the machine resources needed to run containerized applications are allocated on
demand by the cloud service provider on a pay-as-you-go pricing model''. In Google’s report on the
state of DevOps'?, it is highlighted that cloud computing improves productivity of engineers in IT com-
panies. This is valid for serverless containers as well, because these are as easy-to-use as serverless cloud
functions and, at the same time, provide much more flexibility as regular containers's.

In the context of this paper, the most important benefits of containers are portability, environment
isolation, simplified deployment and suitability for serverless cloud operation. These characteristics
are crucial to build a system that relies on a wide variety of software to run in organized and scalable
pipelines launched from a laptop by users, who are engineers, but not IT experts. The portability of

3 Understanding containers. Available: https://www.redhat.com/en/topics/containers (Accessed 25.12.2024); Susnjara S., Smalley 1. What
Is Containerization? Available: https://www.ibm.com/think/topics/containerization (Accessed 25.12.2024); Chto takoye konteynerizatsiya:
Oblachnaya terminologiya [What is containerization: Cloud terminology]. Available: https://yandex.cloud/ru/docs/glossary/containerization
(Accessed 24.12.2024)

4 Susnjara S., Smalley 1. What Is Containerization? Available: https://www.ibm.com/think/topics/containerization (Accessed 25.12.2024); Chto
takoye konteynerizatsiya: Oblachnaya terminologiya [What is containerization: Cloud terminology]. Available: https://yandex.cloud/ru/docs/
glossary/containerization (Accessed 24.12.2024)

° Susnjara S., Smalley I. What Is Containerization? Available: https://www.ibm.com/think/topics/containerization (Accessed 25.12.2024)

¢ Menage P., Lameter C., Jackson P. Control Groups. Available: https://docs.kernel.org/admin-guide/cgroup-v1/cgroups.html (Accessed
25.12.2024)

7 Susnjara S., Smalley I. What Is Containerization? Available: https://www.ibm.com/think/topics/containerization (Accessed 25.12.2024); Chto
takoye konteynerizatsiya: Oblachnaya terminologiya [What is containerization: Cloud terminology]. Available: https://yandex.cloud/ru/docs/
glossary/containerization (Accessed 24.12.2024); The Total Economic Impact™ of Docker Business. Available: https://www.docker.com/re-
sources/tei-of-docker-business-a-conversation-with-our-cro-webinar/ (Accessed 16.05.2025)

8 The Total Economic Impact™ of Docker Business. Available: https://www.docker.com/resources/tei-of-docker-business-a-conversation-with-
our-cro-webinar/ (Accessed 16.05.2025); Hayzen A. How containers improve the way we develop software. Available: https://www.embedded.
com/how-containers-improve-the-way-we-develop-software (Accessed 25.12.2024); Choroomi A. How Kinsta Improved the End-to-End De-
velopment Experience by Dockerizing Every Step of the Production Cycle | Docker. Available: https://www.docker.com/blog/how-kinsta-im-
proved-the-end-to-end-development-experience-by-dockerizing-every-step-of-the-production-cycle (Accessed 25.12.2024)

° Hype Cycle for Container Technology, 2024. Available: https://www.gartner.com/en/documents/5521795 (Accessed 16.05.2025)

10 Susnjara S., Smalley I. What Is Containerization? Available: https://www.ibm.com/think/topics/containerization (Accessed 25.12.2024); Hype
Cycle for Container Technology, 2024. Available: https://www.gartner.com/en/documents/5521795 (Accessed 16.05.2025); Yandex Serverless
Containers. Available: https://yandex.cloud/ru/docs/serverless-containers (Accessed 25.12.2024)

" Susnjara S., Smalley I. What Is Containerization? Available: https://www.ibm.com/think/topics/containerization (Accessed 25.12.2024)

12 Accelerate State of DevOps 2023. Available: https:/services.google.com/fh/files/misc/2023 final report _sodr.pdf (Accessed 16.05.2025)

13 Susnjara S., Smalley I. What Is Containerization? Available: https://www.ibm.com/think/topics/containerization (Accessed 25.12.2024); Yan-
dex Serverless Containers. Available: https://yandex.cloud/ru/docs/serverless-containers (Accessed 25.12.2024)

124

Software and Hardware of Computer, Network, Telecommunication,
4 Control, and Measurement Systems

containers allows running the same Docker image in the cloud and locally, thus enabling a quick feed-
back loop, when developing the image (before releasing it) and flexibility to run lightweight pipelines on
a regular PC (while setting up the optimization task and physics calculations templates), before rolling
out a full-fledged workload to the cloud.

The Proposed Architecture

Key aspects of the proposed architecture include:

* containerization of software components,

+ integration of those in pipelines in the optimization loop,

« storage for all artifacts and settings of pipelines’ stages,

» software developed to enable system operation in the cloud,

 utilization of serverless containers in the cloud,

* using Docker Compose when running locally or on VMs,

* AutoMLOps for maintaining surrogate models’ lifecycle.

The proposed system’s serverless operation mode requires the cloud environment to support the
well-known APIs for Simple Storage Service (S3), Simple Queue Service (SQS) and DynamoDB in
document mode, as well as the ability to store Docker images and start containers by triggers from SQS.
This set was originally introduced by Amazon Web Services (AWS), but now it is available both in foreign
cloud providers (Amazon Web Services, Google Cloud Compute, Microsoft Azure) and in domestic
solutions, such as Yandex Cloud'4, as it is a de facto standard in this industry. The serverless mode of
operation helps to achieve high scalability of the system, provides separation of computing resources
and data storage, and gives the opportunity to use built-in monitoring and information security tools
provided by the cloud offering.

Fig. 2 shows the general scheme of the proposed system architecture, using the Amazon Web Services
notation.

A more detailed structural scheme of the pipeline with indication of used technologies is shown in
Fig. 3. In this case, the components are mapped to Yandex Cloud services, since the system was imple-
mented using the resources of this cloud provider.

The system uses Dakotal® as an optimizer, an open-source solution that includes many optimization
algorithms, including those that support global optimization using surrogate models. In addition to
optimization, Dakota has a design of experiments (DoE) functionality, which allows sampling of blades
parameters to achieve uniform coverage of the search space (e.g., using the Latin hypercube algorithm),
which is useful for training surrogate ML-models.

At each iteration in the optimization process, Dakota invokes the Cloud Task Runner program,
which is written by the authors in the Go language. This program is responsible for generating a task and
starting one run of the pipeline. It writes to the database the information necessary to launch the pipe-
line, including the values of variables describing the blade and configuration files for the components, as
well as the sequence of their execution. Each component is responsible for its own stage. The hierarchy
“task — run — stage” is reflected in the structure of S3 storage (Fig. 3), which is used to store all artifacts
produced by the components of the pipeline, and for data exchange between them (together with SQS
messaging). The artifacts are divided into four groups: configuration files, input files, output files and
additional files. The need for particular files is determined by each specific component. An example of
additional files is an archive with complete CFD calculation results, which often has a size of hundreds
of megabytes or more depending on the mesh detail and the number of steps in the calculation. A cheap-
er class of S3 storage (standard infrequent access) is used for additional files.

Each component is deployed as a Docker container, which includes the component’s software and a
program developed by the authors called Cloud Connector. This program is written in the Go language

14 Yandex Serverless Containers. Available: https://yandex.cloud/ru/docs/serverless-containers (Accessed 25.12.2024)
15 Dakota. Available: https://dakota.sandia.gov (Accessed 11.01.2025)

125

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,
ynpasnsawowme n U3MepuTenbHble CUCTEM

.
I
Optimizer Node
@,
o l
[
Runnin P B T T S . I
Sutogale Models | D> e o 3
Ce® Auto Scaling group hod

Serverless Containers Message Queue | Results
. 2 g opmmmmeeeeeseeeeeee C o Database

Blade Shape Generation B Objectives Evaluation

| | |
[=H [{3 :
| | ShapeGenerator 3DAdjustment | | CFDCalculation Results Extraction |

Docker Container | |
Registry |

Artifacts Storage

& = =

Containerized Containerized | Full CFDResults Templates and 3D Blades Shapes
Leamt Models ~ Components : Learnt Models ~ and Tasks Artifacts |

& @

Other ML Models ML Surrogate Models

Machine Leaming

Fig. 2. The proposed system’s architecture for cloud deployment

and is responsible for universal interaction of components with cloud services: SQS, S3, DynamoDB —
through the authors’ library Cloud Task Registry, that provides an application programming interface
Task Registry API and is used both in the Cloud Connector and Cloud Task Runner programs. Together
these programs and the library make up the software complex named Cloud Optimization Suite.

After solving an optimization problem formulated by the user in the Dakota interface, all configura-
tion, input and output files and other artifacts for each of the stages of each run remain recorded in the
S3 storage. This includes, among other things, 3D shapes of the generated blades and complete CFD
calculation results. This makes each step fully reproducible: a user can download the relevant files, run
the component responsible for the stage on a local machine and study its operation in detail for specific
parameters or take the files of interest for further work with them. Similar functionality of data storage
is implemented in the local operation mode using Docker Compose, but in this case, data is stored on
disk in the directory specified by the user, and the cloud functionality is not used, which allows working
with the proposed system locally and fully independent of cloud providers, or on VMs.

Training of Surrogate Models

Parameters of generated blades’ shapes along with CFD results and other artifacts essentially form
datasets for surrogate models training. This feature of the proposed architecture enables straightforward
integration with AutoML frameworks. These allow searching for best regression models automatically.
Alternatively, ML-engineers may design more sophisticated models within the MLOps framework, as was
described earlier. In combination, this leads to an AutoM LOps solution. In the proposed system, ClearM L
open-source Al platform'® is used for that purpose together with Auto-Sklearn 2.0 framework [21] for
AutoML support. ClearML has a free version (Apache-2.0 license) and uses exclusively open-source com-
ponents, allowing integration with a lot of other frameworks and services. Since ClearML supports inte-
gration with AWS S3, the training data can be used directly from the artifacts storage (Fig. 2).

Using the MLOps platform, the following ML pipeline is designed:

1. Load new training data from the S3 storage.

1o ClearML Open Source Platform. Available: https://clear.ml/ai-platform (Accessed 11.01.2025)

126

Software and Hardware of Computer, Network, Telecommunication,

4 Control, and Measurement Systems
Cloud GO Cloud Go Cloud Go Cloud GO Cloud Go
Task Runner Connector Connector Connector Connector
BezierGAN wlF Blender @ v CFD \:7
3D Model 3D Model OpenVFOAM Results
)> Generator p Adjustment ﬁ P Extraction P e
AR & & 2 &
Shape Generation Pre-processing Meshing & CFD Post-processing
\—_——/
S
/e Optimization Task 1 \
Run 1 | Run2 State and Results
stage 1 Stage 2 Stage 3 stage 1 @ Storage for Tasks

9] |[<le)|[=le] -
el | =]

Optimization Task 2

Models Storage

Run 1 Run 2

Stage 1 Stage2 | -+ ‘ Stage 1 ‘ Stage 2

\ J

Tasks Storage

Fig. 3. Structure of the pipeline and technologies used

Preprocess the data if needed (e.g., to extract some extra features).
Call the AutoML framework for training of a surrogate model.
Test the model performance.

Optionally, perform hyperparameters tuning.

. Store the model and assign a version to it.

Plpelme orchestration is performed by the ClearML server (Fig. 4), and the training itself is done
by ClearML agents, which are deployed on machines that have all required hardware resources (CPUs
and/or GPUs).

Communication with the agents is done via tasks queues. The trained models are stored in the model
storage (e.g., in an S3 bucket). In order to perform inference using saved models, ClearML provides
a serving solution. It allows to expose HTTP endpoints to accept inference requests and returns cor-
responding responses after delegating the processing to a configured serving engine (ClearML offers
its own CPU-based engine and also supports Triton'” by Nvidia for GPU-enabled hardware). In the
proposed system, the surrogate model interface of Dakota is used to make such inference calls, passing
blades geometric parameters that are subject to optimization.

By the point, when surrogate models training is performed, a large number of expensive calculations
is typically done, and CFD results are obtained for a multitude of blade shapes that may be confidential
as a company asset, as well as surrogate models themselves. Thus, we obtain a large amount of sensitive
information in a single step, possibly even on a single VM, which necessitates additional protection.
This topic was covered in [22—24] where the Trusted AutoML task was formalized and addressed from
performance and cybersecurity perspectives, including but not limited to the application for training
surrogate models on gas turbines’ data.

Implementation

The Cloud Optimization Suite software is implemented using the Go programming language (Go-
lang). The choice of the language was made to fulfill the need to minimize the footprint of the Cloud

R NVIE RN

7 Triton Inference Server. Available: https://developer.nvidia.com/triton-inference-server (Accessed 18.01.2025)

127

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,
ynpasnsawowme n U3MepuTenbHble CUCTEM >

HTTP requests from the
Dakota surrogate model
interface

AutoML Framework

ClearML Serving
Engine I
ClearML Serving Inference /

ClearML Server ML Engineer

— ~— (i 7\

Model fo:je Results Data 1

Registry ~ — ___Storage)
ClearML Agent —H

T Iy

I

Fig. 4. Detailed view on the MLOps platform used in the system

Connector on container images of the pipeline stages components’ software and simplify integration.
Programs in Go are compiled into natively executable binaries and can be statically linked with all used
libraries, thus making the program independent from other system libraries. As a result, installation of
the Cloud Connector is just copying one executable file into a Docker container. Golang provides a gar-
bage collector, which simplifies memory management and a set of useful concurrent programming mech-
anisms (goroutines, channels etc.), which are particularly helpful when dealing with asynchronous calls.

One of Golang’s distinctive features is absence of an exception facility in the language (i.e., there is
no control structure associated with error handling), and errors are handled in the same way as regular
variables values. The language authors stand for that decision, claiming that “explicit error checking
forces the programmer to think about errors — and deal with them — when they arise”'8. Although at
the moment there is no scientific evidence that software developed using Go has better quality than that
written in other languages [25], explicit error handling has proven to be useful in the process of devel-
oping the Cloud Optimization Suite and improved its robustness by enforcing consideration of many
exceptional scenarios beforehand.

The Cloud Optimization Suite source code is available at GitHub'® under the Apache-2.0 permis-
sive license and consists of three Go modules: Cloud Task Registry, Cloud Connector and Cloud Task
Runner. The first one is a library for communication with cloud resources and two others are applica-
tions: Cloud Task Runner is placed at the machine, where the Dakota optimizer is installed, and Cloud
Connector is appended to each components’ Docker image and used as an entry point (with additional
arguments, like a stage name, the main component executable path, DynamoDB document API URL
etc., provided either at Docker build time or via environment variables).

Cloud Task Runner populates the database tables with a new record for a task run and corresponding
records for its stages according to a configuration file and then submits the task for processing. It also
copies configuration files for the stages’ components to an S3 bucket according to the structure shown
in Fig. 3. After submitting the task for execution, the Cloud Task Runner program waits for the task run
completion via long polling of the final SQS queue, while the task run’s Universally Unique Identifier

'8 Pike R. Go at Google: Language Design in the Service of Software Engineering. Available: https://go.dev/talks/2012/splash.article (Accessed
09.02.2025)
1 Cloud Optimization Suite. Available: https://github.com/wndrws/cloud-optimization-suite (Accessed 08.02.2025)

128

Software and Hardware of Computer, Network, Telecommunication,
4 Control, and Measurement Systems

Logging & Container
Monitoring Registry

Serverless | > Stage M
/) Container Queue
Trigger

Serverless
Container

Queue .
' Serverless | > Stage K
" Container Queue
! auto

- f \ scaling

\'%

w6l E

S3 Bucket(s) DynamoDB

SQS

message =
task run ID

Fig. 5. Functional diagram of a stage within the pipeline

(UUID) makes its way through the pipeline. The generic functional diagram of a pipeline stage is given
in Fig. 5. Arrows with big heads represent message flow, and arrows with smaller heads stand for data
flow (Docker images, files, database communication, logs etc.).

Each pipeline stage is associated with one software component that implements the stage’s function-
ality and deployed as a set of serverless container instances. There may be none, one or many container
instances at each stage in any given moment in time depending on the number of messages in processing
and scaling configuration in the cloud console. Yandex Cloud uses triggers to monitor SQS queues, and
when a new message arrives, it creates a new container instance and passes the message to it; then, it
shuts down the instance if all messages have been processed and the queue is empty. When a serverless
container instance finishes a task run processing, it uploads output files to S3 (using the Cloud Connec-
tor) and sends the run’s UUID to the SQS queues of the next adjacent stage(s). All logs written by the
component are collected by the cloud provider and managed using the Cloud Logging service. Thus,
the system administrator can see logs from all containers in one place in the cloud console together with
monitoring information, like CPU load and RAM consumption of the software in serverless containers.

When a message from an SQS queue is passed to a serverless container, it goes to a Cloud Connec-
tor’s handler. The algorithm of the Cloud Connector program can be briefly formulated as follows (for
each stage):

1. Cloud Connector waits for messages from the queue in SQS. The incoming message contains a
run UUID and initiates the start of the stage.

2. After requesting information about the task and the stage from DynamoDB, Cloud Connector
downloads the configuration and input files of the stage from S3.

3. Using the configured component start command, Cloud Connector creates the corresponding
subprocess and waits for it to complete. In parallel, Cloud Connector makes periodic queries to Dy-
namoDB, checking the status of the task to see if it has been canceled. If the task has been canceled, a
termination signal (SIGTERM) is sent to the subprocess.

4. Based on the value of the subprocess return code, Cloud Connector determines the fact of suc-
cessful or unsuccessful execution of the pipeline stage: a non-zero return code means that an error
occurred.

129

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,
ynpasnsawowme n U3MepuTenbHble CUCTEM

>

5. If the component startup was successful, Cloud Connector reads the output file (if the path was
specified) and loads it into S3. A message with the run ID is then sent to the SQS queue(s) defined for
the stage(s) immediately following the current stage.

6. If this stage is the last stage in the run (i.e., has no next stages in the task pipeline configuration),
the output file is read as an associative array of objectives (and/or constraints) and their values and writ-
ten as the task run results to DynamoDB.

7. If paths to additional artifacts are configured for the step, these folders and/or files are com-
pressed into an archive and uploaded to S3.

If an error occurs during a Cloud Connector operation, the corresponding status is set for this stage
of the task, the Cloud Connector terminates, and then the container is restarted by means of the cloud
provider. If the limit of restarts is exhausted, the task run ID is sent to a special Dead Letter Queue,
which is not related to the pipeline stages, but can be used for debugging.

After the last step of the run is completed, its identifier is sent to a special SQS queue, from which it
is read by the Cloud Task Runner program. Then, it outputs a report listing all the attributes, status and
execution time of each stage and the run as a whole. The cycle repeats until a convergence condition
(configured in the optimizer) is reached or the task is cancelled.

The data model of DynamoDB tables is shown in Tables 1 and 2: one table is used to store informa-
tion about task runs, and the other one is for their stages at each run.

Table 1
DynamoDB data model — the task runs table

Keys Name Type Explanation
PK | task id string Identifier of the task
SK, GSI PK | run_uuid string Identifier of the task run
parameters map<string, number> Design variables values for the run
results map<string, number> Objectives and constraints values
task definition string The task configuration from Dakota
creation_time number Time when the task was created

status string Status of the task run

There is a one-to-many relationship between the stored entities: each task run record is associated
with many task stage records. Saving timestamps of start and completion of each stage for every task
run is useful for monitoring and collecting statistics of the system functioning. The tables are created
automatically, when Cloud Task Registry is used with an empty DynamoDB (by the means of migration
code implemented in Go).

The DynamoDB keys abbreviations are as follows: PK — partition key, SK — sort key, GSI — global
secondary index. Possible statuses in the task runs table are Pending, InProgress, Success, Error, Can-
celled, — and possible statuses in the task stages table are Submitted, Finished, Failed and Cancelled.

It is worth noting that the system provides users with an ability to cancel tasks execution, forcing the
running containers to interrupt component’s software, do the required cleanup and state management
and terminate.

Results and Discussion

After implementation, the system was tested in a series of experiments, using Yandex Cloud re-
sources, as well as local Docker Compose deployments. The experiments performed can be grouped as
follows:

130

Software and Hardware of Computer, Network, Telecommunication,
4 Control, and Measurement Systems

1. Testing the system operation in the DoE mode with different numbers of parallel running pipe-
lines to assess the system’s scalability and correctness of its functioning in both variants of deployment.

2. Checking the system operation in optimization mode to find the gas turbine blade shape that
maximizes the aerodynamic efficiency coefficient with and without the use of surrogate models, com-
parison of the found optima and the time spent.

3. Validation of correctness of CFD results produced using the system from the domain perspective.

Table 2
DynamoDB data model — the task stages table

Keys Name Type Explanation
PK, GSI PK | run_uuid string Identifier of the task run
SK [n_ord number Ordinal number of the stage
GSI SK | name string Name of the stage
status string Status of the task run at this stage
config string

Paths to configuration, input and output files of the component at this

input string stage in the S3 bucket (see below)

output string

t_start_utc number

- Times when the task run processing started and finished at this stage
t_finish_utc | number

Execution environment information (e.g., revision of the Docker image

executor string used for the run)

s3_bucket string Name of the S3 bucket used

comment string Any additional information from the component
next list<string> | List of the adjacent next stages names

The obtained results have shown that the developed system functions correctly both in a single-thread-
ed environment and when running pipelines in parallel (in both deployment modes: serverless and on
a single machine via Docker Compose); the integrity of data accessed concurrently is not violated; the
system scales vertically according to the computational resources of the processor and horizontally ac-
cording to the number of available physical cores (Table 3): Hyper-Threading technology does not give
advantages, which was revealed during experiments on the Intel Core i7-7700K CPU. When used in
serverless mode, horizontal scaling is done by utilizing more instances of serverless containers in parallel
within quotas set by the cloud service provider.

Table 3
Time spent on DoE using the suggested system on a PC with 4 physical and 8 logical CPU cores

Concurrent pipelines count 1 2 3 4 5 6 7 8
Total time, s 15970 8655 6617 5830 5840 5713 5894 5730

The use of surrogate models in the Efficient Global Optimization mode led to at least 2.5 times re-
duction in time for the optimal blade shape search compared to optimization without surrogate models,
given the same number of the pipeline runs. The achieved optimal value of the aerodynamic efficiency
coefficient was different only by 2.46% in favor of the optimization without surrogate models. In server-
less mode the time spent on optimization (in fixed conditions) was 18—36% less compared to running
on a VM with the same number of processor cores of the same architecture (Intel Haswell) and the same

131

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,
ynpasnsawowme n U3MepuTenbHble CUCTEM >

Baseline

Mach Magnitude
CoordinateY

0 0.02 0.04 0.06
CoordinateX

Fig. 6. The velocity field obtained by the authors («) and a reference (b) from [26]

clock frequency of 2.1 GHz (2 GB RAM per core allocated by the cloud provider was more than enough
for all containerized components).

Validation of CFD results produced using the system was successful according to the set of quantita-
tive checks and qualitative analysis performed by the authors. For example, Fig. 6 shows a comparison
of the velocity field (in Mach numbers) obtained by the authors and a similar reference field from [26].

A separate discussion should be given to the architectural advantages of the system. As its compo-
nents communicate asynchronously via message queues (SQS), which transport only task runs’ identi-
fiers, loose coupling is achieved, providing the following benefits:

Fault-tolerance and resilience. If an error occurs during functioning of a pipeline component, the task
run processing request returns to the queue and becomes visible for other containers at the stage? that can
handle the processing request, while the failed serverless container is shut down by the platform and re-
placed by a new instance if needed for serving the following requests. The recover process does not impact
the functioning of other system parts, e.g., parallel pipeline runs continue unaffected, though the errone-
ous task status change is reflected in the DynamoDB and is visible via serverless containers monitoring.
Status tracking of individual task runs also protects the system from using any partly written data that may
be left by failed serverless containers. In case a container becomes unresponsive, it also will be terminated
by the cloud platform according to the configured timeout (separately for each pipeline stage).

Hot swap of Docker images. When the root-cause of an error is identified in a containerized com-
ponent and fixed, it is possible to upload the new Docker image and replace the one currently utilized
by the serverless container without stopping the pipeline operation (Yandex Cloud gracefully stops the
running container instance and starts a new one instead). The same task runs, that were not passing pre-
viously, will then be automatically retried using the latest component version?!. This hot swap support is
highly beneficial for lengthy and costly optimization tasks, when restarting from the beginning in case
of any error is not affordable.

Flexibility in data exchange formats and software selection. Since in the proposed architecture there
are no requirements for data formats used by pipelines components, they can be chosen freely by the im-
plementations and must be agreed only between the neighboring stages (as one stage’s output files usu-
ally serve as the next stage’s inputs). This, together with containerization, enables flexibility in selecting
the formats and software used at each pipeline stage, without the need to make any adjustments to the
system to maintain compatibility. By abstaining high-level code (i.e., the Cloud Optimization Suite)
and the system operation principles from low-level details, the architecture follows the dependency
inversion principle [27] and the open-closed principle [28] widely adopted in software engineering [29].

2 Trigger for Message Queue that sends messages to the Serverless Containers container. Available: https://yandex.cloud/en-ru/docs/server-
less-containers/concepts/trigger/ymq-trigger (Accessed 04.02.2025)
2l Yandex Serverless Containers. Available: https://yandex.cloud/ru/docs/serverless-containers (Accessed 25.12.2024)

132

Software and Hardware of Computer, Network, Telecommunication,
Control, and Measurement Systems

Comparison of the suggested system and existing solutions

Table 4

Criteria Ours Song et. al., 2023 Benaouali and Benaouali and
(DADOS) [12] Kachel, 2017 [10] Kachel, 2019 [11]
Integrated solution Yes No Yes Yes
Parasolid, IGES,
. Parasolid, FluentMesh,
Data file formats Arbitrary Excel FluentMesh PATRAN,
NASTRAN
Siemens NX, ICEM
Software components | Any containerizable Any (at the Siemens NX, ICEM CFD, FLUENT,
in the pipelin (using Docker) r’s side) CFD, FLUENT MSC.PATRAN,
e pipeline using Docke user’s side , MSC.NASTRAN,
MATLAB
Any cloud providing
. S3, DynamoDB .
Environment and SQS APIs or Cloud (China) Local Local
Docker Compose
Supported | by Dakotaorown | PRS,RBE KRG,
uppo Y . MLS, SVR, and Gaussian RBF RBF
surrogate models ML-models via ANN (feed-forward)
ClearML MLOps
- +
Optimization DIRECT, EGO and In-house .SA’ Sequential Quadratic . .
algorithms others supported swarm, genetic and Programmin Genetic Algorithm
g by Dakota? other algorithms e &
LHS, Monte-Carlo,
sul)si:::;tﬁngOE Rank-1 Lattice, L(l)-iAS: ((;)(1121’5 LHS Improved LHS
pling Digital Nets (Sobol) ’
P.ara!lel .step s Yes No No Yes
in pipelines
Multi-disciplinary Yes No No Yes
Publicly available Yes Yes (after registration) No No
Open source Yes No No No

Scalability. Using asynchronous communication and cloud services, plus separation of storage and

compute makes the system highly scalable. New instances of serverless containers are created automat-
ically by the cloud platform in response to new messages in task queues. As soon as some task runs are
finished, unnecessary containers are shut down and don’t incur any more costs in accordance with the
pay-as-you-go model. More parallel pipelines or parallel branches within one pipeline do not induce
resource contention, since the DynamoDB database, SQS queues and S3 buckets (that are used for
data exchange and storage), are designed for efficient handling of concurrent loads, and apart from
them there are no shared resources that containers can contend for. Vertical scaling is also supported, as
serverless containers are configurable in terms of CPU cores and RAM allocated by the cloud provid-
er?. Finally, as the system compute resources scale down to zero in absence of tasks, there is no risk of
wasting resources due to human factor, as it can be with VMs, which are sometimes unintentionally left
powered on for a weekend without any workload, producing unwanted spendings.

22 Optimization Usage Guidelines. Available: https://snl-dakota.github.io/docs/6.21.0/users/usingdakota/studytypes/optimization.html#opt-us-
age (Accessed 10.02.2025)
2 Runtime environment. Available: https://yandex.cloud/en-ru/docs/serverless-containers/concepts/runtime (Accessed 04.02.2025)

133

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,

ynpasnsawowme n U3MepuTenbHble CUCTEM >

Apart from the abovementioned advantages, the system administrator can also make use of cloud
services that come together with the Serverless Containers service: monitoring (including performance
charts and logging), access and secrets management, billing details etc.

To compare the suggested system with the existing solutions discussed previously, a set of criteria was
devised considering the most relevant characteristics within the context of this research, and the com-
parison results are presented in Table 4. Used abbreviations: PRS — polynomial response surface, RBF
— radial basis functions, KRG — kriging, MLS — moving least squares, SVR — support vector regression,
ANN — artificial neural network; DIRECT — dividing rectangles, EGO — efficient global optimization,
SA — simulated annealing; LHS — Latin hypercube sampling, OLHS — optimal LHS, CCD — central
composite design, OA — orthogonal arrays.

From that table it becomes even more apparent that the suggested system is more generic and gives
more possibilities to build engineering optimization pipelines from various components without the
need to install them on every user’s PC, plus the support for ML-models that can use full power of mod-
ern ML frameworks, AutoML and MLOps for proper models’ lifecycle management.

Last but not least, the system does not rely on any closed-source components and avoids cloud ven-
dor lock-in as far as possible by sticking to the most common set of cloud services APIs, namely the S3,
SQS and DynamoDB in document mode, which are available in many Russian and foreign cloud pro-
viders. All the open-source and free software used have enterprise-friendly licensing (i.e., no copyleft),
which is crucial for open-source software clearing purposes and enables commercial use of the system.

Conclusions

In this paper a computer system architecture was proposed together with its implementing software
for rapid prototyping of gas turbine blades, which allows prediction of their physical properties by giv-
en geometric parameters. This is an integrated cloud-based solution, though flexible enough to be run
locally on a regular PC, without the need for complex environment setup for users (mechanical engi-
neers). Despite the fact that the system was described in application to gas turbine blades aerodynamics
optimization, it is not restricted to that domain and can be readily used in design optimization tasks for
other kinds of industrial objects and physics disciplines.

The next steps in this research direction are to support the hybrid mode of operation, in which the
system will utilize serverless containers simultaneously with dedicated VMs for long-running evenly
distributed workloads, and to support non-parametric surrogate models that take 3D blade geometry as
input [8, 30] to investigate their performance and generalization potential.

REFERENCES

1. Hammond J., Pepper N., Montomoli F., Michelassi V. Machine learning methods in CFD for turboma-
chinery: A review. International Journal of Turbomachinery, Propulsion and Power, 2022, Vol. 7, No. 2, Art no.
16. DOI: 10.3390/ijtpp7020016

2. Martins J.R.R.A., Ning A. Engineering Design Optimization. Cambridge, UK: Cambridge University
Press, 2022. DOI: 10.1017/9781108980647

3. Jiang P., Zhou Q., Shao X. Surrogate Model-Based Engineering Design and Optimization. Singapore:
Springer, 2020. DOI: 10.1007/978-981-15-0731-1

4. XuL.,JinS., Ye W., LiY., Gao J. A review of machine learning methods in turbine cooling optimization.
Energies, 2024, Vol. 17, No. 13, Art. no. 3177. DOI: 10.3390/en17133177

5. Zhang C., Janeway M. Optimization of turbine blade aerodynamic designs using CFD and neural net-
work models. International Journal of Turbomachinery, Propulsion and Power, 2022, Vol. 7, No. 3, Art. no. 20.
DOI: 10.3390/ijtpp7030020

134

Software and Hardware of Computer, Network, Telecommunication,
4 Control, and Measurement Systems

6. Kulfan B.M. Universal parametric geometry representation method. Journal of Aircraft. 2008, Vol. 45,
No. 1, Pp. 142—158. DOI: 10.2514/1.29958

7. Zhemelev G. Parameterized 3D representation of gas turbine blades for machine learning applications.
2024 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 2024,
Pp. 1-6. DOI: 10.1109/WECONF61770.2024.10564621

8. Mou S., Bu K., Ren S., Liu J., Zhao H., Li Z. Digital twin modeling for stress prediction of single-crys-
tal turbine blades based on graph convolutional network. Journal of Manufacturing Processes, 2024, Vol. 116,
Pp. 210—223. DOI: 10.1016/j.jmapro.2024.02.054

9. Zhemelev G.A. Automatic synthesis of 3D gas turbine blades shapes using machine learning. Information
Security Problems. Computer Systems, 2024, Vol. 59, No. 2, Pp. 152—168. DOI: 10.48612/jisp/dx8x-2he5-tffd

10. Benaouali A., Kachel S. A surrogate-based integrated framework for the aerodynamic design optimiza-
tion of a subsonic wing planform shape. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, 2017, Vol. 232, No. 5, Pp. 872—883. DOI: 10.1177/0954410017699007

11. Benaouali A., Kachel S. Multidisciplinary design optimization of aircraft wing using commercial soft-
ware integration. Aerospace Science and Technology, 2019, Vol. 92, Pp. 766—776. DOI: 10.1016/j.ast.2019.06.040

12. Song X., Wang S., Zhao Y., Liu Y., Li K. DADOS: A cloud-based data-driven design optimization sys-
tem. Chinese Journal of Mechanical Engineering (English Edition), 2023, Vol. 36, Art. no. 34. DOI: 10.1186/
$10033-023-00857-x

13. Sculley D., Holt G., Golovin D., Davydov E., Phillips T. et al. Hidden technical debt in machine learning
systems. Advances in Neural Information Processing Systems, 2015, Vol. 28, pp. 2503—2511.

14. Kreuzberger D., Kiihl N., Hirschl S. Machine learning operations (MLOps): Overview, definition, and
architecture. IEEE Access, 2023, Vol. 11, Pp. 31866—31879. DOI: 10.1109/ACCESS.2023.3262138

15. Bentaleb O., Belloum A.S.Z., Sebaa A., ElI-Maouhab A. Containerization technologies: taxonomies, ap-
plications and challenges. The Journal of Supercomputing, 2022, Vol. 78, No. 1, Pp. 1144—1181. DOI: 10.1007/
s11227-021-03914-1

16. Koskinen M., Mikkonen T., Abrahamsson P. Containers in software development: A systematic mapping
study. Product-Focused Software Process Improvement (PROFES 2019), 2019, Vol. 11915, Pp. 176—191. DOI:
10.1007/978-3-030-35333-9 13

17. Kim B.S., Lee S.H., Lee Y.R., Park Y.H., Jeong J. Design and Implementation of cloud docker ap-
plication architecture based on machine learning in container management for smart manufacturing. Applied
Sciences, 2022, Vol. 12, No. 13, Art. no. 6737. DOI: 10.3390/app12136737

18. Bobunov A. Using containerization to simplify and accelerate testing processes in financial organiza-
tions. International Journal of Humanities and Natural Sciences, 2024, Vol. 95, No. 8—1, Pp. 113—117. DOI:
10.24412/2500-1000-2024-8-1-113-117

19. Cito J., Ferme V., Gall H.C. Using Docker containers to improve reproducibility in software and web
engineering research. In: Web Engineering (eds. A. Bozzon, P. Cudre-Maroux, C. Pautasso), 2016, Vol. 9671,
Pp. 609—612. DOI: 10.1007/978-3-319-38791-8 58

20. Kadri S., Sboner A., Sigaras A., Roy S. Containers in bioinformatics: Applications, practical consid-
erations, and best practices in molecular pathology. Journal of Molecular Diagnostics, 2022, Vol. 24, No. 5,
Pp. 442—454. DOI: 10.1016/j.jmoldx.2022.01.006

21. Feurer M., Eggensperger K., Falkner S., Lindauer M., Hutter F. Auto-Sklearn 2.0: Hands-free AutoML
via Meta-Learning. arXiv:2007.04074, 2020. DOI: 10.48550/arXiv.2007.04074

22. Bezzateev S.V., Fomicheva S.G., Zhemelev G.A. Trusted automatic machine learning in the operation of
digital twins. T-Comm. 2024, Vol. 18, No. 7, Pp. 44—55. DOI: 10.36724/2072-8735-2024-18-7-44-55

23. Bezzateev S.V., Fomicheva S.G., Zhemelev G.A. Techniques for accelerating algebraic operations in
agent-based information security systems. 2023 Wave Electronics and its Application in Information and Telecom-
munication Systems (WECONF), 2023, Pp. 1—6. DOI: 10.1109/WECONF57201.2023.10147978

135

KoMnbloTepHble CeTH, BbIYNCUTENbHBIE, TENIEKOMMYHUKALMOHHbIE,

ynpasnsawowme n U3MepuTenbHble CUCTEM >

24. Bezzateev S.V., Zhemelev G.A., Fomicheva S.G. Research on the performance of AutoML plat-
forms under confidential computing. Information Security Problems. Computer Systems, 2024, Vol. 61, No. 3,
Pp. 109—126. DOI: 10.48612/jisp/abff-du38-v739

25. Ray B., Posnett D., Devanbu P., Filkov V. A large-scale study of programming languages and code qual-
ity in GitHub. Communications of the ACM, 2017, Vol. 60, No. 10, Pp. 91—100. DOI: 10.1145/3126905

26. Aissa M.H. GPU-accelerated CFD Simulations for Turbomachinery Design Optimization. Delft,
Netherlands: Delft University of Technology, 2018. DOI:10.4233/UUID:1FCC6AB4-DAF5-416D-819A-
2A7B0594C369

27. Martin R.C. OO design quality metrics: An analysis of dependencies. Report on Object Analysis and
Design, 1995, Vol. 2.

28. Meyer B. Object-oriented Software Construction (Prentice-Hall International series in computer sci-
ence). NJ: Prentice-Hall, 1988.

29. Martin R.C. Design principles and design patterns. Object Mentor SOLID Design Papers Series, 2000,
Vol. 1, No. 1, Pp. 1-34.

30. CaoJ., Li Q., Xu L., Yang R., Dai Y. Non-parametric surrogate model method based on machine learn-
ing with application on low-pressure steam turbine exhaust system. Journal of the Global Power and Propulsion
Society, 2022, Vol. 6, Pp. 165—180. DOI: 10.33737 /jgpps/151661

INFORMATION ABOUT AUTHORS / CBEAEHUA Ob ABTOPAX

Zhemelev Georgiy A.

Kewmenes I'eopruii AtekceeBrny

E-mail: wws.dev@gmail.com

ORCID: https://orcid.org/0000-0001-7126-6787

Drobintsev Pavel D.

JIpoounnes I1aBen IMurpueBmy

E-mail: drob@ics2.ecd.spbstu.ru

ORCID: https://orcid.org/0000-0003-1116-7765

Submitted: 19.02.2025; Approved: 17.04.2025; Accepted: 29.04.2025.
Ilocmynuaa: 19.02.2025; Odobpena: 17.04.2025; Ipunsma: 29.04.2025.

136

