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Abstract. One of the most challenging issues of voice biometrics rapid development is the need
to develop methods that can combine speed and accuracy. Traditional solutions tend to choose
a compromise between these two aspects, which either complicates the speaker verification
process or reduces accuracy, especially under real-world conditions in which background noise
and fluctuation in speech are substantial obstacles. This paper examines modern approaches and
their architectural features. The architecture is based on ResNet, originally designed for computer
vision tasks, which was modified and adapted for optimal performance in speech processing. The
proposed modification method based on a multi-layer cascade attention mechanism for feature
extraction from convolutional blocks is described in detail. This modification allows using fewer
layers for feature extraction, thereby increasing the speed of the model, and allows to deal more
effectively with the noise in the audio signal. The paper concludes with the model parameters
used in the training process, as well as key metrics such as EER and minDCF computed on the
VoxCelebl dataset. The results are compared with solutions built on other architectures. Through
experimentation, the authors were able to achieve a high level of accuracy, with a smaller number
of the neural network model parameters. This work brings us closer to a wider application of voice
biometric systems in various scenarios.
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AnHoTtamusa. OQHOI M3 caMbIX CIIOXHBIX MPOOJeM OBICTPOro pa3BUTHUS TOJOCOBOI OMOMe-
TPUU SBJSIETCSI HEOOXOAUMOCTh pa3pabOTKM METOIOB, CIIOCOOHBIX COYETaTh CKOPOCTh U TOY-
HOCTbh. TpaIWIIMOHHEIC PEIICHNS, KaK IMPaBUJI0, BELIOMPAIOT KOMITPOMMCC MEXKIY 3TUMU IBYMS
acIieKTaMM, YTO MPUBOIUT JIM0O K YCIOXKHEHUIO Tpoliecca Bepr(PUKALIMKU CITMKEPOB, JTU00 K
CHIDKCHUIO TOYHOCTH, OCOOCHHO B pealIbHBIX YCIOBUSIX, KOTaa (hOHOBHIM IIyM M KOJICOaHUS
peun SIBIISIFOTCS CYIIECTBEHHBIMU IPETITCTBUSIMU. B maHHOI cTaThe paccMaTpUBalOTCS COBpe-
MEHHBIE ITOJIXOIbI M UX apXUTEKTYPHBIE 0COOeHHOCTU. OCHOBOM TSI pa3pabOTKM apXUTEKTYPhI
nocayxuia ResNet, u3HauanbHO NpeaHa3HaAYeHHAs AJIs1 3a1a4 KOMITbIOTEPHOTO 3peHUsT, KOTO-
pas Obl1a MOAU(ULIIMPOBaHA U afallTUPOBaHAa JJIs1 ONTUMAaJbHOM paboThl B 00J1aCTU 00pabOTKHU
peun. [TogpoOGHO OMUCHIBACTCS MPEMIOXKEHHBIN METOI MOANMUKAIIMA Ha OCHOBE MHOTOCJIOM -
HOTO KaCKaJHOI'0 MeXaHM3Ma BHUMAaHMUS IJI U3BIICUCHUS ITPU3HAKOB M3 CBEPTOUYHBIX OJIOKOB.
Takas MoamduKams IMO3BOISICT MCIIOJb30BATh MEHBIICE KOJMICCTBO CIOCB IJISI M3BJICUYEC-
HUS TIPU3HAKOB, TEM CaMbIM YBEJIMYMBAsl CKOPOCTb PaOOTHI MOAEIU, a TaKxkKe MO3BOISIET 00-
see 3(pHeKTUBHO 6OPOTHCI ¢ BOSHUKIIMMMU IIyMaMM B ayIMOCUTHAJe. B 3aKkIloueHun cTaThbu
MpenCcTaBICHBl TapaMeTPbl MOJIEIN, UCIOJb30BaHHBIE B Mpollecce OOydeHHUsI, a TaKXKe KITI0-
yeBble MeTpuku, Takue Kak EER u minDCEFE, paccuntanHble Ha BbiOopke naHHbIX VoxCelebl.
Pesynpratel cpaBHUBAIOTCS ¢ PEIICHUSIMU, IIOCTPOCHHBIMM Ha IPYyTHX apXUTEKTypax. B xome
SKCIIEPUMEHTOB aBTOPaM YIaJI0Ch TOCTUYD BEICOKOTO YPOBHS TOYHOCTU IIPHU MEHBIIIEM KO-
YecTBe MapaMeTPOB MOACIN HEMPOHHOU ceTH. DTa paboTa mpuOIMKaeT Hac K 0oJjiee IMUPOKO-
MY IMIPUMEHEHUIO CUCTEM rOJI0COBOM OMOMETPUM B Pa3IUUHbIX CLIEHAPUSIX.

KmoueBbie c10Ba: BeprUKaIisI CIIMKEPOB, NICHTU(DUKAILINS CITMKEPOB, TOJIOCOBAsT OMOMETPHS,
CBEPTOYHBIC HEMPOHHBIE CETH, MEXaHU3M BHUMaHUsI, 00paboTKa peun

Jlna nutupoBanus: Aliyev A.A., Molodyakov S.A. ResNet-SV: Fast and accurate speaker verifi-
cation with a multi-layer cascade attention mechanism // Computing, Telecommunications and
Control. 2025. T. 18, Ne 1. C. 60—71. DOI: 10.18721/JCSTCS.18105

Introduction

Speaker verification is the core of the authentication process for many applications: security systems, ac-
cess control, financial transactions, virtual assistants, etc. It is a way to identify a person using his or her voice,
which is unobtrusive and natural. Its importance has increased with the digital revolution, with the increased
need for highly secure, reliable and user-friendly mechanisms of authentication. These speaker verification
systems use the personal characteristics of an individual's voice. They happen to be much more effective in
authenticating access than the traditional passwords or PIN codes, which can easily be stolen or forged.

Although, despite the numerous advances in speaker verification technology, there still are quite
many difficulties [1] that affect their effectiveness and wider application. The main issue is the varia-
bility of the human voice, which is affected by various conditions — from illness and emotional state to
aging. The human voice is also affected by environmental conditions — background noise and acoustic
environment of the room. Such variabilities can greatly affect the ability of the system to accurately
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recognize the speaker’s voice; this again leads to an increase on error rate. It also depends on trade-off
between accuracy and speed, which is an extremely important issue: faster systems decrease accuracy,
while ultra-precise systems may not work in real-time conditions for many applications.

The purpose of this work, therefore, is to address the above-stated challenges by exploring the poten-
tial of different convolutional neural network (CNN) architectures [2] to improve the speed and accu-
racy of the speaker verification systems. CNNs, therefore, provide state-of-the-art performance over a
wide range of deep learning architectures, since they allow gradients to propagate efficiently through a
deep network. With all this in view, we tend to develop a speaker verification system based on these ar-
chitectures that can achieve high accuracy in the face of voice variability and environmental noise, and
operate at a speed sufficient for the system to be used in real-time applications.

Therefore, this paper makes two main contributions to the field of speaker verification. The first
one is introducing a new architecture based on the best practices from different CNN architectures,
designed to fit speaker verification problems. The second one is bringing state-of-the-art advances in
deep learning techniques, such as feature aggregation techniques with attention mechanisms, to better
extract and process voice characteristics. We also conduct rigorous testing of the system to demonstrate
that it outperforms the existing benchmarks in both accuracy and speed. Finally, the study provides val-
uable insights into the application of CNNs in speech processing tasks, hence opening a way for further
research and development in this area.

Related Works

Survey of existing methods

Speaker verification technologies have come a long way from traditional to very advanced deep learn-
ing-based approaches. Firstly, the traditional methodologies, Gaussian Mixture Models (GMM) [3]
and Hidden Markov Models (HMM) [4] approaches led to statistical modeling of voice characteris-
tics. These methods mostly used hand-crafted features, such as Mel-Frequency Cepstral Coefficients
(MFCCs) [35], designed to characterize the speaker’s voice. With the enormous success of deep learn-
ing, neural network-driven methods have managed to revolutionize the speaker verification landscape.
Most of them use three types of models: Deep Neural Networks (DNN), CNNs, and Recurrent Neural
Networks (RNN), which have proven their ability to automatically learn hierarchical representations of
raw audio data. Later Long Short-Term Memory (LSTM) [6] networks emerged, and more recently —
attention mechanisms to better capture the temporal dynamics and dependencies in speech data.

Reference architectures in speaker verification

To benchmark the performance of our ResNet-SV architecture, we compared it with several estab-
lished models in speaker verification:

» Wav-LM [7]: it is the state-of-the-art speech model developed by Microsoft, generally used for vari-
ous types of speech recognition and understanding. It leverages the transformer architecture, proven quite
effective for a wide range of applications demanding natural language processing. Wav-LM operates di-
rectly on raw audio waveforms with self-supervised training on massive amounts of unlabeled audio data.
This way, the model gets to learn powerful speech representations useful for multiple downstream tasks,
such as speech transcription, speaker identification, and emotion detection. The model demonstrates ro-
bustness, showing good performance over different accents and in varied speech scenarios.

+ ECAPA-TDNN (Emphasized Channel Attention, Propagation and Aggregation in Time Delay
Neural Network-Based Speaker Verification) [8]: it advances the TDNN architecture, including chan-
nel-wise attention mechanisms and methods for improving feature aggregation. The model delivers an
exceptionally high performance in the extraction of the fine-grained speaker characteristics from com-
plex audio input and thus provides an extremely useful application for such biometric authentication
and forensics areas. ECAPA-TDNN is particularly noteworthy in low-resource and challenging acoustic
settings.
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* Deep Speaker Recognition (ResNet-50) [9]: a ResNet-based model that extracts speaker embedding
directly from spectrograms for verification. This model, like ours, is based on the original ResNet model,
but without the improvements, we made in this study, and is a direct competitor to our model.

Thus, these are baseline models, both traditional and deep learning-based, and as such they repre-
sent a relatively comprehensive overview of current methods and best practices in speaker verification.

Limitations

Despite these remarkable achievements, current speaker verification techniques have some limita-
tions. Classical techniques perform quite well, but fail to cope with high dimensionality of the speech
data and usually provide much lower accuracy than deep learning models. Another challenge with deep
learning-based methods is that they are computationally inefficient. This is especially true for deeper
models, which require enormous resources for training and computation. In addition, the accuracy of
many other models is reduced by issues, such as background noise, variations in emotional state, and
speech irregularities associated with illness. Some of them suffer from overtraining due to the peculi-
arities of training pipelines and architectures. Therefore, there is an obvious interest in building more
robust and efficient models that can maintain high accuracy even in the most challenging situations.

Rationale for CNNs

CNNs have shown the potential to address such limitations observed in current speaker verifica-
tion approaches. First developed for the task of image recognition, very deep CNNs like ResNet have
shown success in varied domains of deep learning due to an innovative architectural feature that allowed
training networks hundreds of layers deep. The main idea of ResNet is the learning through shortcut
connections, allowing the gradients to flow across the network without any obstructions, hence avoid-
ing the vanishing gradient problem, that most deeper architectures face. This increases not only the
learning capacity of the model, but also its computational efficiency, since this allows learning more
representations without significant growth in the usage of computational resources. ResNet shows great
promise for speaker verification, since it is able to capture the temporal dynamics and features of normal
to complex voice signals, even under adverse conditions, with greater accuracy than other architectures.
Besides, their efficiency and scalability would make them to be used in the cryptographic scheme for
real-time verification applications, an area where there is a pressing need. The proven success in various
domains and unique strengths of the explored application of CNNs in the field of speaker verification
make it a quite logical and very promising way to overcome the existing problems.

Materials and methods

Architecture overview

The strategic architectural decisions in the proposed convolutional network architecture for speaker
verification should be aimed at achieving the best trade-off between speed and accuracy. Thus, the archi-
tecture developed in this work is supposed to be a ResNet structure with modified ResNet blocks, each
containing two main paths: the main learning path and the shortcut connection. At the convolutional
layers, batch normalization is used, and then ReLLU is implemented as an activation function to enable the
learning of non-linearity. Both convolutional layers are set to learn and extract features of the input signal
at various abstraction levels, and the shortcut connections help the gradients flow directly without facing
the problem of vanishing gradients.

As you can see from Fig. 1, the architecture consists of the following parts:

1. Input: Starts with a raw audio waveform, which is transformed into a Mel spectrogram using
F-Banks (Filter Banks) [10] features.

2. ResNet-SV Blocks with Convolutional Layers: A series of 3x3 and 1x1 convolutional layers with
increasing feature maps are applied, capturing hierarchical audio features. We have reduced the num-
ber of channels in convolutional layers, unlike the original ResNet or Deep Speaker Recognition
ResNet.
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Fig. 1. ResNet-SV architecture

3. Attention Pooling: Each convolutional block is followed by an attention [11] pooling layer to focus
on important parts of the feature maps.

4. Attention Layer: Outputs from all attention-pooled layers are merged.

5. Fully Connected Layer: Finally, a fully connected layer generates 256-dimensional speaker embed-
ding as the output.

We use features from different blocks of our convolutional architecture to be able to capture differ-
ent levels of abstraction of audio features, the upper layers capture more complex audio data, while the
lower layers often display more basic information. A more detailed architecture of ResNet-SV blocks is
shown in Fig. 2.

As can be seen from Table 1, unlike the original ResNet paper [9], we have reduced the number
of channels in the convolutional layers by a factor of two, which naturally had a strong impact on the
learning and inference speed, while not significantly affecting the quality of the neural network due to
the way the architecture is structured.

As in other similar ResNet architectures, we can increase the size of our network by increasing the
number of ResNet-SV blocks, some of them are shown in Table 1.

One of the significant improvements of ResNet-SV is the inclusion of an attention mechanism [12]
between the convolutional blocks, designed specifically to make the model better focus on those salient
features that are critical in between-speaker discrimination. The context-aware attention module is used
here to dynamically weight between diverse region importance of the input feature map. The mecha-
nism of our attention pooling layers is as follows:

1. First, we calculate a (attention) for the original input feature map (x,). We use two Conv1D layers
with tanh activation function. Here we take tanh function activation instead of ReLU, because tanh
function converges better and faster. After this, we calculate SoftMax function values for output.

o= G(Conle(tanh(Conle(x,- )))),

el
c(x)i =

e’
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Table 1
ResnetSV architecture
Layer name Output size ResNet-SV-50 ResNet-SV-101 ResNet-SV-152
convl T x 80 x 32 3x3.32
[1x1.32] [1x1.32] [1x1.32]
ResNet-5V-Block T x 80 x 128 3x3.32 |x3 3x3.32 |x3 3x3.32 |x3
(resnet-sv_conv2_X)
| 1x1.128 | | 1x1.128 | | 1x1.128 |
[ 1x1.64 ] [ 1x1.64 ] [1x1.64
ResNet-5V-Block T/2 x 40 x 256 3x3.64 |x4 3x3.64 |x4 3x3.64 |x4
(resnet-sv_conv3_X)
| 1x1.256 | | 1x1.256 | | 1x1.256 |
ResNet-SV-Block [1x1.128 [1x1.128 [1x1.128
esNet-5V-Bloc T/4 % 20 x 512 3x3.128 x6 3x3.128 [x6 3x3.128 |x6
(resnet-sv_conv4 Xx)
[ 1x1.512 [ 1x1.512 | 1x1.512
[1x1.256 [1x1.256 [1x1.256
ResNet-SV-Block T/8 x 10 x 1024 3x3.256 |x3 3x3.256 |x3 3x3.256 |x3
(resnet-sv_conv5_Xx)
| 1x1.1024 | 1x1.1024 | 1x1.1024
Attention Pooling 20480 _
(atn_conv2_x)
Attention Pooling 20480 _
(atn_conv3_x)
Attention Pooling 20480 _
(atn_conv4 x)
Attention Pooling 20480 _
(atn_convS_x)
Attention 81920 —
Fully Connected 256 —
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=
I

2. Then we calculate the mean and variance [13], taking into account the weights from the attention
layer.

T
mean — Zi:l(ai 'xi) :
T

> (a,-x, —mean)
= :

var =

3. Then we calculate the standard deviation based on the variance.

std =+/var.

We perform these calculations for each feature, in our case F' o — 10240. Since we count mean and std
for each feature, we get F’ o = 2710240 = 20480 features. We use the attention layers in this way after each
of our ResNet blocks. At the end we use the obtained arrays of mean and std values, combine them and
feed them further to the next layer of attention.

In order to improve robustness, especially in noisy conditions, a noise-aware training strategy is im-
plemented into the model. The general approach for improved invariance is to augment training data with
different types of background noise. This, in turn, increases invariance and helps the network learn more
discriminative features in noisy environments.

Data preprocessing

Below are the pre-processing stages that the pipeline undergoes in preparing the raw audio data for
effective learning.

In the first stage, we augment the data with a speed perturbation and a volume change. In addition,
we use various noise and other signals from datasets such as RIRS [14] and MUSAN [15]. Each of these
types of augmentation is applied to each example with a probability of 0.6. This approach allows us to
secure our neural network from overfitting and improves performance under challenging conditions.

Since raw audio contains too much data that we often do not need, we need to convert raw audio into
a more meaningful data type. In speech processing tasks, spectrograms are often used. There are several
ways to create a spectrogram. We decided to use filter banks (F-banks). In the case of audio signal process-
ing, F-banks serve to segment the signals into shorter, overlapping frames to capture the dynamic nature
of speech more effectively. F-banks apply a set of band-pass filters corresponding to the critical bands of
human hearing to each frame to obtain a representation with bands representative of specific frequency
ranges. This follows close to the auditory scale of human perception in every frame. These F-bank ener-
gies have a normal zero-mean and unit variance across all frames. Normalization acts as a standardization
method that reduces influence due to varying amplitudes of signals on the performance of the model, thus
assuring that the focus is on the spectral characteristics of the audio rather than on loudness.

We used two second segments, the frame size of which was 25 ms with a 10 ms step. Taking into ac-
count the input segment size and step size, we get the final input tensor as (B, 80, 200), where B is the
batch size.

Training procedure

ResNet-SV is trained on curated data that collects several publicly available corpora, providing vari-
ations in accent, dialect, and recording conditions. The training, validation, and test splits of the dataset
are kept independent of each other, preserving speaker independence from one split to another, except
that data values do not creep through splits.

The AAM-Softmax [16] loss is applied to the model, which helps keep high classification accuracy
value. We use the Adam [17] optimizer with adaptive learning rate features and fast convergence. The
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parameters are trained using a learning rate initialized at 0.001 and have a schedule decay. The batch
size is 64 and the epochs are set to a maximum of 100, with early stopping based on the validation loss
to curb overfitting.

Evaluation metrics

We evaluate ResNet-SV using two core metrics that have seen wide use in the speaker verification
community — Equal Error Rate (EER) [18] and the minimum Detection Cost Function (minDCF) [19].
The EER point is the point, at which the false acceptance rate is exactly equal to the false rejection
rate and points out equal errors for both, which can be taken as the overall error rate of the system. The
minDCEF is one more factor that has been implemented to correct the decision threshold in the verifi-
cation cost evaluation. The minDCF is found by searching for the particular system configuration's cost
that minimizes the detection cost function. These metrics provide holistic views on the effectiveness and
practical utility of the model used for speaker verification tasks.

The EER itself cannot be represented as a mathematical formula because it refers to the point of
intersection of two errors:

FAR(t)=FRR(1),

where FAR(?) is the rate, at which impostor attempts are incorrectly accepted above the threshold #;
FRR(%) is the rate, at which genuine attempts are incorrectly rejected below the threshold ¢.

The minDCF formula is as follows:
miss

Cdet(t):C Xpmiss (t)xptarget +Cfaxpfa (t)X(I—P )a

target
where Cmiss is the cost of a miss (false rejection); C P is the cost of a false alarm (false acceptance);
P . (7) is the probability of a miss (false rejection rate) at threshold #; Pfa(t) is the probability of a false
alarm (false acceptance rate) at threshold #; Ptarget is the a priori probability of the speaker being the
target (i.e., a genuine user).

The minDCF is then calculated by finding the value of # that minimizes C, (7).

Experiments

Datasets

In this study, the VoxCeleb [20] datasets have been used for training and testing the proposed ResNet-
SV model. This dataset is one of the best in benchmarking for speaker verification.

Training dataset VoxCeleb2 contains over a million utterances from 6112 celebrities collated from
YouTube video sources. It represents a full range of accents, languages, and acoustic conditions, making
it perfect for training very vibrant models in speaker verification. The quantity and diversity of VoxCeleb2
makes it possible to train deep neural networks, which means that models trained on it generalize well to
populations of different speakers and conditions.

Testing Dataset VoxCelebl includes more than 100000 utterances of 1251 celebrities. This dataset
shares the same characteristics with VoxCeleb2, except that the speakers are different, so it provides
a rigorous test to the model's generalization ability on unseen data. This is a standard dataset type in
speaker-verification research tasks, given that VoxCelebl is intended for testing and hence for direct
comparison with earlier works.

These VoxCeleb datasets, containing real-world complexity, diversity, natural noise, and other vari-
ability, are a very suitable domain for evaluating the efficacy of the proposed noise-robust convolution-
al network architecture. We also chose the VoxCeleb dataset, as it is a global benchmark standard for
speaker verification tasks and allows us to more easily compare our work with other works and simplifies
the replication of our work.
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Experimental setup

Experiments are carried out on an NVIDIA SuperPOD A100 high-performance computing clus-
ter node, which was equipped with 8x NVIDIA A100-SXM4-40GB graphics cards and with 2x AMD
EPYC 7742 processors with 64 cores, 128 threads with 1TB of RAM.

Implementation details

For replicability, the following implementation details are provided:

Preprocessing: The audio was resampled at 16 kHz, and the feature extracted was the Mel spectro-
gram using F-bank features. The short-time Fourier transform (STFT) of the audio signal was used to
get the window size at 25 ms with a 10 ms step.

Model Training Parameters: The model was trained using an Adam optimizer. For training and eval-
uation, the batch size used was 64 samples.

Evaluation Protocol: The speaker verification performance was evaluated on a standard split of the
VoxCelebl test set, which ensures a fair comparison of the performance presented in this experiment
with the baseline and other architectures.

This will give an even more robust, and at the same time, reproducible setup for other researchers.

Results and discussion

Performance evaluation
In summarizing the evaluation results of the proposed ResNet-SV architecture and comparing it
with baseline models, we focus mainly on EER and minDCFE.

Table 2
Speaker verification models comparisons

EER minDCF
Model Params

Vox1-0 Vox1-E Vox1-H Vox1-0 Vox1-E Vox1-H
WavLM Large 316.62M 0.62 0.66 1.32 — — —
WavLM Base+ 94.70M 0.84 0.93 1.76 - — —
ECAPA-TDNN (C=512) 6.2M 1.01 1.24 2.32 0.1274 0.1418 0.2181
ECAPA-TDNN (C=1024) 14.7M 0.87 1.12 2.12 0.1066 0.1318 0.2101
ResNet-50 25.6M 3.95 4.42 7.33 0.4290 0.5240 0.6730
ResNet-SV-50 (Ours) 13.76M 0.68 0.82 1.48 0.060 0.089 0.135
ResNet-SV-101 (Ours) 18.52M 0.62 0.73 1.36 0.055 0.078 0.127
ResNet-SV-152 (Ours) 22.45M 0.54 0.68 1.29 0.049 0.071 0.119

Table 2 presents performance characteristics for various speaker verification models with three test
conditions of the VoxCeleb dataset: Vox1-O (original), Vox1-E (extended), and Vox1-H (hard). Each
model is evaluated using EER and, where available, minDCF. The models vary in complexity, from the
large-scale WavLM Large with over 300 million parameters to smaller models like the ECAPA-TDNN.
Notably, the WavLM models do not report minDCF values. The data demonstrates a range of perfor-
mances with some models, particularly the ResNet-SV series developed by us, showing notably lower
EER and minDCEF, suggesting better verification accuracy.

Moreover, in terms of performance, ResNet-SV improves remarkably with respect to the baseline
models, reporting the lowest EER and minDCF over all the considered methods. This is an indication
of the clear existence of a substantially higher level of accuracy and lower cost of errors in the task of
speaker verification, providing further evidence of the effectiveness of our devised attention mechanisms
and noise-aware training of the convolutional network architecture.
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Analysis

The results indicate several key insights.

Robust to Noise: ResNet-SV performs better, hence has stronger feature extraction capabilities,
where the model could focus well on salient speaker characteristics while effectively reducing the effect
of background noise by a built-in attention mechanism and training strategy aware of the noise. This is
especially evident in the Vox1-H dataset, where there are complex examples.

Efficiency and Scalability: Convolutional connections in the deep architecture of ResNet-SV assure
efficient training and inference with real-time applications, where modern hardware requires high
throughput.

Strong generalization to different speakers and environments is a key attribute in practical speaker
verification systems. The improved performance on the VoxCelebl test set — unseen during training —
provides empirical evidence of the improved generalization of ResNet-SV.

Interpretation of the results

We validate the effectiveness and efficiency of the proposed ResNet-SV architecture for speaker ver-
ification through our experimental results. With a significantly lower EER and minDCF compared to
baseline models, it proves that it can indeed verify speakers more accurately, even under adverse condi-
tions. In particular, attention mechanisms and noise-aware training strategies have improved the atten-
tion to relevant speaker characteristics and the robustness to background noise in the model.

The convolutional connections ensure the efficiency of the model. Thus, ResNet-SV quickly pro-
cesses the inputs and makes verification decisions even with the much-required deep architecture in
real-time applications. ResNet-SV balances high accuracy and performance efficiency, which is an im-
portant achievement for speaker verification.

Comparison with previous work

Compared to traditional models such as ResNet and newer deep learning models like Wav-LM and
ECAPA-TDNN, ResNet-SV significantly improves the verification performance. Similar attempts
have largely failed to achieve this goal in their approach towards restoring the degraded accuracy of
noisy conditions, while achieving computational efficiency. The improved performance of ResNet-
SV, in this case, is measured by lower EER and minDCEF, indicating a significant improvement over
these models. Additionally, the attention mechanisms embedded in the architecture of the convolu-
tional network for the nuances of speaker verification clearly separate our work from previous works,
which mainly tackled either architectural advances or feature-level improvements, without properly
covering both aspects.

Limitations and challenges

Despite the promising results, a number of limitations and challenges must be acknowledged:

Computational Resources: Training and fine-tuning of ResNet-SV requires enormous computations,
which might not be available in most of the research or production systems.

Model Complexity: Despite very good performance, model complexity prevents the developed architec-
ture from being used in resource-limited environments or in applications that are sensitive to the extremely
low-latency processing of information.

Generalization in Various Conditions: How well the model generalizes to such a wide range of settings
— more diverse than those in VoxCeleb datasets and potentially including conditions that are more ex-
treme — remains to be fully tested.

The design choices will inevitably lead to increased complexity in both the system and the training,
which will help to expand the frontiers of finding more accurate, efficient, and robust speaker verifica-
tion systems.

Future studies should aim to address these limitations, as well as discuss the strategies that might
reduce the computational demand, make models more portable, and improve the generalization capa-
bility to cover a wider range of speakers and conditions.
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Conclusion and further research

In this work, we proposed a new convolutional network architecture for speaker verification, named
ResNet-SV, having an attention mechanism and trained with noise-awareness to ensure the accura-
cy and robustness of the model to environmental noise. The rigorous experimental comparison also
proved that the tested ResNet-SV model achieved significantly improved performance compared to the
already existing baseline models, with significantly lower EER and minDCEFE. The integrated attention
mechanisms in the convolutional blocks played an important role in focusing on only relevant speaker
characteristics, while the noise-aware training strategy further improved the resilience of the model to
background noise. Those results indicate the potential applicability of deep learning, more precisely the
ResNet family of CNNs, to enhance the state-of-the-art in speaker verification systems towards more
accurate, efficient, and robust setups.

This is very important in that it allows us to chart the path forward for speaker verification systems
that can effectively work in noisy conditions with variables found in the real world, conditions, which
is known to be particularly challenging. ResNet-SV not only addresses these issues, but also sets a new
standard in terms of performance and makes speaker verification technology generally more applicable
to many, if not most, scenarios and environments.
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