\

Computing, Telecommunication and Control, 2025, Vol. 18, No. 1, Pp. 23-35.
NHdopMaTurKa, TeNEKOMMyHUKaumm 1 ynpasneHme. 2025. Tom 18, N2 1. C. 23-35.

Research article @ 013
DOI: https://doi.org/10.18721/]JCSTCS.18102 T
UDC 004.94

A METHOD FOR MODELING OF INDIVIDUAL AGENT
BEHAVIOR IN THE PROCESS-NETWORK PARADIGM
OF DISCRETE-EVENT SIMULATION

A.M. Sabutkevich & , I.V. Nikiforov, A.V. Samochadin

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

= artem.sabut@gmail.com

Abstract. Due to the active growth of demand for cloud resources, the task of increasing the
efficiency of their use becomes relevant. One of the approaches to solving this problem is the
application of discrete-event simulation in the process-network paradigm, which allows describing
the modeled process in the form of processing nodes united in a single network. However, this
paradigm does not consider the individual behavior of agents, which reduces the adequacy of the
resulting models. The paper presents an approach to assessing the adequacy and significance of
simulation models, and proposes a method that allows specifying and considering of the individual
behavior of agents in the simulation process, implemented in accordance with the process-network
paradigm. The application of this method allows increasing the applied significance of the models
of the processes under study. The paper describes the integration of the proposed method into
systems implementing the process-network paradigm and presents its software implementation.
The latter allows to investigate the influence of considering individual agent behavior on the
adequacy and significance of the model of virtual machines placement relative to physical servers.
Due to the application of the method, it was possible to achieve an increase in the adequacy of
the model under study by an average of 12.5% and, as a consequence, to increase the number of
significant models by 65% for the selected adequacy threshold value.

Keywords: discrete-event simulation, agent-based simulation, process-network paradigm, model
adequacy, simulation of cloud infrastructures

Citation: Sabutkevich A.M., Nikiforov I.V., Samochadin A.V. A method for modeling of indi-
vidual agent behavior in the process-network paradigm of discrete-event simulation. Computing,
Telecommunications and Control, 2025, Vol. 18, No. 1, Pp. 23—35. DOI: 10.18721/JCSTCS.18102

© Sabutkevich A.M., Nikiforov I.V., Samochadin A.V., 2025. Published by Peter the Great St. Petersburg Polytechnic University



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, VICKyCCTBeHHbIl‘/II NHTENNEKT

>
I
Hay4dHas cTaTbs @ 013)
DOI: https://doi.org/10.18721/]JCSTCS.18102 T
YK 004.94

METO4 CUMYNAUUU UHAUBUAYATIDHOTO
NMOBEAEHUA ATEHTOB B MPOLLECCHO-CETEBOU NAPAAUIME
OUCKPETHO-COBbITUMHOIO MOAE/IUPOBAHUSA

A.M. CabymkeBuu = , N.B. HukugopoB, A.B. CamouaduH

CaHkT-MNeTepbyprcknii NoAnUTEXHUYECKUA yHUBEepcuTeT MNeTpa Benunkoro,
CaHkT-NeTepbypr, Poccuitickaa Pepepauma

= artem.sabut@gmail.com

AHHOTamuA. B CBSI3M ¢ aKTMBHBIM POCTOM CIIpoca Ha OOJIauyHbIe pecypchl aKTyalbHOM CTa-
HOBUTCS 3a/iaya MOBBIIICHUST 3(PDEKTUBHOCTH UX MCIOJb30BaHUsI. OOIHUM U3 IMOAXOIO0B s
pelIeHNsT JaHHOM 3aJayd SIBJIIeTCS MPUMEHEHNE TUCKPETHO-COOBITUITHOTO MOIECIMPOBAHUS B
MPOLIECCHO-CETeBOU TMapaaurMe, MO3BOJSIONICH ONUCcaTh MOJIEIUPYEMbI Mpoliecc B BUIE y3-
JIOB-00pabOTYMKOB, O0OBEIMHEHHBIX B ¢AIMHYI0 ceTh. OMHAKO JaHHas ITapaanTMa He YIYUThIBA-
eT MHINBUIYaIbHOE MTOBEICHNUE areHTOB, YTO CHIDKAET aJlcKBaTHOCTh MOTyJaeMbIX Mofeicii. B
cTaThe MPEeaCTaBICH MOAXOMA K OLIEHKE aleKBAaTHOCTU M 3HAUMMOCTH UMUTAIIMOHHBIX MOJETIEH,
a TakXKe MPeUIOKEH METO/I, TTO3BOJISIIONINI 3aaBaTh U YYUThIBATh MHAWBUAYAIbHOE TTOBEACHUE
areHTOB B MPOIECCe CUMYJISIIIUU, Peau3yeMOil B COOTBETCTBHUHU C ITPOLIECCHO-CETEBOI IMmapaanr-
Mmoii. [IpruMeHeHNe TaHHOTO MeToAa ITO3BOJISICT MOBBICUTE IIPUKIATHYIO 3HAYMMOCTDb MOJEIeH
HCCIIeAyeMBIX TIpolieccoB. B paboTe ommcaH Iporecc MHTETpallui MPEIIOKEHHOTO METoIa B
CHCTEMBI, peau3yIolKe MPOLIECCHO-CETEBYIO ITapaaurMy, a TakxKe IpeacTaBieHa IporpaMMHast
peanu3ays IpeIoXKeHHOTO METoa, C TOMOIIIbI0 KOTOPOIl MPOBEIEHO UCCIeA0BaHNE BAUSHUS
ydeTa UHIMBUAYaJIbHOIO ITOBEIEHUs areHTa Ha aJeKBaTHOCTb U 3HAYMMOCTh MOJIEIU pa3Mellle-
HUS BUPTYaJbHBIX MalllMH OTHOCUTEILHO (hM3MUICCKIX cepBepoB. biaromaps mpuMeHeHUO Me-
TO/A YAAJIOCh JOCTUYb ITOBBILIEHUS A€ KBATHOCTU UCCIEAYEMO MOENH B cpeaHeM Ha 12,5% u,
KakK CJIe[ICTBUE, IOBLICUTDH KOJIMYECTBO 3HAYMMBIX MojieJieil Ha 65% a5t BLIOpaHHOIO IIOPOTrOBO-
ro 3HAYCHMSI aJeKBATHOCTU.

KoiiouyeBbie ci0Ba: TUCKPETHO-COOBITUITHOE MOMIEIUPOBAHUE, areHTHOE MOJEIMPOBAHUE, IPO-
LIECCHO-CeTeBast MapaanurMa, anekKBaTHOCTh MOJIEIU, MOIETMPOBaHNE O0JaUHbIX MH(MPACTPYKTYP

Jlna nutupoBanus: Sabutkevich A.M., Nikiforov 1.V., Samochadin A.V. A method for modeling of
individual agent behaviorin the process-network paradigm of discrete-event simulation // Computing,
Telecommunications and Control. 2025. T. 18, Ne 1. C. 23—35. DOI: 10.18721/JCSTCS.18102

Introduction

The use of cloud infrastructures is one of the most promising areas of technology development [1], but
the effective utilization of cloud distributed resources is often associated with the solution of NP problems
such as determination of optimal resource allocation and defragmentation [2], organization of distributed
training of machine learning models [3] and others. Simulation modeling [4], in particular process-net-
work paradigm of the discrete-event simulation [5], is used to solve problems of this class.

The process-network paradigm allows to describe the simulated process in the form of processing
nodes connected in a single network, through which agents move during a simulation [6]. Generally, the
individual behavior of agents is not considered in discrete-event simulation. However, in order to create
adequate and significant models of complex processes in the field of cloud technologies, the ability to
consider and further analyze the behavior of agents is necessary.

Consequently, the task of improving the adequacy and significance of models by simulating indi-
vidual behavior of agents within the process-network paradigm of discrete-event simulation is relevant.

© CabyTkeBuy A.M., Hukudopos W.B., CamoyaanH A.B., 2025. N3paTtensb: CaHKT-MeTepbyprckuii NONUTEXHUYECKWIA yHUBEPCUTET NeTpa Benmkoro



4 Intelligent Systems and Technologies, Artificial Intelligence >

The purpose of this work is to improve the adequacy and significance of complex process models
in the cloud technology domain through a method of simulating individual agent behavior in a pro-
cess-network paradigm implemented in a discrete-event simulation system.

Maetrics of model adequacy and significance

The model adequacy metric determines the degree of closeness of the analyzed model to the corre-
sponding representation of the real-world process, which has a direct impact on the informativeness and
applied significance of the obtained simulation results [7].

The comparison of simulation results obtained by the model with the actual results of the behavior
of the real process at equal values of input parameters is used to assess adequacy [8]. Actual results are
the results obtained experimentally or theoretically, for example, by using heuristics. There are two main
types of approaches to assessing model adequacy:

1) according to variance of deviations of simulation results from the mean value of actual results;

2) according to the average values of simulation and actual results.

The adequacy metric can be calculated based on variance of deviations of simulation results from
the mean value of actual results, since the obtained results and initial values of parameters are statisti-
cal data, which allows using methods of statistical theory of estimation and hypothesis testing for this
comparison [9—11]. The F-test, the Pearson's chi-squared test or the Kolmogorov—Smirnov test can be
used for comparison of variances.

However, this approach imposes limitations on the analyzed results considered as statistical data.
For example, to use the F-test, as the universal method, which is independent of the sample size, it is
necessary to guarantee that the data have a normal distribution.

In this regard, the use of the approach of assessing the adequacy of the model by the variance of de-
viations of simulation results from the mean value of actual results is not possible within this work, since
the resulting data can be distributed in any way.

Assessment of model adequacy by mean values of the results involves checking the proximity of the
mean values of each component of the simulation results to the known mean values of the corresponding
component of the actual results [12, 13].

This approach will be used in this work, since it does not impose additional restrictions on the ana-
lyzed data.

Proposed metrics of adequacy and significance

As a quantitative indicator of the model adequacy metric, we will use the ratio of actual estimates of
the model target metrics determined by the model developer and their values obtained in the simulation
process as follows:

n
;wi vti _vsi
MA=E=_——
Z M}l vti

i=1

where 7 is the number of target model metrics selected by the model developer; w is the weight of each
target metric; v is the actual evaluation of the value of the target metrics; v_is the value of the target
metric obtained during the simulation.

The model significance metric is determined based on the adequacy metric value as follows:

G 0, MA<T
L, MA>T

where 7 is the model adequacy threshold defined by the model developer.

25



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, VICKyCCTBeHHbIl‘;I NHTENNEKT >

finishFailed

vmGenerator  allocato executor releaser finishSuccess

O—& 9

CPU
() usageOfCPU

Fig. 1. A simplified model of virtual machines placements in accordance with the process-network paradigm

If the value of the model significance metric takes the value that is equal to one, then the model is
considered significant for the selected adequacy threshold.

Components of the process-network paradigm notation

The simulation systems (AnyLogic [14], Arena [15], SIMAN [16]), which implement discrete-event
simulation in the process-network paradigm, are based on similar proprietary notations and languages,
which in general can be represented through the components described below.

The process under study, for example, the selection of an optimal route for sending a packet within a
physical network, is formally specified by means of a model. A model is an entity that is characterized by
general information and aggregates components used to describe the properties and behavior of a pro-
cess [17]. The same process can be described through different models depending on the requirements
to the modeling results.

The main types of model components in considered modeling notations, in accordance with the pro-
cess-network paradigm, are blocks and links between them, defining in aggregate a directed network [5].
Each block has a behavior specific to its type and the number of ports used to specify the links between
blocks. An example of a simplified model of virtual machines placement relative to physical servers,
implemented using AnylLogic in accordance with the process-network paradigm, is presented in Fig. 1.

During simulation, blocks can generate events, which are applied to the model at a given point in
model time [17]. Each of the events contains a pointer to the handler that will be called at the moment
of event application. The handler in the model can be either the block that generated the event or a
third-party service that implements the handler interface.

It is assumed that the event changes the state of the model, where the state of the model means the
set of values of its properties at a certain point in time.

Another type of components is an agent which is a digital twin of a real-world object [18], characterized
by information of general identification and classification nature. The movement of agents within the net-
work is carried out through events that contain pointers to agents. By sequentially creating and processing
events by blocks, agents move from generating blocks to absorbing blocks.

Blocks maintain a common interface for interacting with each other, which includes the operations
listed below:

* initialization — implements the logic of initializing the initial state of a block when the simulation
starts. During initialization events can be created, if no events are created at this stage — the simulation
is terminated;

* check of the possibility of moving to a block — determines the possibility of an agent moving to
a block based on the position of the currently processed block and the specified network structure. For
example, if the number of agents in a block has reached its capacity, it is impossible to move to it;

26



4 Intelligent Systems and Technologies, Artificial Intelligence >

 transition to a block — implements specific behavior of a computational block, including the
creation of events. In the base case — it checks the possibility of transition to the next block, and if the
transition is possible, it processes it;

+ agent request from a block — notifies the block that one of the next blocks in the network is ready
to accept an agent, in other words — a transition can be realized to one of the next blocks in the network.

The simulation process is implemented by auxiliary components: global model time and an array of
scheduled events [6]. The event with the shortest application time is selected from the array of scheduled
events. The global model time [19] is raised to the application time of the selected event, and then the
handler of this event is called. The above steps are repeated until the array of scheduled events is empty
or a critical modeling situation occurs.

The result of the simulation is a list of events applied to the model, which can be used to reconstruct
the state of the model at each discrete point in time.

Another important result is a set of target metrics values, which are defined by the model developer.
These values can be represented in various visual formats, which allows their further analysis to assess
the adequacy and significance of the models.

Approaches to simulate agent behavior within discrete-event simulation

Agent-based simulation

In the field of simulation modeling, the agent-based modeling method is used to simulate the behav-
ior of agents. Agent-based modeling is the most modern approach of simulation modeling [18]. When
using this method, the modeled process is represented by means of a set of agents. The Fig. 2 shows an
example of a simplified virtual machine life cycle model. This model is built in accordance with the
method of agent-based modeling in AnyLogic environment.

Agents within this approach are autonomous real-world objects selected in some system of relations
defined by the modeling goals [20]. It is worth noting that the same model can be represented through a
different set of agents. Various notations, including our own, can be used to describe models.

Behavior rules are specified for each agent separately, and the behavior of the whole system is deter-
mined based on the result of their interaction.

In a more general case, the task considered in this paper can be reduced to the integration of the
agent-based modeling method into the discrete-event modeling system.

Approaches of integration of agent-based simulation into discrete-event systems

In [21], an approach based on an initial classification of agents into types is considered. For each
type a default behavior is defined, which cannot be overridden by the developer of the model, which is
the main disadvantage of this solution.

The implementation of this approach is related to the creation of an additional component called
the agent behavior simulator, which provides an interface to interact with the used simulation platform
AutoMod [21].

In [22], a mechanism for translating a model built in accordance with the agent-based approach
into a discrete-event model for its further simulation is described. The main purpose of applying this
mechanism to the original model is to improve performance when simulating high-dimensional models.

The author of the article provides a formal proof that the behavior of agents in a discrete-event model
can be implemented by means of a set of events for each of the possible actions of the agent. In addition,
the implementation of the action itself, its influence on the state of the model, — by means of external
functions. The need to specify an event for each possible action of an agent is a disadvantage of this ap-
proach, as it complicates the scalability of the model.

The FAMOS solution described in [23] is an agent-based modeling module for the DESMO-J plat-
form that implements the discrete-event approach. Within this solution, when the state of the model
changes, an event is generated and processed by the agent. While processing the event, the agent dele-
gates its state change to another object that encapsulates its behavior.

27



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, MCKyCCTBeHHbIVI NHTENNEKT

"9 Begin
Pending

terminate

[ Running ]—@)—( Shuttingdown ]—@—[ Terminated ]—@)——@

start stop

Stopping

5 terminateStopped

Stopped 7

Fig. 2. A simplified model of the virtual machine lifecycle

A common drawback of the considered approaches and solutions is their focus on integration with
specific modeling systems. Due to this, as well as the disadvantages mentioned earlier — the impossi-
bility of overriding the behavior of agents and the need to manually set an event for each agent action,
the task of developing our own solution is relevant. The solution proposed in this paper allows us to
integrate the method of accounting for individual agent behavior into any modeling system supporting
the process-network paradigm of the discrete-event approach. The adequacy and significance metrics
proposed in this paper, the evaluation of which was not performed in the reviewed works, will allow us to
quantitatively evaluate the obtained result of accounting for individual agent behavior in models.

Proposed method

The method proposed within this work based on:

» extending the modeling notation through properties, classes of states and trajectories of agent
behavior to enable individual agent behavior to be considered;

+ adding a mechanism for tracking changes in the agent's state using events;

» implementing an algorithm for simulating the agent's behavior in accordance with its life cycle
described by means of a state machine.

The application of the proposed method will make it possible to specify and consider the individual be-
havior of agents in the simulation process, implemented in accordance with the process-network paradigm
of discrete-event simulation, in order to improve the adequacy and significance of models.

The method has the following characteristics and properties:

» possibility of application for simulation modeling systems implementing the discrete-event ap-
proach;

* independence of implementation from the behavior of a particular type of agents;

» support of any level of detailing of model characteristics.

Extension of notation

To ensure that the individual behavior of the agent, considered as a digital twin of the real-world object,
is considered, the modeling notation has been extended. A description of the changes is presented below.

One of the characteristics of an agent is a finite set of properties. Each agent is characterized by general
identification and classification information, as well as a set of related special entities: properties, classes
of states, and actions.

Properties describe key attributes of an agent. An agent does not possess all the attributes of a re-
al-world object, as their number may be infinite. The attributes should be selected in such a way that
they describe the distinctive features of the real-world object in the most accurate and complete way. The
selected features are also determined by the modeling objectives.

28



4 Intelligent Systems and Technologies, Artificial Intelligence >

Each of the given properties of the agent should take an initial value. In the process of modeling, the
value can be changed both under the influence of external information entering the model and aimed at
its actualization [24], and through various factors within the model.

A set of properties and their corresponding values at some point in time define a particular state of
the agent. Some of the states having insignificant differences in property values can be combined into a
single class of states.

A class of states is a set of admissible values specified for the agent's properties, which together specify
some expected status of the agent. An agent can be in some class of states only if the values of its properties
satisfy all the constraints specified for the related properties of the agent in the considered class of state [4].

Along with the allowed values for the class of states, the identification characteristics are specified,
as well as the properties of the class of states that form the local environment for the agents in this class
of states.

The change of class of states during simulation takes place by changing the values of agent's properties.

The set of classes of agent states and transitions that determine the possibility of their change can be
formally represented in the form of a behavior graph. A behavior graph is an oriented finite graph [25]
GB = (CS, T), the nodes of which are classes of agent states (set CS), and the arcs (set 7) are uniquely
matched to transitions.

An individual behavior trajectory of an agent is a sequence of states classes connected by transitions,
formed based on the initial behavior graph and observation of the agent in the process of modeling.

Formally, the behavioral trajectory is a mathematical oriented graph, where each vertex, except for
the source and the sink, has a half-degree of output and a half-degree of input [26] equal to one.

Proposed simulation mechanism

Tracking agent state changes

In the course of simulation, the state of the agent changes due to the sequential execution of the logic
of behavior of blocks. To track these changes, a new type of events was defined — tracking events. Events
of this type are created when the values of the agent property change and contain a pointer to the agent,
as well as information about the name of the property, its previous and new values.

Algorithm for simulating agent behavior

At the top level, the algorithm for simulating the agent's behavior is represented as a state machine [27]
describing the agent's life cycle (see Fig. 3). Each of the agent's states within the life cycle is defined by its
own algorithm of system behavior.

The state of identification of the initial class of states is the initial state for all agents of the model
after starting the modeling process. Based on the initial values of the agents' properties set at the model
creation stage, the only possible initial class of states is defined. In case an initial class cannot be defined
for an agent or an agent can be placed in several initial classes of states at once, an agent life cycle mod-
eling error occurs. If an initial class of states is defined, the agent enters the state of waiting for transition
to another class of states.

The agent remains in state of waiting for transition to other classes of states until the next tracking
event containing a pointer to it is processed. Based on the given graph of the agent's behavior and its
current class of states, a set of possible classes of states to which this agent can transition is determined.
This state can also be considered as an absorbing state, since the agent may not change its class of states
during the whole simulation.

From the previously defined set of possible target state classes, the one whose constraints are satisfied
by the new values of the agent's properties is selected. This is processed within state of checking attribute
values are consistent with classes of states.

If the agent's property values do not satisfy the constraints of any of the selected classes of states,
an agent life cycle error occurs. If the agent's property values satisfy the constraints of several classes of
states at once, a single class is randomly selected.

29



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, VICKyCCTBeHHbIl‘;I NHTENNEKT

Agent characteristics including initial values of
its properties and its behavior graph

Identification
of the initial
class of states

Initial class of states cannot be defined

» Lifecycle error

Checking
attribute values
are consistent
with classes of
states

Waiting for
transition to
another classes

of states

Fig. 3. Agent lifecycle state machine

If the agent is successfully placed in a class of states, it enters the state of waiting for transition to
other classes.

Implementation of the proposed method

In order to integrate the proposed method, a prototype of the discrete-event simulation system was
developed. It satisfies the generalized characteristics and requirements for the implemented notation
described previously. This decision is explained by the need to test the method in a universal software
environment, independent of the peculiarities of the implementation of private solutions and their ad-
ditional functions.

The prototype of the system is implemented as a console application using the Java 17 program lan-
guage. The diagram of classes implementing the proposed method as one of the system components is
presented in Fig. 4.

Extension of notation within the data model

The necessary extension of the notation described in previous section involves changing the program
data model, in particular, the agent entity.

Agent properties are implemented as generated fields of the corresponding “Agent” class and ac-
cessed by the “AgentAttributeValueChangeSupport” wrapper class. Additionally, to access agent prop-
erties without using reflection, a collection of pointers to them, stored as a separate attributes field, is
implemented. It is not possible to get a value or change an agent property directly.

The class of states is implemented by means of the “ClassOfStates” class, which contains as collec-
tions pointers to agent properties and their corresponding ranges of possible values defined by means of
the “AbstractRange” class. This class provides an abstract value checking method that must be overrid-
den by the model developer.

Agent behavior is specified at the “Agent” class level as a collection of transitions between classes of states,
implemented using the “Transition” class. It contains pointers to the source and target classes of states.

Implementation of the method at the level of the simulation execution

The event that tracks the change in the value of agent properties is represented by the “AgentAttrib-
uteValueChangedEvent” class, which implements a common event interface “Event”. The attributes
unique to other events for this event are:

30



4 Intelligent Systems and Technologies, Artificial Intelligence >

— ©« Trajectory © AbstractRange<T> <
® & uuid uuD —*® <T>

) & transitions List<Transition> @ check() boolean

(@ & classOfStates List<ClassOfStates> ®—

transtions

>©% Ag ibuteV: hangesS: t<T>

) & attributeName String

© Transition B MBUL__5 @ # attributevalue T

sourceTransitions classOfStates

targetClassOfStates ClassOfStates < @ get() T
>®
trajettory @ set() void

B

® & sourceClassOfStates ClassOfStates &- T

behavior sourceClassOfStates 1

©= Agent
) & uuid uuip

) & attributes 3 <2>>

© ClassOfStates

) & ranges Map<String, AbstractRange<?>> ®—~
s attributes

@ & attributes 3 <2>>

behavior Map<String, Transition> sourceTransitions List<Transition>

) & targetClassOfStates ClassOfStates. ® & name String
states , ClassofStat 1 states . J®a wid uuID

@ & currentClassOfstates List<ClassOfStates>
1
— @ & trajectory Trajectory

1
agent J ©« Event

) @ creationSimulationTime long
® & applyingSimulationTime long
) & uuid uuip
@ & type String

@« Ag i {andler

3% handle(AgentAttributeValueChangedEvent ) void
A

@ dispatch() void

© AgentAttributeValueChangedEvent S

-J g ©« AgentBehaviorSimulator

attributeName String
'« init(Agent) void

Ci , ClassOfStates)  boolean

>

) & attributeOldValue String

o handle (AgentAttributeValueChangedEvent ) void
- agent Agent

, ClassOfStates) void

@ & attributeNewValue String

o ) List<ClassOfStat
@ dispatch() void

Fig. 4. Diagram of classes implementing the proposed method

» pointer to the handler of this event, whose interface is implemented by the “AgentBehaviorSim-
ulator” class. It is a service that encapsulates the logic of simulating agent behavior according to the
method described earlier;

* pointer to the agent whose state has been changed, and hence whose behavior change should be
processed;

* name of the agent property whose value has been changed, as well as the previous and new values.

Event creation is implemented through the previously mentioned “AgentAttributeValueChangeSup-
port”, through which interaction with agent properties is performed.

When the value of an agent property changes, a tracking event is created with an application time that
coincides with the model time of its creation. This event is placed in an array of scheduled events. At the
same model time, the event is retrieved from the array and processed in the same way as other events in
the system by supporting a common interface, namely by calling the “dispatch” method.

Implementation of the “dispatch” method for the tracking event is reduced to calling the handle
method of the “AgentBehaviorSimulator” handler, which takes this event as an argument, further ex-
tracting the agent from it for subsequent operations according to the method described earlier.

Application of the proposed method to create an experimental model

In the process-network paradigm of discrete-event simulation, agents do not have individual behav-
ior, and thus are indistinguishable in their state.

One example of a model in which, without considering the individual behavior of agents, the results
obtained have little adequacy and significant for the analysis of a real process is the model of virtual
machine placement relative to physical servers [28]. This is due to the fact that the server has individual
behavior — they may fail, which will affect the configuration of the whole cluster.

31



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, MCKyCCTBeHHbIVI NHTENNEKT

| >
=) X
==l >
==
ServerPool Fail
~ ~
B =IO —o—X

Generator Queue Allocator Checker Utilizer Destructor

Fig. 5. The scheme of the process-network model of virtual machines placement

The use of simulation to analyze the process of virtual machine placement is significant due to the
need to improve resource utilization efficiency, to predict the workload of the physical cluster and to
scale it in a timely manner.

The target metric for resource utilization efficiency in this model is the resource allocation ratio, which
ranges from 0 to 100%. In case the allocation ratio reaches its maximum value, it indicates a lack of re-
sources and the need to increase the number of servers in the cluster. A low value of the allocation ratio
corresponds to the case of inefficient resource utilization and the need to release servers from the cluster.

The model of this process is described by means of a process-network (see Fig. 5), which includes the
following components:

* Generator — the initial unit that provides generation of requests from virtual machines to capture
resources;

* Queue — realizes the accumulation of requests;

» Allocator — realizes the allocation of computational resources of servers for requests;

* Checker — checks resource allocation. If the resources are allocated - the resources can be used,
otherwise an error of request processing occurs;

» Utilizer — delay block that simulates the time of using the captured resources;

» Destructor — releases the captured resources;

» Fail — terminates processing of the request with a resource allocation error;

» Servers pool — collection of available servers.

The presented model does not consider the behavior of agents; therefore, the simulation does not
consider the possibility of breakdown or temporary decommissioning of a server defined as an agent
within the model.

Considering this feature of server behavior in the process of modeling and further analysis of the re-
sults is important for the adequacy of the model, as it has a direct impact on the efficiency of computing
resources.

Consequently, a behavior graph can be defined for the server, which describes a set of its possible
classes of states. For simplification, the presented graph (see Fig. 6) contains three classes of states: ex-
ploited, failed and decommissioned.

Additionally, when attempting to place virtual machines, a check of the current server class of states
has been added — it must be exploited. Separately handled cases of changing the server class of states at
the moment of its use by a virtual machine in order to reallocate it on another server in case of failure of
the current one.

As one of the simulation results, individual server behavior trajectories were generated that describe
the sequence of state class changes. Based on these trajectories, an analytical model of cluster operation
can be built.

An experiment was conducted for the described model. It consists of single simulation runs in order to
calculate the target metric of the model — the resource allocation ratio for different cluster configurations

32



4 Intelligent Systems and Technologies, Artificial Intelligence

Decommis
sioned

Fig. 6. Server behavior graph

and behaviors, as well as a set of virtual machine allocation requests. In the experiment, we used the
adequacy threshold value 7= 0.9, stochastic values are absent, which is explained by the need to fix

the initial values of all parameters for accurate analysis of the obtained results. The obtained results are
presented in Table 1.

Table 1
Results of assessment of adequacy and significance for the model,
which describes the virtual machine placement relative to physical servers
Adequacy Significance
No Cluster Number g‘::rl:g

dimension | of requests failures \lziettl;::)l:lt With method ‘n‘fettl;::::lt With method
1 12 2500 0 97% 97% 1 1
2 12 2500 3 89% 95% 0 1
3 40 10000 14 76% 95% 0 1

Based on the table we can conclude that for configuration No. 1, where there were no server failures,
the adequacy and significance estimates coincide regardless of the application of the method. However,
for configurations No. 2 and 3, where there is a need to consider the individual behavior of servers, it
was possible to achieve an increase in the adequacy of the model on average by 12.5% and consequently
increase the number of significant models by 65% for the selected threshold value of adequacy.

Conclusion

This paper proposes a method for simulating individual agent behavior in the process-network par-
adigm of discrete-event simulation. This method consists in extending the modeling notation by in-
troducing entities that collectively describe the individual behavior of agents, as well as modifying the
simulation algorithm.

The paper presents model adequacy and significance metrics to assess the degree of closeness of the
model under study to the corresponding representation of the real-world process.

The application of the proposed method to the experimental model of virtual machines placement

relative to physical servers demonstrated an increase in the model adequacy by 12.5%, and increased the
number of significant models by 65%.

33



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHOJIOTUNU, VICKyCCTBeHHbIl‘/II NHTENNEKT >

REFERENCES

1. Hedge R.R., Narayan D.R., Moolya S., Chethan, Pushparani M.K. A review on the future of technolo-
gy: How cloud computing is changing the game. International Research Journal on Advanced Engineering Hub
(IRJAEH), 2024, Vol. 2, No. 6, Pp. 1784—1793. DOI: 10.47392/IRJAEH.2024.0245

2. Bohez S., Verbelen T., Simoens P., Dhoedt B. Discrete-event simulation for efficient and stable re-
source allocation in collaborative mobile cloudlets. Simulation Modelling Practice and Theory, 2015, Vol. 50,
Pp. 109—129. DOI: 10.1016/j.simpat.2014.05.006

3. Hasan S.S., Zeebaree S.R.M. Distributed systems for machine learning in cloud computing: A review
of scalable and efficient training and inference. Indonesian Journal of Computer Science, 2024, Vol. 13, No. 2,
Pp. 1685—1707. DOI: 10.33022/ijcs.v13i2.3814

4. Sabutkevich A.M., Vikhlyayev D.A., Nikiforov I.V., Samochadin A.V. Imitatsionnoye modelirovaniye po-
vedeniya slozhnykh mnogoagentnykh sistem s ispolzovaniyem veroyatnostnoy modeli. [Simulation of behavior
of complex multi-agent systems using probabilistic model]. Sovremennye tekhnologii v teorii i praktike program-
mirovaniya | Modern technologies in theory and practice of programming|, 2022, Pp. 98—100.

5. Wagner G. Introduction to information and process modeling for simulation. 2017 Winter Simulation
Conference (WSC), 2017, Pp. 520—534. DOI: 10.1109/WSC.2017.8247812

6. Wagner G. An abstract state machine semantics for discrete event simulation. 2017 Winter Simulation
Conference (WSC), 2017, Pp. 762—773. DOI: 10.1109/WSC.2017.8247830

7. Robinson S. Exploring the relationship between simulation model accuracy and complexity. Journal of
the Operational Research Society, 2023, Vol. 74, No. 9, Pp. 1992—2011. DOI: 10.1080/01605682.2022.2122740

8. Ilin V.A., Kiryushow N.P. Method of testing the training model for the adequacy. Software & Systems,
2021, Vol. 34, No. 1, Pp. 61-66. DOI: 10.15827/0236-235X.133.061-066

9. Potapov A.N., Ovcharov B.B. Assessment of the adequacy of simulation in simulators, érgotehnic¢eskih
operators with hierarchical structure of building. Bulletin of Voronezh State Technical University, 2013, Vol. 9,
No. 3—1, Pp. 45—48.

10. Belyakov V.V., Tumasov A.V., Butin D.A., Vashurin A.S. Adequacy simulation model of a light com-
mercial car. Trudy NGTU im. R.E. Alekseeva | Proceedings of NSTU n. a. R.E. Alekseev]. 2021, Vol. 132, No. 1,
Pp. 62—69. DOI: 10.46960/1816-210X 2021 1 62

11. Spear R.C. Large simulation models: calibration, uniqueness and goodness of fit. Environmental Model-
ling & Software, 1997, Vol. 12, No. 2—3, Pp. 219—228. DOI: 10.1016/S1364-8152(97)00014-5

12. Minaev V.A., Stepanov R.O., Faddeev A.O. Modeling of energy transition in a stress-strain geological
environment for seismic risk assessment (Part 1). Modeling, Optimization and Information Technology, 2022,
Vol. 10, No. 1, Pp. 1-19. DOI: 10.26102/2310-6018/2022.36.1.007

13. Godunov A.I., Brostilov A.N. Statisticheskiye kriterii otsenki adekvatnosti imitatsionnogo modelirovani-
ya v trenazherostroyenii. [Statistical criteria for assessing the adequacy of simulation modeling in simulator
building]. International Symposium “Reliability and Quality”, 2005, Pp. 161—163.

14. Borshchev A.V., Karpov Y.G., Kharitonov V.V. Distributed simulation of hybrid systems with AnylLog-
ic and HLA. Future Generation Computer Systems, 2002, Vol. 18, No. 6, Pp. 829—839. DOI: 10.1016/S0167-
739X(02)00055-9

15. Dias A.S.M.E, Antunes R.M.G, Abreu A., Anes V., Navas H.V.G., Morgado T., Calado J.M.F. Utiliza-
tion of the Arena simulation software and Lean improvements in the management of metal surface treatment
processes. Procedia Computer Science, 2022, Vol. 204, Pp. 140—147. DOI: 10.1016/j.procs.2022.08.017

16. Wagner G., Seck M., McKenzie F. Process modeling for simulation: Observations and open issues. 2016
Winter Simulation Conference (WSC), 2016, pp. 1072—1083. DOI: 10.1109/WSC.2016.7822166

17. Borshchev A.V. Prakticheskoye agentnoye modelirovaniye i yego mesto v arsenale analitika. [Practical
agent modeling and its place in the analyst's arsenal]. Exponenta Pro, 2004, Vol. 3—4, Pp. 38—47.

34



4 Intelligent Systems and Technologies, Artificial Intelligence >

18. Jabri A., Zayed T. Agent-based modeling and simulation of earthmoving operations. Automation in Con-
struction, 2017, Vol. 81, Pp. 210—223. DOI: 10.1016/j.autcon.2017.06.017

19. Okol’nishnikov V.V. Time representation in imitational modelling. Computational Technologies, 2005,
Vol. 10, No. 5, Pp. 57—80.

20. Gorodetskiy V.I., Karsayev O.V., Samoylov V.V., Konyushiy V.G. Yazyk opisaniya mnogoagentnykh
sistem. [Multi-agent system description language]. Journal of Instrument Engineering, 2008, Vol. 51, No. 11,
Pp. 7-12.

21. Dubiel B., Tsimhoni O. Integrating agent based modeling into a discrete event simulation. 2005 Winter
Simulation Conference (WSC), 2005, pp. 1029—1037. DOI: 10.1109/WSC.2005.1574355

22. Onggo B.S. Running agent-based models on a discrete-event simulator. Proceedings of the 24" European
Simulation and Modelling Conference, 2010, pp. 51-55.

23. Page B., Knaak N., Kruse A. A discrete event simulation framework for agent-based modelling of logistic
systems. INFORMATIK 2007, 2007, pp. 397—404.

24. Gorodetskiy V.I. Printsipy avtonomnogo gruppovogo upravleniya [Principles of Autonomous Group
Management]. Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte | Integrated Models and
Soft Computing in Artificial Intelligence] (IMMV-2021), 2021, Vol. 1, Pp. 16—48.

25. Riensche A., Severson J., Yavari R., Piercy N.L., Cole K.D., Rao P. Thermal modeling of directed en-
ergy deposition additive manufacturing using graph theory. Rapid Prototyping Journal, 2023, Vol. 29, No. 2,
Pp. 324—343. DOI: 10.1108/RPJ-07-2021-0184

26. Nikiforov 1.V., Petrov A.V., Yusupov Yu.V., Kotlyarov V.P. Usage of formalization approaches for creation
of system models from UCM-specification. St. Petersburg State Polytechnical University Journal. Computer Sci-
ence. Telecommunications and Control Systems, 2011, Vol. 126, No. 3, Pp. 180—184.

27. Sakellariou I. Agent based modelling and simulation using state machines. Proceedings of the 2 Inter-
national Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH
2012), 2012, Vol. 1., Pp. 270—279. DOI: 10.5220/0004164802700279

28. Dong D. Agent-based cloud simulation model for resource management. Journal of Cloud Computing,
2023, Vol. 12, Art. no. 156. DOI: 10.1186/s13677-023-00540-5

INFORMATION ABOUT AUTHORS / CBEAEHUA Ob ABTOPAX

Sabutkevich Artem M.
CadyrkeBnd Aprem MuxaiiioBud
E-mail: artem.sabut@gmail.com

Nikiforov Igor V.
Huxudopos Urops Banepbesny
E-mail: igor.nikiforovv@gmail.com

Samochadin Alexander V.

Camouamun Anekcanap BukropoBuu
E-mail: samochadin@gmail.com

Submitted: 08.11.2024; Approved: 10.02.2025; Accepted: 13.03.2025.
Ilocmynuaa: 08.11.2024; Odobpena: 10.02.2025; Ilpunama: 13.03.2025.

35



