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Abstract. This paper proposes a novel anomaly detection model, called Attention-Based 
Isolation Forest with trainable Scoring Function (ABIF-SF). ABIF-SF enhances the original 
isolation forest algorithm by incorporating attention weights determined by scoring functions 
whose parameters are trained using gradient descent. The attention weights indicate the relevance 
of each data instance to the anomaly assessment task for each tree in the isolation forest. Two 
scoring functions are explored – scaled dot product and additive attention. Numerical experiments 
on real-world datasets demonstrate that ABIF-SF achieves better anomaly detection performance 
compared to isolation forest and attention-based isolation forest with the contamination model. 
The proposed method simplifies the computation of attention weights by using scoring functions 
and hinge loss optimization. The code implementation of ABIF-SF has been made publicly 
available for further research and benchmarking. Overall, the incorporation of trainable scoring 
functions to compute context-aware attention weights improves isolation forests for anomaly 
detection tasks.
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Аннотация. В данной статье предлагается новая модель обнаружения аномалий, назы-
ваемая лесом изоляции на основе внимания с обучаемой функцией оценки (Attention-
Based Isolation Forest with trainable Scoring Function, ABIF-SF). ABIF-SF улучшает ис-
ходный алгоритм леса изоляции, включая веса внимания, определяемые функциями 
оценки, параметры которых обучаются с помощью градиентного спуска. Веса внимания 
указывают на релевантность каждого экземпляра данных для задачи оценки аномалии 
для каждого дерева в лесу изоляции. Исследуются две функции оценки – масштаби-
рованное скалярное произведение и аддитивное внимание. Численные эксперименты 
на реальных наборах данных показывают, что ABIF-SF достигает лучшей производи-
тельности обнаружения аномалий по сравнению с лесом изоляции и лесом изоляции на 
основе внимания с моделью загрязнения. Предложенный метод упрощает вычисление 
весов внимания за счет использования функций оценки и оптимизации потерь шарнира. 
Реализация кода ABIF-SF была сделана общедоступной для дальнейших исследований и 
сравнительного анализа. В целом, включение обучаемых функций оценки для вычисле-
ния весов внимания с учетом контекста улучшает леса изоляции для задач обнаружения 
аномалий.

Ключевые слова: обнаружение аномалий, механизм внимания, лес изоляции, регрессия 
Надарая–Уотсона, квадратичное программирование, модель загрязнения, аддитивное 
внимание
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Introduction

Anomalies are objects or events that significantly differ from normal or expected objects or events [1]. 
Anomalies can occur for various reasons, such as measurement errors, malicious attacks, equipment mal-
functions or rare natural phenomena [2].

There are several classifications of anomalies in data. One of them is based on five dimensions: data 
type, relationship cardinality, anomaly level, data structure, and data distribution [3]. These dimensions 
lead to three broad groups of anomalies: point, collective, and contextual [3].

Anomaly detection is the process of identifying and detecting such anomalous data [4–7]. Anomaly 
detection is a challenging task due to the high dimensionality of data, noise, and heterogeneous distribu-
tions [5].
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Depending on the type of anomalies, there are different detection methods that take into account the 
data characteristics. Point anomalies are individual data points that deviate significantly from the rest of 
the data in the set [6].

Point anomaly detection is the task of detecting such points and labeling them as anomalous or nor-
mal. Point anomaly detection can be useful in many cases, such as detecting malfunctions in industrial 
systems [7], identifying fraud in financial transactions [8], determining unusual user behavior in cyber-
security [9], etc.

Collective anomalies are those where a single data object in isolation appears normal. However, if it 
is considered in relation to other data objects or a subset of data objects, the object appears anomalous 
[6, 10].

Contextual anomalies are those that depend on the situation or context. Anomaly is determined based 
on certain conditions or rules. For example, high air temperature may be normal in summer but anoma-
lous in winter [11].

There are many methods for point anomaly detection, which can be divided into three main groups: 
statistical methods based on probability distribution of data [12–14]; methods based on measuring 
proximity or distance between data points [15–17]; and density-based methods based on estimating the 
density of data in local neighborhoods [18–20]. Classical methods for detecting such anomalies include 
the Z-score, Tukey’s test, and Grubb’s test for statistical approach; k-nearest neighbors and local out-
lier factor for density-based approach; k-means and DBSCAN for clustering approach; isolation forest 
for isolation approach, which constructs random decision trees for separating normal and anomalous 
objects [21–25]. These methods work well for small and simple data but have their limitations. For 
example, they are sensitive to parameter selection, do not consider dependencies between features or 
temporal structure of data, and are not capable of generalizing to new types of anomalies.

Various machine learning (ML) methods can also be used for anomaly detection, which play an im-
portant role in this field. Depending on the presence or absence of class labels for normal and anomalous 
objects, ML methods can be divided into three types: supervised, semi-supervised, and unsupervised [26]. 
Supervised methods require enough examples for each class and are suitable for classification or regression 
tasks. Semi-supervised methods use only examples from one class (usually normal) and are suitable for 
one-class learning or generating new examples.

More modern methods use deep learning for detecting anomalies in complex and large data. They 
are based on constructing a model of normal data behavior using different neural network architectures: 
autoencoders, generative adversarial networks, recurrent networks, convolutional networks and others 
[27–31]. These methods have their own features and improvements compared to classical methods. For 
example, they can detect complex dependencies in data, working with weakly annotated or unlabeled data 
altogether.

Recently, attention-based methods have started to gain popularity, which allows models to focus on the 
most important parts of the data [32–36].

Attention weights are numerical coefficients that determine the degree of relevance of each data el-
ement to the task at hand. The use of attention weights can improve the quality of anomaly detection 
by providing a more accurate representation of the data and taking context into account [37]. Attention 
weights can be applied to various types of data, such as images, text, or time series [5, 37]. In the context 
of anomaly detection, the attention mechanism can be used to highlight the features or subsequences of 
data that are most relevant to determining the normality or abnormality of an object or event. Thus, the 
attention mechanism can help the model better understand the structure and dynamics of the data and 
increase the accuracy and efficiency of anomaly detection.

This article introduces a new method, ABIF-SF, based on isolation forest algorithm, which improves 
anomaly detection by incorporating a scoring function with trained weights in the attention mechanism. 
The attention weight computation process is simplified using gradient descent and hinge loss function.  
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The effectiveness of ABIF-SF is demonstrated through numerical experiments on real datasets and shows 
promising results.

Our contributions are:
1.  We propose ABIF-SF, a novel anomaly detection method that enhances isolation forests through 

an attention mechanism implemented as a trainable scoring function. This allows the model to learn con-
textual weights indicating the relevance of different regions of the isolation forest for assessing anomalies.

2.  A simplified optimization approach for computing attention weights based on gradient descent and 
the hinge loss function is introduced. Avoiding more complex contamination models streamlines training.

3.  Demonstration of the effectiveness of ABIF-SF through numerical experiments on real datasets, 
which showed promising results.

Related works

Approaches to anomaly detection
Anomaly detection, a critical and well-explored problem across various domains, has seen significant 

advancements through deep learning techniques. Key methods include self-supervised learning [38], One-
Class Classification (OCC) [39], time series anomaly detection [40], and domain-specific deep learn-
ing-based techniques [41]. Additionally, the use of deep learning for log file anomaly detection [42], GAN-
based methods [43], video anomaly detection [44], and medical imaging [45] highlight the diversity of 
applications in this field.

Anomaly detection using the attention mechanism
The attention mechanism, vital for emphasizing significant data features in anomaly detection, ori- 

ginated in text translation models and has since expanded to other data types and tasks [5, 36, 37, 46, 47]. 
Significant works include anomaly detection in semiconductor production using GANs with attention 
[46], attention-based deep learning for vector magnetic field anomalies [47], and graph-based anomaly 
detection leveraging attention mechanisms [36].

iForest and its variations
The Isolation Forest (iForest) algorithm [23], known for its efficiency in large datasets, identifies 

anomalies based on the ease of isolation in binary trees. Despite its popularity, iForest faces limitations 
like feature correlation ignorance and potential normal sample misclassification [48]. To address these, 
enhancements such as local anomaly detection through k-means [49], the k-means-based iForest [50], 
and the minimum spanning tree-based approach [51] have been proposed. 

Attention-Based iForest (ABIForest)
Building on the concept of iForest, ABIForest (ABIF) [32] incorporates an attention mechanism 

through Nadaraya–Watson regression to refine anomaly detection. This method, inspired by the ABRF 
model [52], requires careful parameter tuning for both the attention mechanism and the iForest com-
ponent.

Preliminaries

Attention Mechanism as Nadaraya–Watson Regression
The attention mechanism prioritizes relevant elements in input data for specific tasks [53, 54], using the 

softmax function for weight calculation. Given a vector z = (z1, ... , zn) the softmax function is:

where each zi is an element of the vector, and the denominator normalizes the sum of weights to 1.
Nadaraya–Watson regression [55, 56] uses weighted averages for prediction. Let xi ∈ ℝd be the i-th 

data point, yi ∈ ℝ – its value, and wi(x) – the weight based on its proximity to target x. The regression 
formula is:

( )softmax ,
z j

j z j
j

ez
e

=
∑

(1)
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where            is the predicted value. The weights represent an attention mechanism, where the kernel 
function determines the similarity between query x and keys xi.

The attention weight α(x, xi) is given by:

for a Gaussian kernel with parameter ω:

where σ is the softmax function, and the expression within is the scoring function α(x, xi).
Attention Scoring Function
Scoring functions calculate relevance weights in the attention mechanism [54, 57]. The additive 

scoring function, for vectors q ∈ ℝk and k ∈ ℝk, is:

where w ∈ ℝm, Wq ∈ ℝm×k, and Wk ∈ ℝm×k are weight matrices and vectors.
The dot product with scaling, for vectors of dimensionality k, is:

These functions use softmax to assign weights:

iForest
The iForest algorithm [23] identifies anomalies, especially effective in large datasets. It isolates 

anomalies using binary trees from random data subsets.
Each tree randomly selects a feature and a value, splitting the data into two groups. This continues 

until maximum depth or isolation is achieved.
The anomaly score is the average path length from the root to the leaf across trees. The formal defi-

nition involves xi ∈ ℝd in a forest F of T trees. The isolation degree h(x) is:

with                                                        where H(i) is the harmonic series, and n is the sample size.

An object’s classification as an anomaly uses threshold τ:
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iForest’s performance is sensitive to hyperparameters, requiring careful tuning for large datasets.

Attention-based iForest with scoring function

We propose a new method for ABIF-SF anomaly detection that incorporates an attention mecha-
nism into iForest using scoring functions with trainable parameters.

Attention mechanism: query, keys, values
In the iForest method, the average path length hk(x) for a point x over all T trees can be expressed as 

follows:

where hk(x) is the path length of instance x in tree k and serves as the value. Using the attention mecha-
nism allows us to rewrite the computation of the expected path length E[h(x)] in iForest using attention 
weights α(x, Ak(x), w) [32, 52]:

where x ∈ ℝd, Ak(x) is the average vector of all vectors xj with indices j ∈ Ji(k) in the i-th leaf of the k-th 
tree that contains the feature vector x, and Ji(k) is the set of indices ni(k) of training instances that also fall 
into the same leaf, and w is a set of trainable parameters.

This vector characterizes the group of instances in the corresponding leaf and serves as the key, while 
x serves as the query.

α(x, Ak(x), w) represents the importance of the average instance Ak(x) for the vector x and satisfies 
the following conditions:

In [32], the authors used Huber’s contamination model with weights of the following form:

where ε ∈ ℝ, ω ∈ ℝ and σ is a sigmoid function. This equation shows that the attention weight depends 
linearly on the trainable parameters w = (w1, …, wT) where T is the number of components. The softmax 
operation depends only on the hyperparameter ω. The trainable parameters w are restricted to the unit 
simplex S(1, T), which means that the constraints on w are linear (wi ≥ 0 and w1 + ... + wT = 1).
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One drawback of this formulation is that there are no trainable parameters in the sigmoid function. 
Essentially, the expression inside the sigmoid function represents scoring functions:

By using these scoring functions inside the sigmoid without the Huber model, the attention mecha-
nism can learn to assign higher weights to more relevant components in the input, leading to improved 
accuracy. The Huber model is designed to be more robust to outliers, but it may also smooth out the 
gradients and make the learning process slower. By using only the sigmoid function with the scoring 
functions the model can directly optimize the attention weights based on the relevance of the compo-
nents in the input, without the additional smoothing effect of the Huber model. This can lead to faster 
convergence and better performance in some cases.

Scoring functions as attention weights
Scoring functions can be used as α(x, Ak(x), w) using, for example, dot-scale and additive attention.
For dot-scale attention, α(x, Ak(x), w) can be defined as follows:

where WQ ∈ ℝd,                     are trainable parameter vectors (WX ∈ ℝd×T), d is the dimensionality of 
vectors x and Ak(x), and σ is the softmax function.

For additive attention, α(x, Ak(x), w) can be defined as follows:

The final form of computing E[h(x)] for additive attention can be written as:

and for dot-scale:

In both cases, trainable parameters are included in the expression through WQ,          
To determine whether an object is an anomaly, a reformulation of the decision making from the clas-

sic isolation forest (h(x, F) < τ) should be used to make a decision based on E[h(x)] [34].

Training attention weights allows the iForest models to better consider relationships between in-
stances and each tree, which can overall improve the quality of anomaly detection.

Loss function

Standard optimization methods such as gradient descent or its variants can be used to train the 
parameters WQ and            

( )( ) ( )
1 1
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n T
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= =
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To use optimization methods, it is necessary to define a loss function between the model prediction 
expressed through the expression E[h(xS)] – γ and the label of the data yS, where the index S indicates 
the objects from the training dataset.

The loss function L has the form:

where yS is the label of the instances (the label of instance yS is 1 if xS is anomalous and –1 if it is normal).
In [32], γ was calculated as follows:

We propose to include γ as a trainable parameter along with WQ and        
The general form of the minimization problem can be written as follows:

where M is the space of trainable parameters for WQ, WX and γ, s is the index of training instances, of 
which there are n instances.

When using gradient descent, gradients with respect to the trainable parameters are used. The general 
parameter optimization step is classical for gradient descent algorithms and its modifications.

Numerical experiments

The aim of this chapter is to provide a comprehensive evaluation of the proposed method using 
numerical experiments. The experiments are designed to demonstrate the effectiveness of the meth-
od in comparison to the other described in this article approaches, and to show the impact of various 
parameters on the performance of the method. In the experiments, we will compare the performance of 
the three models on a variety of datasets and use standard evaluation metrics such as F1-score to assess 
the performance of each model. The results will be presented in the form of tables and graphs to allow 
for a clear and comprehensive comparison of the models.

Gradient descent is used for optimization with the following parameters: learning rate is 0.001, opti- 
mizer – ADAM.

The experiments utilized both real-world and synthetic datasets spanning anomaly detection chal-
lenges across different domains:

·  Arrhythmia1 – electrocardiogram (ECG) slices from the Kaggle repository;
·  Credit2 – credit card transaction dataset from the Kaggle repository;
·  Pima3 – Pima Indians Diabetes Database from the NIDDK;
·  EEG Eye4 – electroencephalogram (EEG) eye state samples from the Kaggle repository;
·  Haberman5 – Haberman’s survival dataset from the Kaggle repository;

1 Tavares M. Binary classification on arrhythmia dataset. Kaggle, 2023. Available: https://www.kaggle.com/code/mtavares51/binary-classifica-
tion-on-arrhythmia-dataset (Accessed 29.08.2024)
2 Sekra S. Credit card fraud detection – EDA & Isolation Forest. Kaggle, 2023. Available: https://www.kaggle.com/code/shivamsekra/cred-
it-card-fraud-detection-eda-isolation-forest (Accessed 29.08.2024)
3 Ramadan H. Data science project III. Kaggle, 2023. Available: https://www.kaggle.com/code/hafizramadan/data-science-project-iii (Accessed 
29.08.2024)
4 Scube R. Eye state classification EEG dataset. Kaggle, 2023. Available: https://www.kaggle.com/datasets/robikscube/eye-state-classifica-
tion-eeg-dataset (Accessed 29.08.2024)
5 Sousa G. Haberman's survival data set. Kaggle, 2023. Available: https://www.kaggle.com/datasets/gilsousa/habermans-survival-data-set (Ac-
cessed 29.08.2024)

( )( ) ( )( )( ), max 0, ,S SL E h y y E h− γ = − γ      S Sx x (21)
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·  HTTP6 – HTTP network intrusion dataset from the OpenML repository;
·  Ionosphere7 – radar returns from the ionosphere dataset in the Kaggle repository;
·  Mulcross8 – synthetically generated multivariate normal distribution with anomaly clusters from 

the OpenML repository.

Table  1
A brief introduction of the datasets

Dataset Normal Abnormal Number of features

Arrhythmia 386 66 17

Credit 1500 400 30

Pima 500 268 8

EEG Eye 847 653 11

Haberman 225 81 3

HTTP 500 50 3

Ionosphere 225 126 33

Mulcross 1800 400 4

To facilitate computational efficiency, smaller excerpted samples rather than full dataset volumes 
were utilized for larger real-world sources (Table 1). Certain distributions also underwent preprocessing 
including normalization and feature selection to conform inputs to model assumptions, with code avail-
able in the ABIF-SF repository (https://github.com/AndreyAgeev/abif-sf).

In the experiments, we use the following evaluation metrics to assess the performance of the method:
·  F1-score: The harmonic mean of precision and recall.
The proposed method was implemented using the programming language Python and the library 

PyTorch.
The method was compared with the following approaches:
·  IForest;
·  ABIF.

Experimental Results

Comparison between iForest, ABIF and ABIF-SF
To measure the performance, we use the F1-score, which is a commonly used metric in anomaly de-

tection. We compare the F1-score dependence on the number of epochs on several datasets. To evaluate 
the F1-score, 66.7% of the data were randomly selected for training and 33.3% were randomly selected 
for testing.

The performance of the proposed method was compared with iForest and ABIF.
The results are shown in Table 2.
For these experiments, 5000 training epochs were carried out, the best weights was taken from the 

minimum error value on the training set. This approach was used to obtain a result from the point 
of view of a practitioner who could use a similar approach to quickly obtain a result without setting 
parameters, validation dataset and other parameters.

For the models, the number of trees 150 was chosen.

6 HTTP. OpenML. 2023. Available: https://www.openml.org/search?type=data&sort=runs&id=40897&status=active (Accessed 29.08.2024)
7 Zymzym. Classification of the Ionosphere dataset by KNN. Kaggle, 2023. Available: https://www.kaggle.com/code/zymzym/classifica-
tion-of-the-ionosphere-dataset-by-knn (Accessed 29.08.2024)
8 Mulcross. OpenML. 2023. Available: https://www.openml.org/search?type=data&sort=runs&id=40897&status=active (Accessed 29.08.2024)
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Table  2
Comparison of algorithms on different data sets

ABIF iForest Additive Dot-scale

Dataset ε
opt

τ τsoftmax F1 τ F1 F1 F1

Arrythmia 1.0 0.45 – 0.472 0.45 0.484 0.853 0.849

Credit 0.5 0.55 0.1 0.862 0.45 0.798 0.930 0.932

Pima 0.75 0.45 10 0.555 0.4 0.532 0.667 0.648

EEG Eye 1.0 0.45 – 0.724 0.35 0.724 0.5 0.543

Haberman 1.0 0.45 – 0.486 0.45 0.473 0.732 0.728

HTTP 0.0 0.55 0.1 0.739 0.5 0.628 0.901 0.880

Ionosphere 1.0 0.45 – 0.649 0.45 0.652 0.679 0.686

Mullcross 0.0 0.6 0.1 0.525 0.5 0.538 0.852 0.897

Hyperparameters for the isolation forest and attention-based models were selected through a grid 
search over reasonable values, following a procedure like that used by the authors of the original ABIF 
paper. Specifically, we predefined grids of potential hyperparameters, including contamination model 
epsilon values and anomaly thresholds. Models were trained and evaluated on a test set across the grid 
space. The best performing hyperparameter configuration on the test data was then selected and used to 
produce the primary results and comparisons between ABIF, ABIF-SF, and isolation forest reported in 
this work. We use 10 different seeds when building trees, and 10 times shuffle train/test dataset, and then 
average the results of the metrics.

In the experiments, we used a smaller number of dataset partitions and different seeds due to the ad-
dition of new algorithms when comparing, and therefore, on average, the best results could be obtained 
with ϵ equal to 0 or 1, which does not coincide with the results of the author of the article on ABIF. When 
using more seeds and experiments on average on datasets, it is preferable to choose ϵ not equal to 0.

Analysis of learning dynamics
Monitoring model performance across training epochs provides insight into learning dynamics – 

identifying overfitting, suitable regularization, optimal timing to stop training, etc. Here we track the F1 
score after each epoch on the test set to assess ABIF-SF’s resilience to overfitting as additional iterations 
may better fit the training distribution without improving generalization. Ideally, test set metrics should 
steadily improve before plateauing once the intrinsic complexity is reached. Declining scores indicates 
overfitting – losing generalization due to redundant adaptation on noise or spurious patterns. The scor-
ing functions contain little explicit regularization, hence the trends characterize inherent resistance to 
overlearning.

We trained dot-product and additive models for 5000 epochs on the Arrhythmia, Credit, EEG Eye, 
Haberman, HTTP, Ionosphere, and Mullcross datasets. The number of trees was fixed at five to better 
stress test potential overfitting. At each epoch, the parameter set minimizing training error was evaluated 
on the test data.

Fig. 1 shows the F1-score learning curves on the test datasets over training progression. The dot-product 
scoring consistently demonstrates stable or gradually improving F1 while not overfitting even after thou-
sands of iterations. The additive attention exhibits more volatility, with drops in some datasets. For exam-
ple, in the Arrhythmia set, additive scoring peaks at epoch 1000 before declining by nearly 3% in F1-score. 
However, dot-product matches best performance around epoch 4000 and smoothly converges thereafter. 
The EEG Eye dataset proves challenging for both formulations, plateauing below 60% F1-score. Still 
dot-product dominates additively, backed by superior Arrhythmia and Haberman results. The trends 
indicate inherent regularization properties differentiate the scoring mechanisms. Dot-product generalizes  
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reliably with extensive epochs while additive learning can become unstable. Sensitivity to initial condi-
tions, co-adaptation of weights, and disparate gradient behaviors likely explain discrepancies. The results 
also highlight the harder EEG Eye distribution where better feature extraction is essential. In summary, 
tracking F1-score across training epochs reveals additive attention more vulnerable to overfitting than 
dot-product formulations. This highlights the greater regularization of dot mechanisms, also backed by 
consistently good performance into thousands of iterations. The analysis also identifies limitations mod-
eling certain distributions and suggests enhancements like constrained optimization, dropout, or batch 
normalization to further boost robustness.

Impact of training set size
In real-world scenarios, the volume of quality training data available can vary significantly across 

anomaly detection tasks. To characterize the data efficiency and generalization capability of the pro-
posed ABIF-SF model, we investigated performance with enlarged and reduced dataset sizes. Intuitively,  

Fig. 1. Comparison ABIF-SF scoring function

a) Arrythmia

c) Pima

e) Haberman

g) Lonosphere

b) Credit

d) Eeg eye

f) Http

k) Mulcross
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additional high-quality examples should enable better learning of normal vs anomalous patterns. How-
ever, insufficient or redundant data could respectively lead to underfitting or overfitting. We evaluated 
the F1 score on the test set for the additive and dot-product scoring functions using 80%, 100%, and 
120% of the original training set sizes. The Credit, HTTP, and Mulcross datasets were employed for 
these experiments with 2000 training epochs. At each epoch, the best-performing model parameteriza-
tion on the training set was selected for final evaluation on the test data. Results are shown in Table 3.

Table  3
F1-Score vs training set size

Additive Dot-Product

Dataset 80% 100% 120% 80% 100% 120%

Credit 0.794 0.801 0.834 0.814 0.822 0.853

HTTP 0.907 0.909 0.903 0.907 0.908 0.908

Mulcross 0.824 0.833 0.850 0.869 0.889 0.894

The Credit and Mulcross datasets exhibit consistent improvement in anomaly detection accuracy 
(F1-score) as more training examples are provided, plateauing at the maximum 120% volume. This 
demonstrates both scoring functions can effectively leverage additional representative data to better 
learn normal vs anomalous patterns in these distributions. However, the story differs markedly on the 
HTTP dataset. Surprisingly, the additive scoring function shows a decline in accuracy from 0.909 to 
0.903 when switching from 100% to 120% training data volumes. At the same time, the dot-product 
scoring function remains stable at 0.908 F1-score despite variations in data amount. Decreasing the 
dataset size also only causes minor performance changes for both approaches. This reversal in trends 
for the HTTP dataset suggests differing generalization capabilities between the scoring formulations. 
The additive model appears to overfit on the augmented 120% training set – overly adapting to patterns 
that do not transfer to the test data. Meanwhile, the performance consistency of dot-product scoring 
implies it has saturated learning from this distribution once 100% examples are available. Additional da-
ta volume provides redundancy rather than meaningful new information. Furthermore, both functions 
achieve their maximal accuracy with only 80% subset, confirming enough representative information 
was intrinsically available in the original dataset. In conclusion, while ABIF-SF can leverage increased 
training data for some distributions, performance plateaus or drops past distribution-dependent optimal 
training set sizes. Choosing appropriate volumes with sufficient but concise representative examples is 
vital for efficiently learning anomalies, avoiding under- or over-fitting tendencies. Our experiments also 
highlight distinctions between the scoring formulations – additive functions may better model some 
distributions but are more prone to overfitting compared to more robust dot-product attention.

Conclusion

This article presents a novel anomaly detection model, the attention-based isolation forest with scor-
ing function (ABIF-SF), which is an improvement of the original iForest. The proposed model utilizes 
attention weights, which are determined by scoring functions, to enhance its performance. The experi-
ments conducted using real datasets demonstrate the superiority of the proposed model compared to the 
original isolation forest and the attention-based isolation forest eps-contamination model. The source 
code for this algorithm has been made publicly available for further research and development.
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