Computing, Telecommunication and Control, 2024, Vol. 17, No. 4, Pp. 64-77.
4 MHdopMaTurKa, TeNEKOMMYHUKauMmK 1 ynpaeneHue. 2024. Tom 17, N2 4. C. 64-77.

Simulations of Computer, Telecommunications,
Control and Social Systems

MoaennpoBaHune BbIYUCTUTENBHbIX,
TENEKOMMYHUKALUNOHHDbIX, YNPaBAALWNUX
N CounaibHO-3KOHOMUNYECKNX CUCTEM

Research article @ 01S)
DOI: https://doi.org/10.18721/JCSTCS.17406 s
UDC 004.052.42

A METHOD FOR FINDING
THE CORRESPONDENCE BETWEEN A RAILWAY STATION MODEL
AND ITS VISUAL REPRESENTATION BASED ON GRAPHS

V.E. Ustinova © , A.S. Lutsenko,
A.V. Shpak, G.V. Mironenkov, V.A. Ivlev

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

H ustlera@list.ru

Abstract. The paper proposes a method for searching and comparing objects of the railway station
model in the database format to the corresponding objects of the station visual representation in
the SVG file format. The method is based on reducing the structure of a railway station to a directed
asymmetric graph and using comparison algorithms to find correspondences between topological
and actual characteristics of objects. The method includes comparing nodes and connections
of the model graph with structural elements of the station visual representation. The paper also
proposes a software tool that implements the proposed method. The software tool was tested in
an experiment involving three employees, which revealed the average number of inconsistencies
found, as well as the average time of the inconsistency search process before and after automation.
The result of the research is that the method increases the accuracy of the process by two times and
accelerates it by five times.

Keywords: graph, model representation, comparison of representations, railway station,
visualization

Citation: Ustinova V.E., Lutsenko A.S., Shpak A.V., el al. A method for finding the correspondence
between a railway station model and its visual representation based on graphs. Computing,
Telecommunications and Control, 2024, Vol. 17, No. 4, Pp. 64—77. DOI: 10.18721/JCSTCS.17406

© Ustinova V.E., Lutsenko A.S., Shpak A.V., el al., 2024. Published by Peter the Great St. Petersburg Polytechnic University

4 Simulations of Computer, Telecommunications, Control and Social Systems>

HaydHas cTaTbs —(D@
DOI: https://doi.org/10.18721/]JCSTCS.17406 & T
YK 004.052.42

METO/ NMOUCKA COOTBETCTBHUA MOLAEJ/IU
XENNE3HO4OPO)XHOW CTAHLUU EE BU3YAJIbHOMY
NPEACTABJIEHUIO HA OCHOBE TPA®OB

B.E. YemuHoGBa = , A.C. JlyueHKo,
A.B. Ulnak, I'.B. MupoHeHKk0G, B.A. NGneB

CaHKT-lMeTepbyprckmii MoAUTEXHUYECKUI yHMBepcUTeT MeTpa Beankoro,
CaHKT-lMeTepbypr, Poccuitickan Pepepaums

H ustlera@list.ru

AnHoTtanus. B paboTe mpencTaBieH METO ITOMCKA U COTIOCTABICHUSI OOBEKTOB MOJIENIN XKe-
JIE3HOMOPOKHOM CTaHIIMHU B (popMaTe 60a3bl JaHHBIX COOTBETCTBYIOIINM O0BbEKTaM BHU3YaJIbHOTO
nmpencraBicHus craHuu B popmare SVG-daitma. MeTomn oCHOBaH Ha MPUBEACHUN CTPYKTYPHI
JKEJIE3HOMOPOXKHOM CTaHIIMM K HAIpPaBICHHOMY HECUMMETPUYHOMY rpady U MCIIOJb30BaHUU
aJITOPUTMOB CpaBHEHMS ISl TIOMCKA COOTBETCTBUM TOMOJIOTMYECKUX U (DAaKTUUECKUX XapaKTe-
PUCTUK 00BEKTOB. MeTo BKJIOUaeT B ceOsl COMOCTaBICHUE y3JI0B M CBsI3ell rpada MOIEIn co
CTPYKTYPHBIMU dJIEMEHTaMU BU3YaJIbHOTO TIPEICTaBIeHUsI CTaHIIMU. Takke B paboTe TpeIcTaB-
JICHO TIpOTrpaMMHOE CPEICTBO, KOTOPOE pealin3yeT MpeaIoKeHHBIM MeToa. IIporpaMMmHoe cpen-
CTBO OBIJIO aImpoOMPOBAHO HA SKCIIEPUMEHTE, B KOTOPOM IIPHHSIJIO yIacTHe TPpW pabOTHUKA U
KOTOPBIH BBISIBUII CPeIHEE YMCI0 HaliIEeHHBIX HECOOTBETCTBUIA, a TaKKe CpelHee BpeMsI IIpoliec-
ca rmorcKa HeCOOTBETCTBMI 10 U IOcCe aBToMaTu3aluu. PesynsratomM paboThl ABASIETCS TO, UTO
METO]I ITOBBIIIIaeT TOYHOCTH Ipoliecca B 2 pa3a U yCKOPSIET ero B 5 pa3.

KmoueBsie ciaoBa: rpad, MomeabHOE TIpeACTaBIeHNUE, CpaBHEHME TIPEACTaBICHUI, KeIe3HOI0-
pOXHasl CTaHLIMSI, BU3yaIU3allusl

Jlna matupoanus: Ustinova V.E., Lutsenko A.S., Shpak A.V., el al. A method for finding the
correspondence between a railway station model and its visual representation based on graphs
// Computing, Telecommunications and Control. 2024. T. 17, Ne 4. C. 64—77. DOI: 10.18721/
JCSTCS.17406

Introduction

Today, the Russian railway system is one of the most developed in the world and ranks third in terms
of total length [1]. Due to such a large volume of the railway network, there are a large number of railway
stations and, as a rule, several representations are created for them — a model and a visual [2, 3]. In the
Russian Railways company, the model representation (electronic map) of the station exists in the form of
an SQL file, while the objects are described in interconnected tables. The visual representation is demon-
strated by an SVG file, while the objects are described using a set of tags [4, 5] (Fig. 1).

Discrepancies are often observed between the two representations of the same station: inconsisten-
cies in the topology of individual sections of the electronic map and the graphical representation, names
of objects, directions of direct passage and exit along the arrow, directions of traffic light adjustment.
The presence of discrepancies means that it is impossible to design new stations until all discrepancies
are eliminated. Manual updating of models and searching for inconsistencies is a time-consuming task,
accompanied by a large number of human errors. Hence, the need to automate [6] this process and re-
duce the complexity of finding a match between the railway station model and the visual representation
due to the algorithm implemented in the software for constructing and comparing graphs based on two
representations of a railway station. This action can be presented as a goal, to achieve which it is neces-
sary to perform a number of tasks, namely:

© YctnHoBa B.E., Jlyuexko A.C., Wnak A.B., n ap., 2024. N3patenb: CaHkT-MeTepbyprckuii nonuTexHnYeckuin yHmsepeuteT MeTpa Bennkoro

MOﬂ,eJ'IVIpOBaHVIe BbIYNCNUTENDBHbIX, TEIEKOMMYHUKALIMOHHbLIX, YNPaBAAOLWLNX

M counasibHO-3KOHOMUYECKNX CUCTEM >

@ m270 mzzon

2 e w272n

@ n232

MS52 1@ 77
o w20

@Mz g

&

@Mz B @M 2083310 @me oosou on 286 @ MS0s

530 1@ M40 M220)

Fig. 1. Visual representation of the station

+ analysis of existing solutions;

* development of the system architecture and its own method of automated comparison of the
model and visual representations of the railway station plan for the Russian Railways company [7, 8];

* implementation of the method in the form of a software tool;

» conducting experiments and analysis of the obtained results to identify a reduction in the com-
plexity of the process.

Overview of existing solutions

At the first stage, a list of criteria for the automation system was formed, namely:

* open source;

+ case of use;

» affordability (less than 50000 rubles);

 user-friendly interface;

+ ability to build a railway station model and its visualization in the form of a graph.

The authors assume that this list of criteria for the automation system is necessary to achieve this
goal. Thus, based on these criteria, a number of the following software systems were selected.

1. Topomatic Robur software system

The system [9] contains tools for designing railway crossings and stations and forming models of
transport infrastructure facilities, providing an opportunity to design new and reconstruct existing rail-
ways and stations.

2. GeoniCS software package

The complex [10, 11] is a CAD system for railway design. It is focused on assistance in the design of
new tracks, restoration and overhaul of existing railways.

3. Graphviz tool

This tool [12] is an open source utility package for automatic graph visualization. It offers its own
templates for graph visualization and provides the opportunity to create user’s own version of the rep-
resentation.

4. Higres tool

The system [13, 14] allows you to create models, which are hierarchical graphs with a given semantics
set by the user in the editor, as well as external modules for processing graphs with a certain semantics.

5. Gephi software

This software [15] is a multiplatform open source software focused on the visual representation and
exploration of graphs.

Below is a comparative table of the results of research on the functionality of these systems.

66

4 Simulations of Computer, Telecommunications, Control and Social Systems>

The station model in Visual representation of
the database the station in SVG format

__________ Comparison of railway objects from
:- the database with objects from SVG
[
'
[
1

Engineer

Classification of

M e e e e e ccce e e

' > nonconformities
L)

[

L)

1

L)

Preparation of the
full report

Fig. 2. Use case diagram: before automation

Table 1
Overview of existing solutions

User-friendl Building of a railway station
System Open Source Ease of use Price, RUB . ¥ model and its visualization
interface .
in the form of a graph
Topomatic Robur — — 139900 + —
GeoniCS — — 129600 + —
Graphviz + + — — _
Higres - + - + —
Gephi + + — + -

From the comparative data presented above, it follows that no system supports simultaneously the
construction of a railway station model and its visualization in the form of a graph, which entails the
need to implement our own method of automated comparison of the model and visual representations
of a railway station plan.

Architecture and algorithm development

To study the architecture of the system, use case diagrams were designed [16]. The traditional meth-
od of comparing railway objects requires manual work from the tester (Fig. 2).

The proposed automation method [17, 18] for object matching is presented in Fig. 3.

Due to the absence of a human factor, the proposed method has a significant advantage — the prob-
ability of error during automated verification is much lower, and the verification speed is several times
higher.

Then the flowchart of the algorithm was developed, which subsequently formed the basis of the soft-
ware project (Fig. 4).

Next, it is necessary to consider the algorithm in more detail based on the above scheme.

Getting railway objects from the database

To construct a graph [19] describing the relations of neighboring railway facilities and their charac-
teristics, it is necessary to obtain appropriate data. The graph elements include arrows, traffic lights, and
track circuits.

67

MOﬂ,eJ'IVIpOBaHVIe BbIYNCNUTENDBHbIX, TEIEKOMMYHUKALIMOHHbLIX, YNPaBAAOLWLNX

M counasibHO-3KOHOMUYECKNX CUCTEM >

IThe station model in Visual representation of the
the database station in SVG format

Software

Y
..... " " Building two graphs
™ Selecting object based on objects from

mapping options the database and SVG

Engineer I
L ‘Graph comparison
| Classification of + |Report on the comparison of

nonconformities railway facilities

Fig. 3. Use case diagram: after automation

'
A module with 1 1 . [l
information about the ' 1 A graph construction 1

1 model representation : : module basedona !

, model representation |

1 of arailway station
' , of arailway station

Femmm————
1 The Settings : Configuration
! module 1
1

1
Report generation :
module [

1

1

' 1 Graph construction
' A module with ' ' module based on the
; information about the : : visual representation
1 Vvisual representation | 1 of arailway station
1 of arailway station
'

Fig. 4. The flowchart of the project

A database with railway objects is usually a model of a real railway station, part of the tracks, etc.
Therefore, the database already contains all the necessary characteristics and values in order to deter-
mine which objects are connected. Thus, several SQL queries are enough to extract useful information
from the database [20]. It is necessary to take into account that the graph can either coincide or diverge
from the representation displayed in the database. The actual and reflected visual representation of one
railway station is shown in Fig. 5.

Geolines are directional objects that make up track circuits and arrows. Each geoline has a “begin-
ning” and “end” fields. To solve the orientation problem (related to the fact that the graph may differ
from the database representation), it is necessary to add an option that reflects the order of objects from
left to right. This includes reassigning the “beginning” and “end” of geolines, as well as reflecting the
coordinates according to the rule Lnew = Lmax + Lmin — L, where L is the linear coordinate of the
object, and Lmax and Lmin are the maximum and minimum coordinates among the list of all objects.

Getting railway objects from SVG file

The task is to read information about railway objects from SVG file and save the objects for further
processing by the program. SVG file is a set of tags. Objects consist of lines and other elements and
have a name, coordinates of key points, etc. in the description [21]. Operations that are performed on
coordinates are also described. The task is to perform operations on all points to obtain the absolute
coordinates of objects [22], and then save them along with the rest of the information about the objects.

First, the desired line is found and the coordinates of the object points are stored. Then all operations
on the object are performed step by step. When all the points of the object are remembered and saved,

68

4 Simulations of Computer, Telecommunications, Control and Social Systems>

Fig. 5. Visual representations with different orientations

another one is created — zero (zero of the object), relative to which the rotation and reflection of the
remaining points are carried out.

There are three types of operations used for SVG in this project. Translate moves an object in
two-dimensional space; rotate rotates it by some angle; scale reflects the object along one or both axes
(parameters — 1 or —1). These are affine transformations; they can be expressed in terms of affine trans-
formation matrices [23, 24], however, frequent matrix multiplication takes longer than an algorithm
based on the features of affine transformations [25]. During the writing and testing process, it was re-
corded:

1. When an object is rotated/reflected, and then moved along any of the axes, the axes are also rotated/
reflected, and movement is carried out along the rotated/reflected axis, and not along the absolute one.

2. After rotation, the object is reflected along the rotated axes.

3. After reflection along one of the axes, the direction of rotation changes to the opposite.

All the observations obtained were incorporated into the algorithm. The operation implementation
is based on the refindCoord WithCorner function. It allows you to find new coordinates of a point when
the axes are rotated by a certain angle. It takes as parameters the old coordinates and the angle by which
the point should be rotated. Let xTranslate be the old coordinate of the point on the x axis, y Translate
be the old coordinate of the point on the y axis, curRotate be the current angle between the vector drawn
to the point from the origin and the vector of the positive direction of the x axis. If xTranslate = 0, this
angle is 90 or —90. Otherwise, arctg(y Translate/xTranslate) is taken (with an addition of 180 — in case
of a negative xTranslate). Then, the angle to which the axes should be rotated, is added to the calculated
angle. The new coordinates are calculated as follows:

1. The distance between the origin and the point is measured using the formula of the hypotenuse of
a right triangle:

dist = \/ xTranslate® + yTranslate” .

69

Mop,enmposaHme BbIYNCNUTENDBHbIX, TEIEKOMMYHUKALIMOHHbLIX, YNPaBAAOLWLNX
M counasibHO-3KOHOMUYECKNX CUCTEM

=
I

2. The coordinates are determined by multiplying the distance by the sine and cosine of the new
angle: x = dist * cos(curRotate), y = —dist * sin(curRotate).

To implement the operations, we introduce a number of variables:

1. sumRotation is the sum of all the angles that the point was rotated by during the operations;

2. rotationDirection is the current direction of rotation of the object, equal to 1 or —1 (counterclock-
wise or clockwise, depending on previous reflection operations; if the object is reflected along one of the
axes, its direction of rotation is opposite to the standard one);

3. xDirection, yDirection are equal to 1 or —1; show whether the object is currently reflected along
two-dimensional axes or not;

4. zero is the zero of the object relative to which the reflection and rotation operations are performed.

Implementation of rotation: the angle to which the object should be rotated is indicated in parenthe-
ses. The angle is multiplied by the rofationDirection and added to the sumRotation. The coordinates of
the current point relative to zero are determined; they are passed to the refindCoord WithCorner function
along with the angle. The resulting values are added to zero.

Reflection implementation (scale): xDirection and yDirection are the values of the point reflection.
The initial values of the current point's coordinate relative to zero are determined; they are multiplied
by xDirection and yDirection and passed to refindCoordWithCorner along with the sumRotation angle. The
resulting values are added to zero. These are the coordinates of the reflected point. Then the rotation Di-
rection, xDirection, and y Direction are updated.

Translation implementation: xTranslate, y Translate are the values of the movement. They are mul-
tiplied by xDirection and yDirection and passed to the refindCoordWithCorner function along with the
sumRotation. The resulting values are added to the current point.

After calculating the absolute coordinates, the objects are filled in.

Plotting graphs based on data from a database and an SVG file

After all the necessary objects have been obtained from each representation of the railway station,
you can start building the graph. It was decided to divide the construction into two stages: building a
graph of track circuits and arrows and attaching traffic lights to the graph built in the previous stage.

This solution was chosen because the traffic light has a single coordinate, which is the “junction”
between the track circuits and the arrows.

Thus, first, a graph is constructed, determining the neighborhood of track circuits and arrows, and
then for each node of the graph it is determined which traffic lights belong to it.

Ultimately, the graph is represented as a structure with fields; the structure field is a dictionary in
which the key is the node of the graph, and the value is a list of neighbor nodes. Below is an example in
the form of five entries from this dictionary.

203 Circuit: none; 355 Switcher; none;

355 Switcher: 203 Circuit; 331 Switcher; none;

331 Switcher: 355 Switcher; 208/3311I1 Circuit; none;

208/33 111 Circuit: 331 Switcher; 208 Switcher; none;

208 Switcher: 208/33 111 Circuit; 260/240TI1 Circuit; 214 Switcher;

Listing 1 — Structure dictionary entries

Consider object 203:

1. The value “Circuit” indicates that this object is a track circuit.

2. The first element has the value “none” — the object in question is the leftmost in its group and has
no neighbors on the left.

3. The second element of the list has the value “355 Switcher” — to the right of our object there is
an object 355, which is an arrow.

70

4 Simulations of Computer, Telecommunications, Control and Social Systems>

4. The third element of the list has the value “none”, which is typical for objects of the track circuit
type, because the third element is designed to show which element is adjacent to an object of the arrow
type along the turn line (for example, for arrow 208 along the turn line, arrow 214 will be the neighbor).

The trafficlights field is a dictionary in which the key is the node of the graph, and the value is a list
of traffic lights located at the “ends” of this object. Below is an example in the form of five entries from
this dictionary.

203 Circuit: M530, M313

355 Switcher: M530, M313;

331 Switcher: M522;

208/331I1 Circuit: M522, M214;
208 Switcher: M214, M218, M216;

Listing 2 — Trafficlights dictionary entries

It can be seen that the M 530 and M313 traffic lights are located on the track circuit 203, as well as on
the arrow 355, which allows us to conclude that these traffic lights are located between these two objects.

The ends field is an auxiliary dictionary for determining the neighbor when adding another track cir-
cuit or arrow. In this dictionary, the key is a point that is the “end” of a geoline belonging to a track cir-
cuit or an arrow. Therefore, the track circuit has only two such points, because it consists of one geoline,
and the arrow has four such points, because the arrow consists of three geolines converging at one point.

The point at which the arrow's geolines converge must also be considered as the “end point”, because
there are situations in which two arrows have common geolines.

Because the track circuits and arrows differ from each other, a structure was introduced that trans-
forms each object into a node of the graph.

After converting all objects into nodes, it is necessary to sort them by coordinates, after which each
of the nodes joins the graph in turn.

The algorithm for attaching a node X to a graph:

1. Check if there are points in the auxiliary dictionary of the ends graph that coincide with the ends
of X located in the end field.

2. Ifnone of the points match, then X does not have any neighbors yet, so X is added to the structure
dictionary as a key, and the value for this key is “none, none, none”. We also need to add all the end-
points of X to the dictionary of endpoints of the ends graph so that the next nodes that are being added
can join X.

3. If at least one point coincides with an already existing point in the dictionary of graph endpoints,
then further steps are taken depending on what type of object X has.

4. If X is a track circuit, then you need to consider two situations of joining a neighbor Y:

a. Y is the neighbor on the right.

If Yis a track circuit, then we change the value of the key Y in the structure dictionary to the same list,
only X will be the first element.

If Y is an arrow, then we look at which of the endpoints X coincides with Y, and depending on this we
decide whether to put X as the neighbor on the left (the first element of the list) or the neighbor along
the rotation line (the third element of the list).

After that, an entry for the key X is added to the structure, and the value for this key is “none, Y,
none”. Next, the endpoint is removed from the auxiliary dictionary, which is now the junction point of
objects X and Y, and the remaining point is added, which was not used when joining X.

b. Y is the neighbor on the left.

Similar to the previous situation, only the first and second elements are interchanged for each object.

5. If Xiis an arrow, then we need to consider the situations when adding to 1 neighbor and to 2 neigh-
bors, but all actions will be similar to attaching a track circuit:

71

MOﬂ,eJ'IVIpOBaHVIe BbIYNCNUTENDBHbIX, TEIEKOMMYHUKALIMOHHbLIX, YNPaBAAOLWLNX

M counasibHO-3KOHOMUYECKNX CUCTEM >

a. update the data in the nodes that the new node is joining;

b. take into account the possible positions of the “turn line” for objects of the arrow type, checking
which end of the arrow the new node is attached to;

c. clear the dictionary containing the ends of the graph from the already occupied ends in order not
to check once again those to which it should not be physically possible to attach the object. The excep-
tion is the center points of arrow type objects.

Once all the track circuits and arrows have been added to the graph, we can proceed to the next stage.

This stage is divided into 2 parts:

1. Filling in the #/_to_attach dictionary, the key of which is the id of the geo point (for objects from
the database) or XY coordinates (for objects from SVG), and the value is a list of traffic lights attached
to this geo point/coordinate.

2. For each node of graph X (track circuit or arrow), a list of traffic lights belonging to one of the
endpoints of X. This list is placed in the frafficlights dictionary by the key X.

At this stage, the construction of the graph of railway objects can be considered fully completed.

Graph comparison

Here we compare asymmetric graphs whose nodes are different objects [26]: track circuits, arrows,
traffic lights. A node structure was invented to compare these objects, which brought them to a single
view. In addition, the algorithm must identify different types of errors and mark nodes with different
colours [27]: green — no errors, yellow — name error, red — location error or node is missing.

The comparison algorithm consists of the following sequential steps:

1. Checking all nodes for presence in another graph.

2. Check for duplicate nodes, which are track circuits and arrows.

3. Check for non-repeating nodes, which are track circuits and arrows.

4. Checking the nodes that are traffic lights.

Since the graphs are asymmetric, most of the steps are duplicated for both graphs. Next, let us look
at each of the steps of the algorithm.

1. Checking all nodes for presence in another graph.

At this step of the algorithm, the program sequentially passes through all nodes in both graphs and
searches for a matching pair in the other graph for each node. If a match is found, the node is considered
paired. Nodes are only considered paired if they have the same name and type.

2. Check for duplicate nodes, which are track circuit and arrow objects.

At this stage of the algorithm, we check the neighbours of each node, looking for duplicates. A node
can have at most three neighbours: the top, front, and turn neighbours. Only arrow type objects can have
three neighbours; the rest always have at most two neighbours. This is because of physical factors, as this
algorithm was designed for railway station layouts, not abstract graphs.

The check begins with the first paired node in the graph. Its neighbours also have a paired node in
another graph. If the neighbouring nodes match, the node is marked as green; if not, it's marked red.
Then the same process is repeated for all other nodes.

3. Check for non-repeating nodes, which are track circuits and arrows.

At this stage of the algorithm, the neighbours of the nodes are checked, which are not repeated. The
check starts from the first unpaired node in the graph. All its neighbours that have a pair are found, as well as
its position relative to the top node: the front neighbour or the neighbour on the turn. And then it is checked
whether their pairs in another graph have a neighbour with the same location and type. If the same node is
located from each paired neighbour, then both nodes are marked yellow, if not, they are marked red.

4. Checking the nodes that are traffic lights.

The traffic light is located at the junction of two track circuits, so it will always have two neighbours.
When comparing traffic lights, their name and the nearest neighbours are compared. Since checking

72

4 Simulations of Computer, Telecommunications, Control and Social Systems>

traffic lights is the final stage of the comparison algorithm, when comparing traffic lights, the colour of
their neighbours’ markings is considered.

If the traffic light has a pair in another column, then it can only be marked in red or green. If the
traffic light already has a pair in another graph, it makes no sense to check the name match again, so at
this step the neighbours of the traffic lights, which are marked green, play the main role. If the nearest
neighbour of the traffic light turns out to be marked red, the nearest green neighbours are taken. If they
match, then the traffic lights are marked green, if not, they are marked red.

If the traffic light does not have a pair in another column, then it can only be marked in red or yel-
low. This decision is made based on its neighbours and the neighbours of the traffic light with which the
comparison takes place. The nearest neighbour with a green mark is located, based on it, a traffic light
without a pair is searched in another graph, and if the other neighbours match, the traffic lights turn
yellow, otherwise red.

This comparison algorithm works correctly in most cases. Errors occur only in some atypical con-
nections. Most of the atypical connections are associated with arrows and the problem of unpredictable
rail connections to them.

Software implementation

Based on the created method of searching for the correspondence of the railway station model to its
visual representation, software was developed.

Requirements have been formulated for the product — the user, by uploading two files containing a
model and a visual representation of the railway station, should receive an output including a log file
describing the inconsistencies found, as well as SVG file on which:

1. the objects for which a complete match has been found in the electronic map are displayed in
green,;

2. displayed in yellow are those objects for which a topological correspondence has been found in the
electronic map, but there is some discrepancy in characteristics;

3. displayed in red are those objects for which no match has been found in the electronic map.

Non-functional requirements have been formulated for the product:

1. programming language — Python 3.11;

2. the interface language is Russian;

3. platform — Windows 10;

4. minimalistic application design.

The requirements were met by implementing a simple graphical application using the PySide6 library
[28]. The application contains buttons for uploading files, selecting the type of data reflection and start-
ing file comparison — all the necessary functionality.

The Git version control system was used during development [29].

Results of the system operation

In order to demonstrate the reduction of labor intensity and increase the accuracy of the process of
searching for compliance with the railway station model using a visual representation, a comparison of
the time spent on work and the number of inconsistencies found with and without using the program
was carried out.

Three employees of the same qualifications participated in the measurements, who independently
compared two representations of the same station.

It is demonstrated in Table 2 how long each stage of the work took, from which it is possible to obtain
an average value. The average number of inconsistencies found is also determined.

Then the employees compared the representations of the railway station (already different, but sim-
ilar in complexity, structure and number of inconsistencies of the first station).

73

Mop,enmposaHme BbIYNCNUTENDBHbIX, TEIEKOMMYHUKALIMOHHbLIX, YNPaBAAOLWLNX
M counasibHO-3KOHOMUYECKNX CUCTEM

I _a
Table 2
Assessment of the complexity of the non-automated process
Worker 1 Worker 2 Worker 3 Average
SVG and DB compliance analysis, min. 16 12 20 16
SVG adjustment, min. 8 10 15 11
Search and cataloging of DB inconsistencies, min. 27 24 24 25
DB adjustment, min. 13 13 16 14
Re-validation of SVG and DB compliance, min. 8 4 4 5
The whole process, min. 72 63 79 71
The number of inconsistencies found 3 7 5 5
In this experiment, automation of the process was used (Table 3).
The calculations are similar to the previous table.
Table 3

Assessment of the complexity of the automated process

Worker 1 Worker 2 | Worker 3 Average
File selection, program launch, min. 1 1 1 1
SVG correction based on the results of automated analysis, min. 4 5 3 4
Database correction based on the results of automated analysis, min. 6 8 10 8
Re-validation of SVG and DB compliance, min. 2 2 2 2
The whole process, min. 12 15 15 14
The number of inconsistencies found 10 10 10 10

The assessment of labor intensity is carried out according to a formula combining a simple summa-
tion of the resources spent on individual components and division by the number of these components
[30]. The average time value in each of the sections is determined by the following formula:

M=
M=

Tij

i
="
n

I
—_
~.

I
—_

where Tij is the time spent on stage j by employee i, 7 is the number of employees, n = 3; m is the
number of stages; for the first section (“Before automating the process”) m = 35, for the second section
(“After automating the process”) m = 4.

Time was measured in seconds, rounded up to minutes; rounding up occurred if the number of seconds
that made up the remainder of the minutes exceeded 30. Thus, we observe that the automation of the
process has significantly reduced the average time required to complete the work — from 71 minutes to 14
minutes, that is, by about 5 times. To demonstrate the results of reducing labor intensity, a histogram was
constructed (Fig. 6) as one of the most common and effective ways to visualize statistical data [31].

The experiment was conducted for a small station (up to 30 graphic elements). During the further
operation of the software, it was revealed that the time gain of the automated process over the non-auto-
mated one increases with the growth of the station size (average values are presented):

1. small station (up to 30 graphic elements) — 5 times;

2. medium-sized station (from 31 to 100 graphic elements) — 5.5 times;

3. large station (from 101 graphic elements) — 6.5 times.

74

4 Simulations of Computer, Telecommunications, Control and Social Systems>

The average time of the matching process
B Gefore automation After automation

&0
60
40

20

Fig. 6. The average time of the matching process

In addition, automation improves accuracy: instead of five inconsistencies found, 10 were found —
and these are all the inconsistencies that were between the stations initially. Thus, automation made it
possible to increase accuracy by N = §2/S1 = 2 times, where S/ is the number of inconsistencies found
before automating the process, S2 is the number of inconsistencies found after automating the process.

Conclusion

This article presents an overview and comprehensive comparative analysis of existing approaches to
comparing models to a real object. An innovative method for searching and comparing objects of the
railway station model to the corresponding objects of the visual representation of the station is proposed.
The proposed algorithm is implemented in the model matching software. The results of reducing labor
intensity by 5 times and increasing accuracy by 2 times are demonstrated.

The work was carried out under the supervision of the Scientific Research and Design Institute of
Informatization, Automation and Communications in Railway Transport.

REFERENCES

1. OKkladnikov S.M. et al. Transport v Rossii. 2020: Statisticheskii sbornik [Transport in Russia. 2020: Statis-
tical Digest]. Moscow: Federal'naia sluzhba gosudarstvennoi statistiki, 2020, 108 p.

2. Kanashin N.V. Creation of digital models of railway stations by terrestrial laser scanning. Transport of the
Russian Federation, 2010, Vol. 28, No. 3, Pp. 66—67.

3. Umansky V.I., Dolganuk S.I. Digital models of station track development. World of Transport and Trans-
portation, 2014, Vol. 12, No. 1(50), Pp. 126—133.

4. Telegin A.I., Timofeev D.N., Chitalov D.I., Pudovkina S.G. SVG-marking of two-dimensional graphics:
The experience of SVG-using in creating of two-dimensional graphics. Miass: South Ural State University (Na-
tional Research University), 2015, 73 p.

5. Mikheev P.N. SVG — novyi standart vektornoi grafiki v Web [SVG — the new standard for vector graphics
on the Web]. Journal of Radio Electronics, 2001, Vol. 9, Pp. 7.

6. Ivlev V.A., Nikiforov 1.V., Yusupova O.A. Automation method for configuring IT infrastructure for IT pro-
jects. Proceedings SPIE 12637, International Conference on Digital Transformation: Informatics, Economics,
and Education (DTIEE2023), 2023. DOI: 10.1117/12.2680779

75

MOﬂ,eJ'IVIpOBaHVIe BbIYNCNUTENDBHbIX, TEIEKOMMYHUKALIMOHHbLIX, YNPaBAAOLWLNX

M counasibHO-3KOHOMUYECKNX CUCTEM >

7. Lutsenko A.S., Ustinova V.E., Ivlev V.A., Mironenkov G.V. Realizatsiia programmnogo obespechenie dlia
verifikatsii sootvetstviia model'nogo i vizual'nogo predstavleniia plana zheleznodorozhnoi stantsii [Implemen-
tation of software for verification of conformity between model and visual representation of a railway station
plan]. Sovremennye tekhnologii v teorii i praktike programmirovaniia [Modern technologies in the theory and
practice of programming], 2024, Pp. 59—61.

8. Shalin A.P., Batrakov V.N. Verification and validation in conformity assessment. Production Quality
Control, 2022, Vol. 4, Pp. 47—50.

9. Smogunov V.V., Mitrokhina N.Yu. Sistemnyi analiz metodov proektirovaniia avtomobil nykh dorog [Sys-
tem analysis of road design methods]. University proceedings. Volga region. Technical sciences, 2011, Vol. 20,
No. 4, Pp. 116—127.

10. Buchkin V.A., Ryzhik E.A., Lenchenkova E.P. Comparative Analysis of Software Packages. World of
Transport and Transportation, 2013, Vol. 11, No. 2(46), Pp. 112—121.

11. Soboleva E.L., Archipova O.B. Research of geoengineering systems for computer-aided design. Geo-Si-
beria, 2010, Vol. 1, No. 2, Pp. 42—45.

12. Kozonogova E.V., Kurushin D.S., Dubrovskaya J.V. Computer visualization of the identify industrial clus-
ters task using GVMap. Scientific Visualization, 2019, Vol. 11, No. 5, Pp. 126—141. DOI: 10.26583/sv.11.5.11

13. Gordeev D.S. A survey of visualization techniques of algorithms on graphs. Scientific Visualization,
2018, Vol. 10, No. 1, Pp. 18—48. DOI: 10.26583/sv.10.1.02

14. Kasyanov V.N., Zolotuhin T.A. Visual graph — a system for visualization of big size complex structural
information on the base of graph models. Scientific Visualization, 2015, Vol. 7, No. 4, Pp. 44—59.

15. Ulizko M.S., Antonov E.V., Artamonov A.A., Tukumbetova R.R. Visualization of Graph-based rep-
resentations for analyzing related multidimensional objects. Scientific Visualization, 2020, Vol. 12, No. 4,
Pp. 133—142. DOI: 10.26583/sv.12.4.12

16. Janushko V.V., Erkin S.N. Construction of the process automation product design based on UML (use
case) diagrams. Izvestiya SFedU. Engineering Sciences, 2009, Vol. 101, No. 12, Pp. 64—71.

17. Petrov A.A., Nikiforov 1.V., Ustinov S.M. Algorithm of ESXi cluster migration between different vCenter
servers with the ability to rollback. Informatsionno-upravliaiushchie sistemy [Information and Control Sys-
tems], 2022, Vol. 2, Pp. 20—31. DOI: 10.31799/1684-8853-2022-2-20-31

18. Kovalev A.D., Nikiforov 1.V., Drobintsev P.D. Automated approach to semantic search through soft-
ware documentation based on Doc2Vec algorithm. Informatsionno-upravliaiushchie sistemy [Information and
Control Systems], 2021, Vol. 1, Pp. 17-27. DOI: 10.31799/1684-8853-2021-1-17-27

19. Magomedov A.M. Postroenie i vizual'noe redaktirovanie grafa s sokrashchennymi spiskami smezhnosti
vershin [Construction and visual editing of a graph with reduced adjacency lists of vertices]. State registration of
a computer program RU 2017617670, 2017.

20. Berezutskaia L.A., Troshkina G.N., Iudintsev A.Iu. SQLite main commands and their comparison to
SQL for an Android app. LinguaNet, 2019, Pp. 289—293.

21. Sedykh D.V., Zuyev D.V., Gordon M.A. Branch format of technical documentation on devices of rail-
way automation and remote control. Part 4. Presentation of elements. Transport Automation Research, 2017,
Vol. 3, No. 4, Pp. 563—-577.

22. Ivlev V.A., Nikiforov 1.V., Leont'eva T.V. Obrabotka dannykh v geoinformatsionnykh sistemakh dlia vy-
bora mestopolozheniia reklamy [Processing data in geographic information systems to select advertising loca-
tions]. Sovremennye tekhnologii v teorii i praktike programmirovaniia [Modern technologies in the theory and
practice of programming], 2019, Pp. 27—30.

23. Lisyak V.V., Lisyak M.V. The resulting matrix of interactive geometrical transformations composition
search method in CAD. Izvestiya SFedU. Engineering Sciences, 2008, Vol. 81, No. 4, Pp. 73—78.

24. Kudrina M. A., Murzin A.V. Affinnye preobrazovaniia ob"ektov v komp'iuternoi grafike [Affine transfor-
mations of objects in computer graphics]. Trudy mezhdunarodnogo simpoziuma “Nadezhnost' i kachestvo”
[Proceedings of the International Symposium “Reliability and Quality”], 2014, Vol. 1, Pp. 307—310.

76

4 Simulations of Computer, Telecommunications, Control and Social Systems>

25. Ustinova V.E., SHpak A.V., Ivlev V.A., Mironenkov G.V. Sistema preobrazovaniia koordinat ob"ektov v
svg-faile dlia poiska sootvetstviia modeli zheleznodorozhnoi stantsii ee vizual'nomu predstavleniiu [System of
transformation of coordinates of objects in svg-file for search of correspondence of model of railway station to
its visual representation]. Sovremennye tekhnologii v teorii i praktike programmirovaniia [Modern technologies
in the theory and practice of programming], 2024, Pp. 132—134.

26. Sysoev V.V. A Framework Similarity Estimation of Unweighted Undirected Graphs. Modern Information
Technologies and IT-Education, 2022, Vol. 18, No. 3, Pp. 655—665. DOI: 10.25559/SITITO.18.202203.655-665

27. Khonina O.1., Zabrodin A.V. Graph Coloring Problem in the Context of Schedule Optimization: Soft-
ware Solution. Intellectual Technologies on Transport, 2023, Vol. 35, No. 3, Pp. 32—37. DOI: 10.24412/2413-
2527-2023-335-32-37

28. Fataliyev A. Most important TPPs for performing graphical user interface and scientific calculations in
Python programming environment. The Scientific Heritage, 2023, Vol. 124, Pp. 37—41. DOI: 10.5281/zeno-
do.10077616

29. Voinov N., Rodriguez Garzon K., Nikiforov I., Drobintsev P. Big Data Processing System for Analysis of
GitHub Events. 2019 XXII International Conference on Soft Computing and Measurements (SCM), 2019,
Pp. 187—190. DOI: 10.1109/SCM.2019.8903782

30. Zharinov 1., Zharinov O., Shek-Iovsepyantz R., Suslov V. Robustness drop estimation of design docu-
mentation preparation by CALS-technologies in instrument making. Scientific and Technical Journal of Infor-
mation Technologies, Mechanics and Optics, 2012, Vol. 80, No. 4, Pp. 151—153.

31. Egorova N.E., Arbuzova A.A. On the formation of the skill of processing and visualization of statistical
data. Pozharnaia i avariinaia bezopasnost' [Fire and emergency safety], 2019, Vol. 13, No. 2, Pp. 38—45.

INFORMATION ABOUT AUTHORS / CBEAEHUA Ob ABTOPAX

Ustinova Valeria E.
Yerunosa Banepus EBrenbeBna
E-mail: ustlera@list.ru

Lutsenko Anton S.
JIynenko Auton CrenaHoBud
E-mail: anton.lutsenko.03@mail.ru

Shpak Adelina V.
IInak Anenmmna BraaumuposHa
E-mail: adelina.shpak@yandex.ru

Mironenkov Grigorii V.
Muponenkos Ipuropuii Bacuibeuu
E-mail: mironenkov97@gmail.com

Ivlev Vladislav A.

Nenes Bramucaas Anekcanaposny
E-mail: nevidd@yandex.ru

Submitted: 24.006.2024; Approved: 05.11.2024; Accepted: 18.11.2024.
Ilocmynuaa: 24.06.2024; Odobpena: 05.11.2024; Ilpunama: 18.11.2024.

77

