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Abstract. Hardware vector instructions are widely used to improve the performance of
computations. The Java Vector API introduced in Java 16 allows using them portably on any
platform supported by the Java Virtual Machine (JVM). In this paper, we evaluate performance
benefits from rewriting typical vector search operations, such as computing distance between two
vector embeddings, using the Java Vector API. We compare the performance of these vectorized
implementations with semantically equivalent scalar code. Furthermore, we compare the Java
Vector API with native C++ implementations, called from Java code via different Java-to-
native interfaces, namely Java JNI, Project Panama (Foreign Function and Memory API), and
manipulating Java JIT compiler via JVM CI and Nalim library. Benchmarking results suggest
that in certain situations using Vector API can produce a measurable increase in performance
of low-level operations, which can be translated into speedup of high-level algorithms such as
Product Quantization. However, under certain scenarios, using Vector API is slower than relying
on automatic vectorization provided by JVM, and most benchmarks suggest that invoking
calculations implemented in C++ is faster even with all performance penalties incurred by native
code invocations. Using techniques to lower these penalties, for example, by avoiding memory
copy operations, can decrease the execution time by five times compared to Vector API and by ten
times compared to plain Java code. However, in cases where using native code is prohibited, Vector
API can still demonstrate a noticeable performance uplift, which can be beneficial for vector-
related calculations in Java applications.
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AHHOTanuA. AnnapaTHble BEKTOPHBIC MHCTPYKIIMU IIIMPOKO MCIIOIB3YIOTCS TSI ITOBBIIICHUS
MPOU3BOAUTEIBHOCTH BbhrumciieHnit. Java Vector API, mpeacraBieHHbIi B Java 16, mo3BoJIsIET TTe-
PEHOCHMO KCITOJb30BaTh UX Ha 000 miaTdopme, MoaaepKuBaeMoi BUPTYalbHOW MalllnHOM
Java. B maHHoli paboTe BBITIOJHSIETCS OIIEHKA MPOM3BOAUTEIBHOCTU TIPU peaiu3allii TUITAY-
HBIX OTIepalliii MOMCKA IO BEKTOPHBIM IIPEICTaBICHUSIM, TAKMX KaK BBIYMCICHUE PACCTOSTHUS
MEXAY IBYMsI BEKTOPHBIMU TIpEICTaBIeHUsSIMU, ¢ UctojibzoBaHueM Java Vector API. I1pousso-
IUTEIbHOCTh BEKTOPU30BAHHBIX peaM3allMii 3TUX OMepaluii CpaBHUBAETCS C CEMaHTHUYECKU
9KBUBAJIEHTHBIM CKaJIIpHbIM KonoMm. KpoMe Toro, mpousBoautcsi cpaBHeHue Java Vector API
C HaTUBHBIMHU peanm3anusmMu Ha C++, BbI3bIBaeMBIMU U3 Java-Koja 4yepe3 pa3IndHble MHTEP-
deiicel B3aumoneiictBug Java ¢ HAaTUBHBIM KonoM, a uMeHHo Java JNI, Project Panama (Foreign
Function and Memory API) u ynpasnenue JIT-komnunsitopom uepe3 JVM CI u 6ubnmnorexky
Nalim. Pe3ynabTaThl TeCTMpPOBAaHUS ITOKA3bIBAIOT, YTO B OIPEIACICHHBIX CUTYAILIMSIX MCIIOJB30-
BaHue Vector API MoXeT mpuBeCTH K 3aMETHOMY YBEJIMUYECHMIO MPOU3BOAUTEIHLHOCTA HU3KO-
YPOBHEBBIX OIepallrii, YTO MOXKET BbIpaxkaTbCsl B YCKOPEHUU BBICOKOYPOBHEBBIX aJrOPUTMOB,
Takux Kak Product Quantization. OqHakKo B HEKOTOPBIX CLIEHAPUSIX UCITOJb30BaHue Vector API
OKa3bIBaeTCsl MeIJIEHHEee 110 CPAaBHEHUIO C aBTOMATUYECKOM BEKTOPU3allKel, MPeaoCTaBIsieMOn
JVM, 1 GOJNBIIMHCTBO TECTOB IMOKA3BIBAIOT, YTO BEI30B BRIUMCICHUIN, peaTn30BaHHBIX Ha C++,
3aHUMAaET MEHBIIIC BpeMEHHU 10 cpaBHEeHUIO ¢ Vector API, make ¢ yaeToM Bcex HaKJIaTHBIX PaCcX0-
JIOB, BO3HUKAIOIIIMX TP BbI30BaX HATUBHOIO Koaa. M CIioIb3yst MeTOAbI 11 CHYKEHUS 3TUX Ha-
KJIaIHBIX PACXOI0B, HaIlpuMep, u3beras onepamyii KOMMPOBaHUS TTAMSITU, MOXHO YMEHbIIUTh
BpeMsl BBITIOJIHEHUS B IATh pa3 Mo cpaBHeHUto ¢ Vector APl u B mecsaTh pa3 mo cpaBHEHHUIO C
00bIYHBIM Java-konoM. Tem He MeHee, B Cyvasix, KOrjaa UCIoJIb30BaHUE HATUBHOTO KOJ1a 3ampe-
meHo, Vector API Bce etre MoXeT IeMOHCTPUPOBATH 3aMETHOE TTOBBIIICHIUE TTIPOU3BOIUTEIILHO-
CTH, 9YTO MOKET OBITH ITOJIC3HO TSI BEIYMCIICHU, CBI3aHHBIX C BEKTOPHBIMU IIPEICTABICHUSIMU,
B Java-npuioxXeHusx.

KoueBbie ciioBa: BeKTOpHble TpenctaBieHus, Java JVM, Java JNI, Java JVM CI, Project
Panama, BBI30B HATMBHOTO KOJa

Jlna murupoBanusa: Tomilov N.A., Turov V.P. Evaluating the performance of Java Vector API in
vector embedding operations // Computing, Telecommunications and Control. 2024. T. 17, Ne 4.
C.7—15. DOI: 10.18721/JCSTCS.17401

Introduction

Modern processors have instruction sets that enable the simultaneous execution of certain operations
on arrays of data. These instructions are referred to as SIMD instructions, where SIMD stands for Single
Instruction Multiple Data. The use of such instructions significantly accelerates computations over nu-
merical arrays and matrices [1, 2]. The process of transforming a loop that performs calculations on single
data elements into a loop that operates on data blocks using SIMD instructions is called vectorization.

Vectorization can significantly accelerate any data array processing. One example of such data pro-
cessing is the organization of search operations in large document databases, where machine-learning
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techniques are used to transform the data into representations that reflect the semantic structure of
textual [3] and multimodal documents in the form of vector embeddings (representations), which are
arrays of floating-point numbers. In this approach, an efficient search can be organized by constructing
an index of these embeddings, converting the search query into its own embedding, and then performing
the search for the nearest vector embeddings using the constructed index [4]. Vectorizing the computa-
tion of the distance between two vectors significantly reduces the time required for vector search [5]. In
general, vector embeddings can have any dimensionality, but in vector search operations the dimension-
ality of each vector is typically small and each vector is often represented as an array of floating-point
numbers with up to 1000 elements. Another key point of vector search operations is having a large num-
ber of relatively small operations (e.g., distance calculation or computing an average vector) [6].

High-level programming languages often have their own mechanisms for automatic vectorization,
either during runtime, as in Java JVM, or at the compilation stage, as in C++. In case of Java, the JVM
can automatically vectorize only a small set of operations'; in other cases, vectorization must be imple-
mented manually, either through certain intrinsic functions of the language, such as FMA (Fused-Mul-
tiply-Add), or by implementing computational operations in a low-level language with access to assem-
bly-level SIMD instructions, and then invoking the implemented functions from Java through various
mechanisms for executing platform-dependent code. Java 16 introduced an additional mechanism for
working with vector instructions — Java Vector API — which enables convenient use of vector instruc-
tions without the need for platform-dependent code. This mechanism offers a significant performance
boost compared to Java’s automatic vectorization [7], and despite its experimental status, it is already
being adopted in some software products, such as Apache Lucene?.

In this paper, we test the performance of the Java Vector API in the scope of operations on vector em-
beddings that are used in vector search. We compare the usage of this API to the implementation of the
same operations in Java without vector instructions, as well as to the implementations in C++, where
we call the corresponding functions from Java using mechanisms, such as Java JNI, Java JVM CI, and
the Project Panama (Foreign Function and Memory API).

Methods of using vector instructions in Java

As mentioned above, there are three methods of working with vector instructions in Java: using in-
trinsics, invoking a shared library that was built in some other language with support for vector instruc-
tions, and using Vector API.

The first method involves using intrinsics, such as the FMA operation, which are optimized func-
tions provided directly by the JDK developers. Unfortunately, the existing set of intrinsics is mostly
limited to cryptographic operations, and it is not practical to use them when implementing operations
applied in vector search.

The second method involves implementing vector computational operations in a low-level language,
such as C or C++, and subsequently invoking these operations from Java JVM [8]. This approach allows
us to optimize computational functions more precisely and take full advantage of any vector or other
assembly instructions, automatic code vectorization provided by the low-level compiler [9], or even
already implemented and highly optimized shared libraries, resulting in higher performance compared
to plain Java [10]. However, this approach comes with several significant drawbacks. The most obvious
are the need to write platform-dependent code and the need to modify it for each new architecture or
even processor generation to achieve maximum performance. Additionally, this method comes with the
complexity of working directly with the required vector and assembly instructions, direct memory han-
dling, and potential security risks [11].

! Vladimir Ivanov. Vectorization in HotSpot JVM. Available: https://cr.openjdk.java.net/~vlivanov/talks/2017 Vectorization_in_HotSpot JVM.
pdf (Accessed: 29.09.2024)
2 Available: https://github.com/apache/lucene/pull/12311 (Accessed: 06.12.2024)
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A less obvious drawback of this approach is the overhead associated with data copying. When trans-
ferring control to platform-dependent code, the JVM typically does not allow direct access to memory
managed by the JVM. If the data for computations resides in JVM memory, we must copy it to memory
outside the JVM, and then we need to free that memory ourselves. This copying is necessary for each
data array and, in addition to the time spent on the copying itself, incurs context switching from man-
aged code to the JVM and other overheads [12]. When we need to pass matrices, being arrays of arrays,
to managed code, the context-switching overhead can become so significant that it is more efficient to
copy the data into a single large-dimensional array and transfer it, rather than copying each row of the
matrix as a separate array. Alternatively, we can store all data in unmanaged memory beforehand, which
complicates access to that data from the JVM.

Although the problems associated with executing unmanaged code in a managed environment are
generally insurmountable, modern Java provides several mechanisms to reduce overhead from memory
copying and context switching between managed and unmanaged code. One of the most effective meth-
ods for reducing overhead is through altering the just-in-time (JIT) compilation within the JVM. This
allows us to completely replace the function body generated by the JIT compiler, specifically substitut-
ing the proper call to platform-dependent code, which involves memory copying and context switching,
with a direct call to the platform-dependent function [13, 14]. However, this method has significant
drawbacks, including the lack of exception handling, complete blocking of the thread invoking un-
managed code, and having access to the JVM from unmanaged code. Consequently, we cannot copy
objects or complex data structures, such as arrays of arrays, into unmanaged code; we can only work with
primitive types or one-dimensional arrays. When we need to pass two-dimensional arrays, such as arrays
of vectors, we must manually copy the data into a large one-dimensional array. However, despite these
limitations, this method remains popular and is used in frameworks for heterogeneous computing, such
as Tornado VM [15], and in the Nalim library3, which utilizes Java JVM CI capabilities. Another meth-
od for reducing overhead, aside from managing the JIT compiler, is the Foreign Function and Memory
API, or Project Panama. This API, which recently achieved Released status in Java 22, offers a modern
alternative to JNI and allows, under certain conditions, direct access to JVM memory from unmanaged
code, including complex data structures like objects or arrays of arrays. This means that while the over-
head from switching thread states between managed and unmanaged code still exists, we can entirely
eliminate memory copying for complex data structures, potentially accelerating computations for arrays
of vectors even more than through JIT compilation management.

The third method involves using the recently introduced Java Vector API. This framework provides a
high-level abstraction over various vector instructions available on different architectures supported by
the Java JVM. When using this framework, developers do not need to consider the target architecture
or which specific vector instructions to utilize; they only need to prepare the data correctly and invoke
a certain function, for example, addition. This function will be translated into the appropriate vector
instruction, often the most suitable one, depending on the processor architecture and its supported
instruction set. If the processor lacks support for vector instructions, the framework transparently falls
back to using standard scalar instructions. Apart from ease of use, the Java Vector API offers several
advantages, including the absence of manual memory copying to and from unmanaged code, and full
support from the JVM, including proper exception handling and effective organization of computations
in a multithreaded environment. Moreover, not having to deal with unmanaged code allows developers
to use vector instructions for speeding up computations in contexts where using unmanaged code is
prohibited or requires extensive precautions, such as in the financial sector.

However, a significant drawback is the need for manual organization of computations using vector in-
structions, which, albeit not directly related to assembly instructions, still closely resembles the use of vec-
tor instructions on the processor. Furthermore, there are no optimizations available if the instructions are

3 Available: https://github.com/apangin/nalim (Accessed: 06.12.2024)
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used incorrectly or inefficiently. For instance, when computing the sum of two vectors with a dimension
of 390, the developer must perform a summation of 48 parts of vectors of length 8 in a loop, and then
separately sum the remaining 6 elements manually, assuming the processor supports a maximum vector
width of 256, meaning it can handle operations on up to 8 32-bit floating-point numbers at once. Any
mishandling of this vector alignment will cause performance degradation. In addition, it is important to
note that as of the time of writing, the Java Vector API remains in Incubator Preview status, and there is
no information on when it will become fully supported and available for use in production environments.

Experiment setup

To test the performance of the Vector API, we created an interface that describes various operations
for vector embeddings. We then implemented the following versions of this interface:

1. Standard Java;

2. Java with Vector API,;

3. Java with Calls to Platform-Dependent Code Implemented in C++:

o Using Java JNI, which includes all potential overheads;

o Using the Nalim library, which leverages Java JVM CI to manage JIT compilation, eliminat-
ing context-switching overhead, but requiring memory copying for two-dimensional arrays;

o Using the Project Panama (Foreign Function and Memory API), which incurs overhead
from switching to native code, but does not require memory copying for one-dimensional and two-di-
mensional arrays.

The implemented operations can be divided into several sets.

The first set includes operations on a single vector or a pair of vectors of dimensionality D and con-
sists of the following operations:

e Calculation of the Average value of the vector elements;

e Calculation of the Variance, also known as Dispersion, of the vector element values;

e Calculation of the Angular, also known as Cosine, and Euclidean Distances between two vectors [16].

The second set includes operations performed on multiple vectors simultaneously and uses an array
of vectors (a two-dimensional array) as one of the input parameters:

e Calculation of the Average Vector from N source vectors;

e Calculation of N Angular and Euclidean Distances between one vector and N other vectors.

The third set includes complex computations that utilize operations from the first two sets:

e Clustering using the k-Nearest Neighbors (kNN) method from N source vectors into K clusters,
which involves calculating N distances and calculation of the Average Vector [17];

e Product Quantization of N source vectors [18] to M subvectors with a quantization depth of nBits,
which uses kKNN-clustering.

The purpose of this set is to measure the extent of the overhead incurred due to the need to convert
sets of vectors, which are arrays of arrays, into a one-dimensional array for passing to unmanaged code.

The sets of vectors were randomly generated and consisted of N arrays of 32-bit floating-point num-
bers (FP32) of size D. The following parameters were used:

e For the first two sets of operations:

o D =256, 384,768, N =100, 250, 500;
e For kNN-clustering:
o D =256, N=5000, 10000;

o K=20, 50;

e For PQ:
o D =256, N=10000;
o M=4,S§;

o nBits =8, 12, 16.

11
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Fig. 1. Results for Operations on a single vector set

The test setup has the following specifications: AMD Ryzen 7 7700X (8C16T); 32GB RAM; Op-
erating System: Ubuntu 22.04; a framework of comparing vector search algorithms, implemented in
previous research [19], that uses the Java Microbenchmark Harness (JMH) [20]. The JMH was con-
figured with a warm-up mode to allow the JIT compiler to perform necessary optimizations, including
automatic vectorization. The C++ code was compiled using GCC 11.4.0. For all computations except
JVMCI, JDK 22 version 22.0.2+9 was used. For JVMCI, JDK 17 version 17.0.10+7 was selected, be-
cause it was the most recent long-term support version of the JVM that the Nalim library works correctly
with. In newer JVM versions, JVM CI was modified in a way that caused the library to malfunction, and
modifying it is beyond the scope of this article. The source code for the benchmark and all implemented
vector operations is available on GitHub®*.

Experiment results

The results for the first set of operations are presented in Fig. 1. The measured execution time for a
single operation is in nanoseconds, where lower values indicate better performance.

It can be observed that using the Vector API significantly reduces the execution time for a single
operation compared to standard scalar Java. However, the execution time for calculations using the
Vector API is nearly indistinguishable (sometimes longer, sometimes shorter) from that of calculations
implemented in C++ with an optimizing compiler and function calls via JNI. The execution time for
calculations implemented in C++ and invoked through JVM CI or Project Panama is substantially low-
er than that using JNI, and is two to four times less than the execution time for calculations using the
Vector API. This indicates significant overhead from both using JNI and the Vector API. Nevertheless,
the speedup from the Vector API compared to regular Java computations is notable and directly depends
on the number of vector operations: the more operations are necessary to perform the computation, the
less pronounced the speedup becomes, as seen when comparing computation time of angular distance
(which needs three operations in total) and Euclidean distance (which needs only one operation) for the
same number of dimensions. Such difference depending on the number of operations also demonstrates
the overhead involved when invoking the Vector API.

The results for the second set of operations are presented in Fig. 2. Fig. 2a shows the computation
time for the average of N vectors of dimensionality D, Fig. 2b displays the computation time for N Eu-
clidean distances between a given vector and N specified vectors, and Fig. 2¢ illustrates the similar time
for angular distances.

When using the Vector API, the computation time for the average vector is approximately equal to
that of standard Java and significantly less than the time required for calling C++ code via JNI or JVM
CI. The performance degradation of the C++ code is attributed to the overhead of converting N arrays

4 Available: https://github.com/nikita-tomilov/vector-vapi-jni-jvmci-panama (Accessed: 06.12.2024)
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Fig. 2. Results for the multi vector operations

of dimensionality D into a one-dimensional array of size NxD for passing to unmanaged code. A sim-
ilar conversion is necessary for calculating N distances; however, in this case, the slow data transfer to
unmanaged code is offset by the more optimized code generated by the optimizing compiler, resulting
in the use of C++ code in conjunction with JVM CI yielding the greatest speedup for distance calcu-
lations. Nevertheless, although in both cases the computation of N distances using the Vector API is
significantly faster than using standard Java, and in the case of Euclidean distance, it is somewhat faster
than using C++ and JNI, the combination of C++ and Project Panama remains an order of magnitude
faster, thanks to the advantages provided by the optimizing compiler and the absence of memory copy-
ing overhead.

The results for the third set of operations are presented in Fig. 3. Fig. 3a shows the time for clustering
using the KNN method, while Fig. 3b demonstrates the execution time for Product Quantization.

The results for the third set of operations partially replicate those of the second set: the parity be-
tween scalar Java and the Vector API remains for the measurement of Product Quantization time, with
both benchmarks showing significant time overhead for JNI and JVM CI due to memory copying. In
both benchmarks, Project Panama is the fastest option, benefiting from the absence of memory copying
overhead. However, for KNNs, the Vector API is faster than scalar Java in all cases, achieving up to a
twofold increase in performance at best.

Conclusion

The use of the Java Vector API significantly accelerates vector operations in applications written in Java
or running in the JVM. However, computations implemented using the Vector API and manual vector-
ization generally lag behind calls to functions implemented in C++ that utilize automatic vectorization
and mechanisms to reduce overhead associated with calling unmanaged code, such as the Project Panama

13
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Fig. 3. Results for the complex vector operations

(Foreign Function and Memory API). Nevertheless, in scenarios where the use of unmanaged code is
not feasible, as well as in cases where the conversion and transfer of data to managed code incur signifi-
cant overhead despite the use of optimized methods for calling unmanaged code, the Vector API serves
as a good alternative to traditional Java computations.
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