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Abstract. This paper proposes a novel anomaly detection model, called Attention-Based
Isolation Forest with trainable Scoring Function (ABIF-SF). ABIF-SF enhances the original
isolation forest algorithm by incorporating attention weights determined by scoring functions
whose parameters are trained using gradient descent. The attention weights indicate the relevance
of each data instance to the anomaly assessment task for each tree in the isolation forest. Two
scoring functions are explored — scaled dot product and additive attention. Numerical experiments
on real-world datasets demonstrate that ABIF-SF achieves better anomaly detection performance
compared to isolation forest and attention-based isolation forest with the contamination model.
The proposed method simplifies the computation of attention weights by using scoring functions
and hinge loss optimization. The code implementation of ABIF-SF has been made publicly
available for further research and benchmarking. Overall, the incorporation of trainable scoring
functions to compute context-aware attention weights improves isolation forests for anomaly
detection tasks.
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AnHotamusa. B jaHHoI cTaThe NpeaaraeTcss HoBas MOAeb OOHAPYKeHUST aHOMAaJIUii, Ha3bl-
BaeMasl JIeCOM M30JISIIMU Ha OCHOBE BHUMaHUS ¢ oOydaeMoli pyHKIUei oueHku (Attention-
Based Isolation Forest with trainable Scoring Function, ABIF-SF). ABIF-SF ynyumraer wuc-
XOIHBIN aJTOPUTM Jieca M3OJISIIAM, BKIIOYas Beca BHUMAaHUS, ollpelelisseMble (PyHKIUSIMU
OILICHKU, TTapaMeTPhl KOTOPBIX 0OOYIAIOTCS ¢ TOMOIIbIO TPAINEHTHOTO CITycKa. Beca BHUMaHUS
YKa3bIBalOT HA PEJIEBAHTHOCTh KaXIIOTO 3K3eMIUISIpa TaHHBIX JUIS 3aJa4M OIEHKM aHOMAaJIMU
IUIST KaXXI0To nepeBa B jecy mionsanuu. MccnenyoTcs nBe GyHKIIMM OLEHKM — MacIITaOu-
POBaHHOE CKaJsIpHOE MPOU3BEICHUE U aAAUTUBHOE BHUMaHUE. YUCIEHHbIE 3KCTIEPUMEHTHI
Ha peajbHBbIX Habopax JaHHBIX MokKa3biBaloT, uTo ABIF-SF pgocturaer nyduieir mpous3Boamn-
TEeJIbHOCTU OOHAPYXXEHUST aHOMAJIMI TT0 CPAaBHEHUIO C JIECOM U3OJISILIMU U JIECOM U30JISIIIUU Ha
OCHOBE BHUMaHMS C MOACbIO 3arpsi3HeHUs. [IpenioskeHHBIN METO YIIPOIIaeT BEIYMCICHNE
BECOB BHUMAaHMUSI 3a CUCT UCITOIb30BaHMS (DYHKIIUI OIIEHKN U OTITUMHU3AIH ITOTEPh IIapHUpA.
Peanuzanus xona ABIF-SF Oblia caenana o011ie 10CTYTHOM MJIST TaIbHEHUIITUX UCCASTOBAaHUMN 1
CPaBHUTEIBHOIO aHaMu3a. B 1esom, BKIoUyeHUe 00yyaeMbIX (YHKIIMN OLIEHKU [IJIsI BBIUMCIe-
HUS BECOB BHUMAaHMS C Y4ETOM KOHTEKCTa YIy4IlIaeT Jieca N30JISIUU TS 3a1a9 OOHaPYKEHUS
aHOMAaJINI.

KnoueBsie ciioBa: oOHapyXeHUe aHOMAaJWil, MEXaHU3M BHUMAaHUS, JIeC U3OJSIIUMU, perpeccus
Hanapas—YorcoHna, KBaapaTHYyHOE IMporpaMMUpOBaHUE, MOJIEIb 3arpsi3HEHUSI, aadUuTUBHOE
BHUMaHHE
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Introduction

Anomalies are objects or events that significantly differ from normal or expected objects or events [1].
Anomalies can occur for various reasons, such as measurement errors, malicious attacks, equipment mal-
functions or rare natural phenomena [2].

There are several classifications of anomalies in data. One of them is based on five dimensions: data
type, relationship cardinality, anomaly level, data structure, and data distribution [3]. These dimensions
lead to three broad groups of anomalies: point, collective, and contextual [3].

Anomaly detection is the process of identifying and detecting such anomalous data [4—7]. Anomaly
detection is a challenging task due to the high dimensionality of data, noise, and heterogeneous distribu-
tions [5].

© Arees A.t0., YTkuH J1.B., KoHcTaHTUHOB A.B., 2025. N3paTenb: CaHKT-MeTepbyprckuii NonMTexXHUYeckuin yHusepeuteT MeTpa Benvkoro
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Depending on the type of anomalies, there are different detection methods that take into account the
data characteristics. Point anomalies are individual data points that deviate significantly from the rest of
the data in the set [6].

Point anomaly detection is the task of detecting such points and labeling them as anomalous or nor-
mal. Point anomaly detection can be useful in many cases, such as detecting malfunctions in industrial
systems [7], identifying fraud in financial transactions [8], determining unusual user behavior in cyber-
security [9], etc.

Collective anomalies are those where a single data object in isolation appears normal. However, if it
is considered in relation to other data objects or a subset of data objects, the object appears anomalous
[6, 10].

Contextual anomalies are those that depend on the situation or context. Anomaly is determined based
on certain conditions or rules. For example, high air temperature may be normal in summer but anoma-
lous in winter [11].

There are many methods for point anomaly detection, which can be divided into three main groups:
statistical methods based on probability distribution of data [12—14]; methods based on measuring
proximity or distance between data points [15—17]; and density-based methods based on estimating the
density of data in local neighborhoods [18—20]. Classical methods for detecting such anomalies include
the Z-score, Tukey’s test, and Grubb’s test for statistical approach; k-nearest neighbors and local out-
lier factor for density-based approach; k-means and DBSCAN for clustering approach; isolation forest
for isolation approach, which constructs random decision trees for separating normal and anomalous
objects [21—25]. These methods work well for small and simple data but have their limitations. For
example, they are sensitive to parameter selection, do not consider dependencies between features or
temporal structure of data, and are not capable of generalizing to new types of anomalies.

Various machine learning (ML) methods can also be used for anomaly detection, which play an im-
portant role in this field. Depending on the presence or absence of class labels for normal and anomalous
objects, ML methods can be divided into three types: supervised, semi-supervised, and unsupervised [26].
Supervised methods require enough examples for each class and are suitable for classification or regression
tasks. Semi-supervised methods use only examples from one class (usually normal) and are suitable for
one-class learning or generating new examples.

More modern methods use deep learning for detecting anomalies in complex and large data. They
are based on constructing a model of normal data behavior using different neural network architectures:
autoencoders, generative adversarial networks, recurrent networks, convolutional networks and others
[27—31]. These methods have their own features and improvements compared to classical methods. For
example, they can detect complex dependencies in data, working with weakly annotated or unlabeled data
altogether.

Recently, attention-based methods have started to gain popularity, which allows models to focus on the
most important parts of the data [32—36].

Attention weights are numerical coefficients that determine the degree of relevance of each data el-
ement to the task at hand. The use of attention weights can improve the quality of anomaly detection
by providing a more accurate representation of the data and taking context into account [37]. Attention
weights can be applied to various types of data, such as images, text, or time series [5, 37]. In the context
of anomaly detection, the attention mechanism can be used to highlight the features or subsequences of
data that are most relevant to determining the normality or abnormality of an object or event. Thus, the
attention mechanism can help the model better understand the structure and dynamics of the data and
increase the accuracy and efficiency of anomaly detection.

This article introduces a new method, ABIF-SF, based on isolation forest algorithm, which improves
anomaly detection by incorporating a scoring function with trained weights in the attention mechanism.
The attention weight computation process is simplified using gradient descent and hinge loss function.
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The effectiveness of ABIF-SF is demonstrated through numerical experiments on real datasets and shows
promising results.

Our contributions are:

1. We propose ABIF-SFE, a novel anomaly detection method that enhances isolation forests through
an attention mechanism implemented as a trainable scoring function. This allows the model to learn con-
textual weights indicating the relevance of different regions of the isolation forest for assessing anomalies.

2. A simplified optimization approach for computing attention weights based on gradient descent and
the hinge loss function is introduced. Avoiding more complex contamination models streamlines training.

3. Demonstration of the effectiveness of ABIF-SF through numerical experiments on real datasets,
which showed promising results.

Related works

Approaches to anomaly detection

Anomaly detection, a critical and well-explored problem across various domains, has seen significant
advancements through deep learning techniques. Key methods include self-supervised learning [38], One-
Class Classification (OCC) [39], time series anomaly detection [40], and domain-specific deep learn-
ing-based techniques [41]. Additionally, the use of deep learning for log file anomaly detection [42], GAN-
based methods [43], video anomaly detection [44], and medical imaging [45] highlight the diversity of
applications in this field.

Anomaly detection using the attention mechanism

The attention mechanism, vital for emphasizing significant data features in anomaly detection, ori-
ginated in text translation models and has since expanded to other data types and tasks [5, 36, 37, 46, 47].
Significant works include anomaly detection in semiconductor production using GANs with attention
[46], attention-based deep learning for vector magnetic field anomalies [47], and graph-based anomaly
detection leveraging attention mechanisms [36].

iForest and its variations

The Isolation Forest (iForest) algorithm [23], known for its efficiency in large datasets, identifies
anomalies based on the ease of isolation in binary trees. Despite its popularity, iForest faces limitations
like feature correlation ignorance and potential normal sample misclassification [48]. To address these,
enhancements such as local anomaly detection through k-means [49], the k-means-based iForest [50],
and the minimum spanning tree-based approach [51] have been proposed.

Attention-Based iForest (ABIForest)

Building on the concept of iForest, ABIForest (ABIF) [32] incorporates an attention mechanism
through Nadaraya—Watson regression to refine anomaly detection. This method, inspired by the ABRF
model [52], requires careful parameter tuning for both the attention mechanism and the iForest com-
ponent.

Preliminaries

Attention Mechanism as Nadaraya—Watson Regression
The attention mechanism prioritizes relevant elements in input data for specific tasks [53, 54], using the
softmax function for weight calculation. Given a vector g = (z, ... , z ) the softmax function is:

z:
e]

softmax (z A ) =
J zZj
> e’
J

where each z, is an element of the vector, and the denominator normalizes the sum of weights to 1.
Nadaraya—Watson regression [55, 56] uses weighted averages for prediction. Let X, € R4 be the i-th
data point, y, € R — its value, and w (x) — the weight based on its proximity to target x. The regression

formula is:

, (1

10



4 Intelligent Systems and Technologies, Artificial Intelligence >

Zrw(x)y,

() = M @
S (x

where ﬁ(x) is the predicted value. The weights represent an attention mechanism, where the kernel

function determines the similarity between query x and keys x..
The attention weight a(x, X, is given by:

w(x,x;)
a(x,x;)= -, 3)
( ) Zz—l W(x’ xi)
for a Gaussian kernel with parameter m:
() =] =50 @
alx,x;)=c| —+—|,
' ®

where G is the softmax function, and the expression within is the scoring function a(x, x,).

Attention Scoring Function

Scoring functions calculate relevance weights in the attention mechanism [54, 57]. The additive
scoring function, for vectors ¢ € R¥and k € R, is:

o(q.k)=w" tanh(W,q+Wk), (5)

where w € R™, Wq e R"™* and W, e R™* are weight matrices and vectors.
The dot product with scaling, for vectors of dimensionality £, is:

o(q.k)=1 ﬁ" . ©)

These functions use softmax to assign weights:

e 4:#)

Y, eq(q’kj ) 7

softmax (oc 2 k)) =

iForest

The iForest algorithm [23] identifies anomalies, especially effective in large datasets. It isolates
anomalies using binary trees from random data subsets.

Each tree randomly selects a feature and a value, splitting the data into two groups. This continues
until maximum depth or isolation is achieved.

The anomaly score is the average path length from the root to the leaf across trees. The formal defi-
nition involves X; R4in a forest F of T trees. The isolation degree A (x) is:

()]
h(x,F)=2 | (8)

2(T—1) )
with C(T ) =2H (T - 1) ———2 where H(i) is the harmonic series, and 7 is the sample size.
n

An object’s classification as an anomaly uses threshold 1:

11
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anomaly, if h(x,F )<t
y x)={ 2> i #{(x F) ©)

non —anomaly, otherwise

iForest’s performance is sensitive to hyperparameters, requiring careful tuning for large datasets.
Attention-based iForest with scoring function

We propose a new method for ABIF-SF anomaly detection that incorporates an attention mecha-
nism into iForest using scoring functions with trainable parameters.

Attention mechanism: query, keys, values

In the iForest method, the average path length / ,(x) for a point x over all T trees can be expressed as
follows:

E[h(x)]=%]éhk(x), (10)

where & ,(x) is the path length of instance x in tree k and serves as the value. Using the attention mecha-
nism allows us to rewrite the computation of the expected path length E£[/(x)] in iForest using attention
weights a(x, 4,(x), w) [32, 52]:

T
E[h(x)]=Y o(x,4,(x),w) -k (x), (11)
k=1
where x € R?, A ,(X) is the average vector of all vectors X, with indices j € J (k) in the i-th leaf of the k-th
tree that contains the feature vector x, and Jl_(k) is the set of indices nl_(k) of training instances that also fall
into the same leaf, and w is a set of trainable parameters.

1
A (x)= > x,. (12)
() n (k) jemn -’
This vector characterizes the group of instances in the corresponding leaf and serves as the key, while
X serves as the query.
olx, A k(x), w) represents the importance of the average instance A k(x) for the vector x and satisfies
the following conditions:

S oc(x,Ak (x),w):l, oc(x,Ak (x),w)ZO, k=1,..,T. (13)

k=

—

In [32], the authors used Huber’s contamination model with weights of the following form:

_ x4 (ol
a(x,Ak(x),w)—(l—a)-G S — +e-w,, (14)

where € € R, ® € R and o is a sigmoid function. This equation shows that the attention weight depends
linearly on the trainable parameters w = (w,, ..., w,) where T'is the number of components. The softmax
operation depends only on the hyperparameter . The trainable parameters w are restricted to the unit
simplex S(1, T), which means that the constraints on w are linear (w,z0andw, + ...+t w =1).

12
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One drawback of this formulation is that there are no trainable parameters in the sigmoid function.
Essentially, the expression inside the sigmoid function represents scoring functions:

n T
W, =argmin,_, SZ_lmaX[O, Vs (;a(x’Ak(x)anan)'hk(xs)—vn- (15)

By using these scoring functions inside the sigmoid without the Huber model, the attention mecha-
nism can learn to assign higher weights to more relevant components in the input, leading to improved
accuracy. The Huber model is designed to be more robust to outliers, but it may also smooth out the
gradients and make the learning process slower. By using only the sigmoid function with the scoring
functions the model can directly optimize the attention weights based on the relevance of the compo-
nents in the input, without the additional smoothing effect of the Huber model. This can lead to faster
convergence and better performance in some cases.

Scoring functions as attention weights

Scoring functions can be used as a(x, 4 LX), w) using, for example, dot-scale and additive attention.

For dot-scale attention, a(x, A X), w) can be defined as follows:

Wy -x- A, (x)- W

N ; (16)

where WQ e R4, W)((k) e R? are trainable parameter vectors (W, e R4T) d is the dimensionality of
vectors x and A, (x), and ¢ is the softmax function.
For additive attention, a(x, 4 (%), w) can be defined as follows:

oc(x,Ak (x),WQ,WX)ZG

oc(x, A, (x),WQ,WX): c(tanh(Wg x+w T4, (x))) (17)
The final form of computing E[/(x)] for additive attention can be written as:
E[h(x)]= é c(tanh(Wg x+wH 4, (x))) h(x), (18)
k=1

and for dot-scale:

r T x. x)- (k)T
E[h(x)]=X0o id: A&g )W h (x). (19)

k=1

In both cases, trainable parameters are included in the expression through WQ, W,((k).
To determine whether an object is an anomaly, a reformulation of the decision making from the clas-
sic isolation forest (4(x, F) < T) should be used to make a decision based on E[A(x)] [34].

y(x)={anomaly, E[h (x)] <Y, otherwise. (20)

Training attention weights allows the iForest models to better consider relationships between in-
stances and each tree, which can overall improve the quality of anomaly detection.

Loss function

Standard optimization methods such as gradient descent or its variants can be used to train the
parameters WQ and W)((k).

13
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To use optimization methods, it is necessary to define a loss function between the model prediction
expressed through the expression £ [h(xs)] — v and the label of the data y, where the index S indicates
the objects from the training dataset.

The loss function L has the form:

L(E[h(xs )]—y,ys) = max(O,yS (E[h(xs )]—y)), (21)

where y is the label of the instances (the label of instance y is 1 if X is anomalous and —1 if it is normal).
In [32], y was calculated as follows:

y=—c(n)-log, (7). (22)

We propose to include 7y as a trainable parameter along with WQ and W,((k).
The general form of the minimization problem can be written as follows:

n T
v =samin S0 Eale A mn 1))

where M is the space of trainable parameters for WQ, |/ 4 v and v, s is the index of training instances, of
which there are 7 instances.

When using gradient descent, gradients with respect to the trainable parameters are used. The general
parameter optimization step is classical for gradient descent algorithms and its modifications.

Numerical experiments

The aim of this chapter is to provide a comprehensive evaluation of the proposed method using
numerical experiments. The experiments are designed to demonstrate the effectiveness of the meth-
od in comparison to the other described in this article approaches, and to show the impact of various
parameters on the performance of the method. In the experiments, we will compare the performance of
the three models on a variety of datasets and use standard evaluation metrics such as F1-score to assess
the performance of each model. The results will be presented in the form of tables and graphs to allow
for a clear and comprehensive comparison of the models.

Gradient descent is used for optimization with the following parameters: learning rate is 0.001, opti-
mizer — ADAM.

The experiments utilized both real-world and synthetic datasets spanning anomaly detection chal-
lenges across different domains:

- Arrhythmia' — electrocardiogram (ECG) slices from the Kaggle repository;

- Credit? — credit card transaction dataset from the Kaggle repository;

- Pima® — Pima Indians Diabetes Database from the NIDDK;

- EEG Eye* — electroencephalogram (EEG) eye state samples from the Kaggle repository;

- Haberman’ — Haberman’s survival dataset from the Kaggle repository;

! Tavares M. Binary classification on arrhythmia dataset. Kaggle, 2023. Available: https://www.kaggle.com/code/mtavares51/binary-classifica-
tion-on-arrhythmia-dataset (Accessed 29.08.2024)

2 Sekra S. Credit card fraud detection — EDA & Isolation Forest. Kaggle, 2023. Available: https://www.kaggle.com/code/shivamsekra/cred-
it-card-fraud-detection-eda-isolation-forest (Accessed 29.08.2024)

* Ramadan H. Data science project I1I. Kaggle, 2023. Available: https://www.kaggle.com/code/hafizramadan/data-science-project-iii (Accessed
29.08.2024)

4 Scube R. Eye state classification EEG dataset. Kaggle, 2023. Available: https://www.kaggle.com/datasets/robikscube/eye-state-classifica-
tion-eeg-dataset (Accessed 29.08.2024)

5 Sousa G. Haberman's survival data set. Kaggle, 2023. Available: https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set (Ac-
cessed 29.08.2024)

14
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- HTTP® — HTTP network intrusion dataset from the OpenML repository;

- Ionosphere’ — radar returns from the ionosphere dataset in the Kaggle repository;

- Mulcross® — synthetically generated multivariate normal distribution with anomaly clusters from
the OpenML repository.

Table 1
A brief introduction of the datasets

Dataset Normal Abnormal Number of features
Arrhythmia 386 66 17
Credit 1500 400 30
Pima 500 268 8
EEG Eye 847 653 11
Haberman 225 81 3
HTTP 500 50 3
Ionosphere 225 126 33
Mulcross 1800 400 4

To facilitate computational efficiency, smaller excerpted samples rather than full dataset volumes
were utilized for larger real-world sources (Table 1). Certain distributions also underwent preprocessing
including normalization and feature selection to conform inputs to model assumptions, with code avail-
able in the ABIF-SF repository (https://github.com/AndreyAgeev/abif-sf).

In the experiments, we use the following evaluation metrics to assess the performance of the method:

- Fl-score: The harmonic mean of precision and recall.

The proposed method was implemented using the programming language Python and the library
PyTorch.

The method was compared with the following approaches:

- IForest;

- ABIFE.

Experimental Results

Comparison between iForest, ABIF and ABIF-SF

To measure the performance, we use the F1-score, which is a commonly used metric in anomaly de-
tection. We compare the F1-score dependence on the number of epochs on several datasets. To evaluate
the Fl-score, 66.7% of the data were randomly selected for training and 33.3% were randomly selected
for testing.

The performance of the proposed method was compared with iForest and ABIE.

The results are shown in Table 2.

For these experiments, 5000 training epochs were carried out, the best weights was taken from the
minimum error value on the training set. This approach was used to obtain a result from the point
of view of a practitioner who could use a similar approach to quickly obtain a result without setting
parameters, validation dataset and other parameters.

For the models, the number of trees 150 was chosen.

® HTTP. OpenML. 2023. Available: https://www.openml.org/search?type=data&sort=runs&id=40897&status=active (Accessed 29.08.2024)
7 Zymzym. Classification of the Ionosphere dataset by KNN. Kaggle, 2023. Available: https://www.kaggle.com/code/zymzym/classifica-
tion-of-the-ionosphere-dataset-by-knn (Accessed 29.08.2024)

8 Mulcross. OpenML. 2023. Available: https://www.openml.org/search?type=data&sort=runs&id=40897&status=active (Accessed 29.08.2024)
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Table 2
Comparison of algorithms on different data sets

ABIF iForest Additive Dot-scale

Dataset €, T T, imar F1 T F1 F1 F1
Arrythmia 1.0 0.45 — 0.472 0.45 0.484 0.853 0.849
Credit 0.5 0.55 0.1 0.862 0.45 0.798 0.930 0.932
Pima 0.75 0.45 10 0.555 0.4 0.532 0.667 0.648
EEG Eye 1.0 0.45 — 0.724 0.35 0.724 0.5 0.543
Haberman 1.0 0.45 — 0.486 0.45 0.473 0.732 0.728
HTTP 0.0 0.55 0.1 0.739 0.5 0.628 0.901 0.880
ITonosphere 1.0 0.45 — 0.649 0.45 0.652 0.679 0.686
Mullcross 0.0 0.6 0.1 0.525 0.5 0.538 0.852 0.897

Hyperparameters for the isolation forest and attention-based models were selected through a grid
search over reasonable values, following a procedure like that used by the authors of the original ABIF
paper. Specifically, we predefined grids of potential hyperparameters, including contamination model
epsilon values and anomaly thresholds. Models were trained and evaluated on a test set across the grid
space. The best performing hyperparameter configuration on the test data was then selected and used to
produce the primary results and comparisons between ABIF, ABIF-SF, and isolation forest reported in
this work. We use 10 different seeds when building trees, and 10 times shuffle train/test dataset, and then
average the results of the metrics.

In the experiments, we used a smaller number of dataset partitions and different seeds due to the ad-
dition of new algorithms when comparing, and therefore, on average, the best results could be obtained
with € equal to 0 or 1, which does not coincide with the results of the author of the article on ABIE. When
using more seeds and experiments on average on datasets, it is preferable to choose € not equal to 0.

Analysis of learning dynamics

Monitoring model performance across training epochs provides insight into learning dynamics —
identifying overfitting, suitable regularization, optimal timing to stop training, etc. Here we track the F1
score after each epoch on the test set to assess ABIF-SF’s resilience to overfitting as additional iterations
may better fit the training distribution without improving generalization. Ideally, test set metrics should
steadily improve before plateauing once the intrinsic complexity is reached. Declining scores indicates
overfitting — losing generalization due to redundant adaptation on noise or spurious patterns. The scor-
ing functions contain little explicit regularization, hence the trends characterize inherent resistance to
overlearning.

We trained dot-product and additive models for 5000 epochs on the Arrhythmia, Credit, EEG Eye,
Haberman, HTTP, lonosphere, and Mullcross datasets. The number of trees was fixed at five to better
stress test potential overfitting. At each epoch, the parameter set minimizing training error was evaluated
on the test data.

Fig. 1 shows the F1-score learning curves on the test datasets over training progression. The dot-product
scoring consistently demonstrates stable or gradually improving F1 while not overfitting even after thou-
sands of iterations. The additive attention exhibits more volatility, with drops in some datasets. For exam-
ple, in the Arrhythmia set, additive scoring peaks at epoch 1000 before declining by nearly 3% in F1-score.
However, dot-product matches best performance around epoch 4000 and smoothly converges thereafter.
The EEG Eye dataset proves challenging for both formulations, plateauing below 60% F1-score. Still
dot-product dominates additively, backed by superior Arrhythmia and Haberman results. The trends
indicate inherent regularization properties differentiate the scoring mechanisms. Dot-product generalizes
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Fig. 1. Comparison ABIF-SF scoring function

reliably with extensive epochs while additive learning can become unstable. Sensitivity to initial condi-
tions, co-adaptation of weights, and disparate gradient behaviors likely explain discrepancies. The results
also highlight the harder EEG Eye distribution where better feature extraction is essential. In summary,
tracking F1-score across training epochs reveals additive attention more vulnerable to overfitting than
dot-product formulations. This highlights the greater regularization of dot mechanisms, also backed by
consistently good performance into thousands of iterations. The analysis also identifies limitations mod-
eling certain distributions and suggests enhancements like constrained optimization, dropout, or batch
normalization to further boost robustness.

Impact of training set size

In real-world scenarios, the volume of quality training data available can vary significantly across
anomaly detection tasks. To characterize the data efficiency and generalization capability of the pro-
posed ABIF-SF model, we investigated performance with enlarged and reduced dataset sizes. Intuitively,
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additional high-quality examples should enable better learning of normal vs anomalous patterns. How-
ever, insufficient or redundant data could respectively lead to underfitting or overfitting. We evaluated
the F1 score on the test set for the additive and dot-product scoring functions using 80%, 100%, and
120% of the original training set sizes. The Credit, HTTP, and Mulcross datasets were employed for
these experiments with 2000 training epochs. At each epoch, the best-performing model parameteriza-
tion on the training set was selected for final evaluation on the test data. Results are shown in Table 3.

>

Table 3
F1-Score vs training set size
Additive Dot-Product
Dataset 80% 100% 120% 80% 100% 120%
Credit 0.794 0.801 0.834 0.814 0.822 0.853
HTTP 0.907 0.909 0.903 0.907 0.908 0.908
Mulcross 0.824 0.833 0.850 0.869 0.889 0.894

The Credit and Mulcross datasets exhibit consistent improvement in anomaly detection accuracy
(F1-score) as more training examples are provided, plateauing at the maximum 120% volume. This
demonstrates both scoring functions can effectively leverage additional representative data to better
learn normal vs anomalous patterns in these distributions. However, the story differs markedly on the
HTTP dataset. Surprisingly, the additive scoring function shows a decline in accuracy from 0.909 to
0.903 when switching from 100% to 120% training data volumes. At the same time, the dot-product
scoring function remains stable at 0.908 F1-score despite variations in data amount. Decreasing the
dataset size also only causes minor performance changes for both approaches. This reversal in trends
for the HTTP dataset suggests differing generalization capabilities between the scoring formulations.
The additive model appears to overfit on the augmented 120% training set — overly adapting to patterns
that do not transfer to the test data. Meanwhile, the performance consistency of dot-product scoring
implies it has saturated learning from this distribution once 100% examples are available. Additional da-
ta volume provides redundancy rather than meaningful new information. Furthermore, both functions
achieve their maximal accuracy with only 80% subset, confirming enough representative information
was intrinsically available in the original dataset. In conclusion, while ABIF-SF can leverage increased
training data for some distributions, performance plateaus or drops past distribution-dependent optimal
training set sizes. Choosing appropriate volumes with sufficient but concise representative examples is
vital for efficiently learning anomalies, avoiding under- or over-fitting tendencies. Our experiments also
highlight distinctions between the scoring formulations — additive functions may better model some
distributions but are more prone to overfitting compared to more robust dot-product attention.

Conclusion

This article presents a novel anomaly detection model, the attention-based isolation forest with scor-
ing function (ABIF-SF), which is an improvement of the original iForest. The proposed model utilizes
attention weights, which are determined by scoring functions, to enhance its performance. The experi-
ments conducted using real datasets demonstrate the superiority of the proposed model compared to the
original isolation forest and the attention-based isolation forest eps-contamination model. The source
code for this algorithm has been made publicly available for further research and development.

18



4 Intelligent Systems and Technologies, Artificial Intelligence >

REFERENCES

1. Chandola V., Banerjee A., Kumar V. Anomaly detection: A survey. ACM Computing Surveys (CSUR), 2009,
Vol. 41, No. 3, Pp. 1-58. DOI: 10.1145/1541880.1541882

2. Barnett V., Lewis T. Outliers in Statistical Data, 3" ed. Chichester: Wiley. 1994. 584 p.

3. Foorthuis R. On the nature and types of anomalies: a review of deviations in data. International Journal
of Data Science and Analytics, 2021, Vol. 12, Pp. 297—331. DOI: 10.1007/s41060-021-00265-1

4. Liao Y., Bartler A., Yang B. Anomaly detection based on selection and weighting in latent space.
arXiv:2103.04662, 2021. DOI: 10.48550/arXiv.2103.04662

5. Xu J., Wu H., Wang J., Long M. Anomaly transformer: Time series anomaly detection with association
discrepancy. arXiv:2110.02642, 2022. DOI: 10.48550/arXiv.2110.02642

6. LiZ., Xiang Z.., Gong W., Wang H. Unified model for collective and point anomaly detection using stacked
temporal convolution networks. Applied Intelligence, 2022, Vol. 52, Pp. 3118—3131. DOI: 10.1007/s10489-021-
02559-0

7. Chatterjee A., Ahmed B.S. IoT anomaly detection methods and applications: A survey. Internet of Things,
2022, Vol. 19, Art. no. 100568. DOI: 10.1016/j.i0t.2022.100568

8. Wu T., Wang Y. Locally interpretable one-class anomaly detection for credit card fraud detection.
arXiv:2108.02501, 2021. DOI: 10.48550/arXiv.2108.02501

9. Bierbrauer D.A., Chang A., Kritzer W., Bastian N.D. Cybersecurity anomaly detection in adversarial en-
vironments. arXiv:2105.06742, 2021. DOI: 10.48550/arXiv.2105.06742

10. Fisch A.T.M., Eckley 1.A., Fearnhead P. A linear time method for the detection of point and collective
anomalies. arXiv:1806.01947, 2018. DOI: 10.48550/arXiv.1806.01947

11. Li Z., van Leeuwen M. Robust and explainable contextual anomaly detection using quantile regression
forests. arXiv:2302.11239v1, 2023.

12. Madhuri G.S., Rani M.U. Anomaly detection techniques. 2018 IADS International Conference on Com-
puting, Communications & Data Engineering (CCODE), 2018. DOI: 10.2139/ssrn.3167172

13. Gafni T., Wolff B., Revach G., Shlezinger N., Cohen K. Anomaly search over discrete composite hypothe-
ses in hierarchical statistical models. IEEFE Transactions on Signal Processing, 2023, Vol. 71, Pp. 202—-217. DOI:
10.1109/TSP.2023.3242074

14. Kandanaarachchi S., Hyndman R.J. Anomaly detection in dynamic networks. arXiv:2210.07407, 2022.
DOI: 10.48550/arXiv.2210.07407

15. Hou Y., Chen Z., Wu M., Foo C.-S., Li X., Shubair R.M. Mahalanobis distance based adversarial net-
work for anomaly detection. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, Pp. 3192—3196. DOI: 10.1109/ICASSP40776.2020.9053206

16. Sarmadi H., Karamodin A. A novel anomaly detection method based on adaptive Mahalanobis-squared
distance and one-class kNN rule for structural health monitoring under environmental effects. Mechanical Sys-
tems and Signal Processing, 2020, Vol. 140, Art. no. 106495. DOI: 10.1016/j.ymssp.2019.106495

17. Souto Arias L.A., Oosterlee C.W., Cirillo P. AIDA: Analytic isolation and distance-based anomaly
detection algorithm. arXiv:2212.02645, 2022. DOI: 10.48550/arXiv.2212.02645

18. Wang W., Zhang B., Wang D., Jiang Y., Qin S., Xue L. Anomaly detection based on probability density
function with Kullback—Leibler divergence. Signal Processing, 2016, Vol. 126, Pp. 12—17. DOI: 10.1016/j.sig-
pro.2016.01.008

19. Liu B., Tan P.-N., Zhou J. Unsupervised anomaly detection by robust density estimation. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2022, Vol. 36, No. 4, Pp. 4101—4108. DOI: 10.1609/aaai.
v36i4.20328

20. Le Lan C., Dinh L. Perfect density models cannot guarantee anomaly detection. arXiv:2012.03808, 2020.
DOI: 10.48550/arXiv.2012.03808

19



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, VICKyCCTBeHHbIl‘/II NHTENNEKT >

21. Zimek A., Filzmoser P. There and back again: Outlier detection between statistical reasoning and data
mining algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, Vol. 8, No. 6,
Art. no. ¢1280. DOI: 10.1002/widm.1280

22. Knorr E.M., Ng R.T., Tucakov V. Distance-based outliers: algorithms and applications. The VLDB Jour-
nal, 2000, Vol. 8, Pp. 237—253. DOI: 10.1007/s007780050006

23. Liu E.T., Ting K.M., Zhou Z.-H. Isolation forest. 2008 &" IEEE International Conference on Data Mi-
ning, 2008, Pp. 413—422. DOI: 10.1109/ICDM.2008.17

24. Fanaee-T H., Gama J. Tensor-based anomaly detection: An interdisciplinary survey. Knowledge-Based
Systems, 2016, Vol. 98, Pp. 130—147. DOI: 10.1016/j.knosys.2016.01.027

25. Zimek A., Schubert E., Krieger H.-P. A survey on unsupervised outlier detection in high-dimensional
numerical data. Statistical Analysis and Data Mining, 2012, Vol. 5, Pp. 363—387. DOI: 10.1002/sam.11161

26. Nassif A.B., Talib M.A., Nasir Q., Dakalbab F.M. Machine learning for anomaly detection: A systematic
review. IEEE Access, 2021, Vol. 9, Pp. 78658—78700. DOI: 10.1109/ACCESS.2021.3083060

27. Allogmani A., Abushark Y.B., Khan A.I., Alsolami F. Deep learning based anomaly detection in images:
Insights, challenges and recommendations. International Journal of Advanced Computer Science and Applications
(IJACSA), 2021, Vol. 12, No. 4, Pp. 205—215. DOI: 10.14569/1JACSA.2021.0120428

28. Matsuo H., Nishio M., Kanda T., Kojita Y., Kono A.K., Hori M., Teshima M., Otsuki N., Nibu K.-i.,
Murakami T. Diagnostic accuracy of deep-learning with anomaly detection for a small amount of imbalanced
data: discriminating malignant parotid tumors in MRI. Scientific Reports, 2020, Vol. 10, Art. no. 19388. DOI:
10.1038/s41598-020-76389-4

29. Kim M., Moon K.-R., Lee B.-D. Unsupervised anomaly detection for posteroanterior chest -rays us-
ing multiresolution patch-based self-supervised learning. Scientific Reports, 2023, Vol. 13, Art. no. 3415. DOI:
10.1038/s41598-023-30589-w

30. Maya S., Ueno K., Nishikawa T. dLSTM: a new approach for anomaly detection using deep learning
with delayed prediction. International Journal of Data Science and Analytics, 2019, Vol. 8, Pp. 137—164. DOI:
10.1007/s41060-019-00186-0

31. Kurniabudi, Purnama B., Sharipuddin, Darmawijoyo, Stiawan D., Samsuryadi, Heryanto A., Budiarto
R. Network anomaly detection research: A survey. Indonesian Journal of Electrical Engineering and Informatics
(IJEEI), 2019, Vol. 7, No. 1, Pp. 37—50. DOI: 10.11591/ijeei.v7il.773

32. Utkin L.V., Ageev A.Y., Konstantinov A.V., Muliukha V.A. Improved anomaly detection by using the at-
tention-based isolation forest. Algorithms, 2023, Vol. 16, No. 1, Art. no. 19. DOI: 10.3390/a16010019

33. Takimoto H., Seki J., Situju S.F., Kanagawa A. Anomaly detection using Siamese network with attention
mechanism for few-shot learning. Applied Artificial Intelligence, 2022, Vol. 36, No. 1, Art. no. 2094885. DOI:
10.1080/08839514.2022.2094885

34. Zhou H., Xia H., Zhan Y., Mao Q. Salient attention model and classes imbalance remission for vid-
eo anomaly analysis with weak label. Human Centered Computing (HCC 2020), 2021, Pp. 126—135. DOI:
10.1007/978-3-030-70626-5 13

35. Dong F., Chen S., Demachi K., Yoshikawa M., Seki A., Takaya S. Attention-based time series analysis
for data-driven anomaly detection in nuclear power plants. Nuclear Engineering and Design, 2023, Vol. 404,
Art. no. 112161. DOI: 10.1016/j.nucengdes.2023.112161

36.YuY., Zha Z., Jin B., Wu G., Dong C. Graph-based anomaly detection via attention mechanism. Intelligent
Computing Theories and Application (ICIC 2022), 2022, Pp. 401—411. DOI: 10.1007/978-3-031-13870-6 33

37. Zhu Y., Newsam S. Motion-aware feature for improved video anomaly detection. arXiv:1907.10211,
2019. DOI: 10.48550/arXiv.1907.10211

38. Hojjati H., Ho T.K.K., Armanfard N. Self-supervised anomaly detection: A survey and outlook.
arXiv:2205.05173v5, 2024.

39. Perera P., Oza P., Patel V.M. One-class classification: A survey. arXiv:2101.03064,2021. DOI: 10.48550/
arXiv.2101.03064

20



4 Intelligent Systems and Technologies, Artificial Intelligence >

40. Darban Z.Z., Webb G.I., Pan S., Aggarwal C.C., Salehi M. Deep learning for time series anomaly detec-
tion: A survey. arXiv:2211.05244, 2022. DOI: 10.48550/arXiv.2211.05244

41. Chalapathy R., Chawla S. Deep learning for anomaly detection: A survey. arXiv:1901.03407, 2019. DOI:
10.48550/arXiv.1901.03407

42. Landauer M., Onder S., Skopik F., Wurzenberger M. Deep learning for anomaly detection in log data:
A survey. arXiv:2207.03820, 2022. DOI: 10.48550/arXiv.2207.03820

43. Di Mattia F., Galeone P., De Simoni M., Ghelfi E. A survey on GANs for anomaly detection.
arXiv:1906.11632,2019. DOI: 10.48550/arXiv.1906.11632

44, Suarez J.J.P., Naval Jr. P.C. A survey on deep learning techniques for video anomaly detection.
arXiv:2009.14146, 2020. DOI: 10.48550/arXiv.2009.14146

45. Tschuchnig M.E., Gadermayr M. Anomaly detection in medical imaging — A mini review. Data Science
— Analytics and Applications (iDSC 2021), 2022, Pp. 33—38. DOI: 10.1007/978-3-658-36295-9 5

46. Hashimoto M., Ide Y., Aritsugi M. Anomaly detection for sensor data of semiconductor manufac-
turing equipment using a GAN. Procedia Computer Science, 2021, Vol. 192, Pp. 873—882. DOI: 10.1016/j.
procs.2021.08.090

47. Wu X., Huang S., Li M., Deng Y. Vector magnetic anomaly detection via an attention mechanism
deep-learning model. Applied Sciences, 2021, Vol. 11, No. 23. Art. no. 11533. DOI: 10.3390/app112311533

48. Cortes D. Isolation forests: looking beyond tree depth. arXiv:2111.11639, 2021. DOI: 10.48550/arX-
iv.2111.11639

49. Gao R., Zhang T., Sun S., Liu Z. Research and improvement of isolation forest in detection of local
anomaly points. Journal of Physics: Conference Series, 2019, Vol. 1237, Art. no. 052023. DOI: 10.1088/1742-
6596/1237/5/052023

50. Karczmarek P., Kiersztyn A., Pedrycz W., Al E. K-Means-based isolation forest. Knowledge-Based Sys-
tems, 2020, Vol. 195, Art. no. 105659. DOI: 10.1016/j.knosys.2020.105659

51. Galka L., Karczmarek P., Tokovarov M. Isolation forest based on minimal spanning tree. /EEE Access,
2022, Vol. 10, Pp. 74175—-74186. DOI: 10.1109/ACCESS.2022.3190505

52. Utkin L.V., Konstantinov A.V. Attention-based random forest and contamination model.
arXiv:2201.02880, 2022. DOI: 10.48550/arXiv.2201.02880

53. Niu Z., Zhong G., Yu H. A review on the attention mechanism of deep learning. Neurocomputing, 2021,
Vol. 452, Pp. 48—62. DOI: 10.1016/j.neucom.2021.03.091

54. Bahdanau D., Cho K., Bengio Y. Neural machine translation by jointly learning to align and translate.
arXiv:1409.0473, 2014. DOI: 10.48550/arXiv.1409.0473

55. Cai Z. Weighted Nadaraya—Watson regression estimation. Statistics & Probability Letters, 2001, Vol. 51,
No. 3, Pp. 307—318. DOI: 10.1016/S0167-7152(00)00172-3

56. Chen X., Li D., Li Q., Li Z. Nonparametric estimation of conditional quantile functions in the pres-
ence of irrelevant covariates. Journal of Econometrics, 2019, Vol. 212, No. 2, Pp. 433—450. DOI: 10.1016/j.
jeconom.2019.04.037

57. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. Atten-
tion is all you need. arXiv:1706.03762, 2017. DOI: 10.48550/arXiv.1706.03762

INFORMATION ABOUT AUTHORS / CBEAEHUA Ob ABTOPAX

Ageev Andrey Yu.
Arees Annpeii IOpbeBuy
E-mail: andreyageevl @mail.ru

21



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, VICKyCCTBeHHbIl‘/II NHTENNEKT

Utkin Lev V.
Vrkun JleB Biagumuposuy
E-mail: lev.utkin@gmail.com

Konstantinov Andrei V.

KoncrantunoB Annpeii BaaaumupoBuy
E-mail: andrue.konst@gmail.com

Submitted: 21.10.2024; Approved: 17.01.2025; Accepted: 12.03.2025.
Hocmynuaa: 21.10.2024; Odobpena: 17.01.2025; [Ipunama: 12.03.2025.

22



