\

Computing, Telecommunication and Control, 2024, Vol. 17, No. 3, Pp. 93-102.
MHdopMaTurKa, TeNEKOMMyHUKaumm 1 ynpasnerme. 2024. Tom 17, N2 3. C. 93—-102.

Research article @ 013
DOI: https://doi.org/10.18721/]JCSTCS.17309 T IE
UDC 004.652:004.912

DEVELOPMENT OF THE SYSTEM
OF AUTOMATIC GENERATION OF DATABASE MODEL
ON THE BASIS OF THE TASK TEXT IN NATURAL LANGUAGE

ILA. Lapin ® , O.Yu. Sabinin

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

= lapin_ia@spbstu.ru

Abstract. This paper describes an approach to the implementation of a system that would
allow automatic database model generation from a natural language description given by the
user. Different machine learning technique, such as transformer, named entity recognition and
relation extraction are considered and applied. The implementation of the neural network model
uses the capabilities of the spaCy framework to organize a generic pipeline for training. Off-the-
shelf implementations of some individual components from spaCy are also used, while the rest
are custom. Moreover, we describe the process of gathering and preparing raw data for training a
neural network model, and generating a proper corpus from them. For this purpose, a specialized
annotating tool, Doccano, is used, which satisfies all requirements and is freely available. Finally,
the paper presents the model parameters used in training and the performance metrics obtained.
We’ve been able to achieve great results for the named entity recognition component, while the
performance metrics of the relation extraction component can still be improved. The paper
concludes with possible directions for further work on the implementation of the described system,
including the relation extraction component improvements and new features implementation.

Keywords: natural language processing, named entity recognition, relation extraction, text
analysis, classification, relational databases, model building

Citation: Lapin I.A., Sabinin O.Yu. Development of the system of automatic generation of database
model on the basis of the task text in natural language. Computing, Telecommunications and
Control, 2024, Vol. 17, No. 3, Pp. 93—102. DOI: 10.18721/JCSTCS.17309

© Lapin I.A., Sabinin O.Yu., 2024. Published by Peter the Great St. Petersburg Polytechnic University

4 PeweHnune NpUKnaaHbIX 3a4a4 METOAaMnN UCKYCCTBEHHOIO MHTENJIEKTA

Hay4dHas cTaTbs @ oIS
DOI: https://doi.org/10.18721/]JCSTCS.17309 o

YK 004.652:004.912

PASPABOTKA CUCTEMbDI
ABTOMATUYECKOW FrEHEPALLUM MOLEJIU BA3bl JAHHbIX
HA OCHOBE TEKCTA 3AAAHUA HA ECTECTBEHHOM $A3bIKE

n.A. Jlanun ® , O.10. CabuHuH

CaHkT-NeTepbyprcknii nonnTeEXHUYECKMA yHUBepcuTeT MNeTpa Benunkoro,
CaHkT-NeTepbypr, Poccuitickaa Pepepauma

= lapin_ia@spbstu.ru

AnHOTanuaA. B maHHOI cTaThe ONMMCHIBACTCS MOAXO K peaTnu3alliid CUCTEMbI, KOTOpasl O3B0~
Juna Obl aBTOMAaTUYECKM COCTABJISATh MOJENIb 0a3bl JAHHBIX 110 MPUBEAECHHOMY MOJb30BaTEIEM
OIMMCAHMIO Ha €CTECTBEHHOM sI3bIKe. PaccMaTpuBaOTCS M TIPUMEHSIIOTCS Pa3IAIHbIE METOIbI
MaIlIMHHOTO 00y4YeHMsI, TaKue Kak TpaHc(opmep, pacrio3HaBaHWE UMEHOBAHHBIX CYIITHOCTEN U
n3BjIedYeHNe oTHOIIeHU. [Ipy peaan3anmmyu HEPOCETEBOM MOIEIN TTPUMEHSIIOTCS BO3MOXKHO-
ctu dpeitmBopka spaCy st opraHu3aluy o0Iero mairuiaiiHa aist ooydyeHus. Takke UCTOb-
3YIOTCSI TOTOBBIE pealu3allid HEKOTOPBIX OTAEIbHBIX KOMIIOHEHTOB U3 spaCy, B TO BpeMs Kak
oCTaJibHbIE SIBJISIIOTCS MOJb30BaTebCKUMU. KpoMe Toro, B cTaTbe OMMchIBaeTCs Mpolecc cbo-
pa MCXOMHBIX JaHHBIX JUIST OOYYeHUsI HEMPOCETEeBOM MOJeH, a Takxke (hopMUpPOBaHUE U3 HUX
HaJjiexaniero Kopiyca. JIJis aTux meeit uCrob3yeTcs CrelinaaIu3upoOBaHHbBI MHCTPYMEHT IS
aHHoTHpoBaHUS — Doccano, KOTOPEIN YIOBICTBOPSIET BCeM (PYHKIIMOHAIBHBIM TPECOOBAHUSIM,
a TaKKe HAXOIUTCS B CBOOOTHOM mocTyrie. HakoHell, B cTaTbe IPUBOASITCS UCITOIb3yeMbIC TIPU
00yYeHUM mapaMeTpbl MOJEIN U IMOJIyUeHHBIE METPUKM MPOU3BOAUTEILHOCTU. B pesynabrarte
MPOBEACHHOIO UCCeA0BaHMS aBTOPaM yIaJIoCh TOCTUTHYTh BBICOKMX IMOKa3aTeaeil Aisi KOMIT0-
HeHTa named entity recognition, B To BpeMsI Kak ITOKa3aTeJIM MTPOM3BOAUTEILHOCTH JUISI KOM-
MoHeHTa relation extraction MOXHO ellle Yay4IlIuTh. B KOHIE CTaTbu TPUBOISATCS BO3MOXHBIC
HaIIpaBJICHUA JaJbHEUIIe pabOThI Ha pealn3aliieii ONMMCaHHON CUCTeMBI.

KioueBbie ciioBa: 06p360TKa €CTECTBEHHOTIO 43bIKa, pACIIO3HABAHME UMEHOBAHHBIX CYLIIHOCTEH,
M3BJICYEHUE OTHOIIEHUIA, aHaJIu3 TEKCTa, KJTaCCI/I(l)I/IKaHI/IH, PCIAIMOHHBIC 0asbl JaHHDbIX, ITO-
CTPOCHUC Mozeei

Jlng uutupoBanug: Lapin [.A., Sabinin O.Yu. Development of the system of automatic generation
of database model on the basis of the task text in natural language // Computing, Telecommunicai
tions and Control. 2024. T. 17, Ne 3. C. 93—102. DOI: 10.18721/JCSTCS.17309

Introduction

In today’s world, it is becoming somewhat of a mauvais to talk about the use of various information
systems in a certain area — so global has become the digitalization of all areas of human activity. It is
hard to imagine that today somewhere such systems are not used. This means that if information needs
to be collected, processed and used, it also needs to be stored. Hence, there is no diminishing need for
data storage tools and specialists, and approaches to this process are becoming more and more complex.
Thus, in the field of databases, because it is through these tools that information storage is provided,
specialists are increasingly in demand, with the growing number and complexity of information systems
being developed, as well as with the need to support and expand existing ones.

It is human nature to look for simpler ways of solving the tasks we are facing, especially if these tasks
become routine and take away time that should be spent on solving more complex requiring an indi-
vidual approach. Therefore, we are trying to teach artificial intelligence (AI) to solve such routine tasks
for humans, thereby freeing up resources for other tasks. Among other things, this is aimed at helping

© NanuH N.A., CabuHuH O.10., 2024. N3paTtenb: CaHKT-MeTepbyprckuii MONUTEXHUYECKUIA YHUBEPCUTET MNeTpa Benukoro

4 Applied problem solving with machine learning >

people who do not have the necessary specialized knowledge in a certain field to get the opportunity to
use various tools, at least their basic functionality.

This article will discuss the process of developing such a solution based on AI, which would allow one
to create an initial representation of a relational database model based on the text description of the task
of building a database in natural language. Such a tool should allow specialists to save time when imple-
menting the developed database architecture, or when planning, being able to visualize different vari-
ants of possible architecture. In addition, such a solution will help to solve simple database development
tasks for students, startup teams that are unwilling or unable to hire a specialist, as well as people who
do not have professional knowledge in the database domain. The description of preliminary research as
well as an assessment of the possibility of creating such a system, is given in [1].

Description of the chosen approach

When developing a software implementation of the system of automatic database model generation
based on natural language text, we faced several major challenges:

1) to find logical entities in the text that represent the tables of the future model, as well as their
attributes;

2) to relate the attributes to the logical entities, to which they refer;

3) to determine data types for the attributes;

4) to determine constraints for the tables (mainly foreign keys).

This article will discuss the solution to the first two challenges. Thus, at this stage, it is necessary to
develop a software solution that would allow to input the text describing the modeling task in natural
language and at the output get a certain set of logical entities with their attributes found in the text.

We decided to use the Python library spaCy' as a basis for building a software implementation, as this
library offers a wide set of ready-made machine learning components for working with natural language
text processing tasks, available for different languages, including Russian. In addition, this library offers
a unified ecosystem of proprietary components, which can also include new, manually created compo-
nents, which ultimately provide a unified pipeline for training and using the final model.

SpaCy uses a deep learning approach consisting of four main stages: embedding, encoding, attend-
ing, and prediction [2]. That is, first, tokenization takes place, where each representation is given a
unique identifier and a table of word representations is formed, the size of which is determined by the
size of the corpus dictionary. As a result, a set of vectors containing different tokens is formed.

The second stage involves the formation of a matrix containing context vectors for each token. This
uses a combination of the Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) mod-
els instead of the usual recurrent neural network (RNN) implementation, since the hidden layer in
RNN is constantly being rewritten and thus accumulation of information is problematic, while LSTM
and GRU ensure that the results of the previous pass are saved for use in the next one. Finally, the result-
ing token vectors are composed of the vectors formed during the forward and backward passes.

The third stage uses the attention-mechanism to generate the final vectors. The last step, however,
depends on the implementation of the particular component.

It is also worth noting that spaCy allows us to create joint models using a shared context for compo-
nents, such as a vector store. We can use a transformer, or tok2vec component in the pipeline to form
token vectors, and then use its results in each subsequent component in the pipeline without having to
compute them again, as well as ensuring the integrity and equivalence of the store for all components.
In addition, spaCy allows any transformer implementations, such as loading and inserting models with
Huggingface into the pipeline.

When dealing with the first challenge — to find logical entities in the text that represent the tables
of the future model, as well as their attributes — an approach to natural text processing using machine

! SpaCy, Industrial-Strength Natural Language Processing, Available: https:/spacy.io (Accessed: 20.03.2024)

95

4 PeweHnune NpUKnaaHbIX 3a4a4 METOAaMnN UCKYCCTBEHHOIO MHTENJIEKTA >

~ =\
L J

[Text)—:) Tok2Vee)—b Lower)—y ltl-prL:uH DOC]

Fig. 1. NER model architecture [2]

learning technique was required, which could help to find specific designated classes of entities in the
text depending on the context and the words themselves. Such a technique is called Named Entity Rec-
ognition (NER)?, and has been used and improved for quite a long time. This technique allows solving
tasks of determining named entities in text. Such tasks involve identifying certain entities that fall into
different groups (classes) in unstructured text. NER technique is often used to locate people, organiza-
tions, geographic locations, etc. in text. Our task also fits well under this category of tasks, since we are
solving a similar problem of locate entities belonging to a specific group in unstructured text. Thus, us-
ing NER component allows us to solve the problem of searching in text for logical entities and attributes.

To implement NER component, spaCy uses a transition-based system based on the fragmentation
model proposed by Lample [3]. This is an approach based on computing different state transitions for
prediction. The structure of NER component is shown in [2] (Fig. 1). The tok2vec component performs
the entire process of translating tokens into vector representation. The “lower” component then creates
special vectors for each property by token-property pairs, resulting in some general representation of
the current state for each token. The “upper” component then uses the feed-forward network to predict
weights based on the state representations.

To solve the second challenge we need to find a way to determine the relations in the text between
specific attributes and the logical entities, to which they refer. The very problem of finding dependencies
and relations between words in a text is not a new one and has already received different solutions many
times. While earlier it was mainly pattern-matching, nowadays various machine learning technique are
used, the most common and applicable of which are dependency parsing [4] and relation extraction?.

However, pattern-matching is still often used to solve various special problems, such as one described
in [5], but in a more advanced form of rule-based analysis. Nevertheless, this technique cannot be used
in our case, since the text of the task description can be arbitrary, therefore, it is impossible to identify
specific rules that would be used to determine the relations.

The dependency parsing technique allows us to determine hierarchical dependencies between words,
mostly within a single sentence, by constructing a directed graph with nodes (words) and edges (links).
Despite the examples of existence of applications of this technique in tasks related to the search for re-
lations between NER entities [6] , dependency parsing does not allow us to obtain consistently desired
result in our case, since it does not guarantee the construction of the same dependency graphs for dif-
ferent wording and word orders. In addition, the task of forming a dataset for training the dependency
parsing component turns out to be quite extensive and redundant in this case.

Speaking of the relation extraction, it appears to be much more suitable, since it allows to search
for relations between labeled entities, i.e., between entities found by NER or marked up manually in
advance. In general, the algorithm of relation extraction component is shown in Fig. 2, and it can be
described as follows*:

2 What Is Named Entity Recognition? | IBM, Available: https://www.ibm.com/topics/named-entity-recognition (Accessed: 03.09.2024)

3 Relationship Extraction | NLP-progress, Available: https://nlpprogress.com/english/relationship_extraction.html (Accessed: 20.03.2024)

4 SPACY v3: Custom trainable relation extraction component, Available: https://youtu.be/S8HL-Ap5 Axo0?si=qRJOR-DbxhnZpcxj (Accessed:
13.03.2024)

96

4 Applied problem solving with machine learning >

Document
RE
Classes
Instance data
Y e "
1| | Direct vector
Preprocessing e Classification Fowl Predictions
i [Inverse vector

| :
v v f

Tokens NER ' Token vectors

[. %

Fig. 2. Generalized RE component scheme

Model

Torken .
Text Transformer NER Emitia s BE 5PD%C>
mbeddings C

-~

Embeddings
Token

Fig. 3. Overall model scheme

1) Vector representations are analyzed and new vectors for relationships are constructed, including
entity vectors and contextual information. In doing so, vectors will be created for all pairs of relations.
This factor can be limited by setting the maximum window size as one of the hyperparameters. It is also
worth noting that vectors will be created for both “direct” and “reverse” pairs.

2) The resulting vectors are assigned an assessment of belonging to a particular class (relation label).
Any suitable classifier can be used, provided that the classification is performed with rejection, other-
wise the relations will be assigned to any entities included in the window. Based on the obtained weights
and taking into account the rejection threshold, the predicted labels are determined.

Since spaCy does not have a native implementation of the relation extraction component, we decid-
ed to use the standard generalized implementation provided by the spaCy developers’. It is worth noting
that a big advantage of spaCy is the ability to easily add custom components to the standard pipeline due
to the flexibility of their interfaces, as well as the capabilities of the thinc library®, used for simplified
implementation of AI components.

We decided to use one of the standard spaCy transformers, the multi-language Bert model, as a com-
mon tok2vec component for our pipeline to improve the quality of vector representations and fully use

5 Custom spaCy Relation Extraction Component, Available: https://github.com/explosion/projects/tree/v3/tutorials/rel_component (Accessed:
20.03.2024)
¢ Thinc — A refreshing functional take on deep learning, compatible with your favorite libraries, Available: https://thinc.ai (Accessed: 20.03.2024)

97

4 PeweHnune NpUKnaaHbIX 3a4a4 METOAaMnN UCKYCCTBEHHOIO MHTENJIEKTA

3apava: Co3naTe Ga3y AAWHWX ANA KYPLEPCKOW Chysbh, COAEPMINYI MMGODMAUMGD O
3AKAIAN, HYPLEPAX W ROcTapxe. Ba3a paHWWx QONKHA COMEPRaTe CReQywuWe TaBnuuw:
1. Tafnuua “3axa3u" c nonawn: ID 3akaza, [lata 2akasa, Agpec OTNPEBMTENA,
Appec nonysatenn, Onucamwe 3axa3a.

2. Tabnuua "Hypoeps" ¢ nonaMs: ID kypsepa, OMD Kypwepa, Tenegowm Kypbepa.

3. Tabnuua “foctasxa™ ¢ nonAmMA: I0 pocraekw, ID 3awasza, I0 wypsepa, fava
AOCTABKH c'lET'fI: ADCTABKM .

Fig. 4. Easy level generated text

the attention-mechanism. NER and the relation extraction components rely on a shared store of vector
representations obtained using the transformer. Fig. 3 shows the scheme of the resulting model.

Data mining and training set formation

To prepare a dataset for model training, we needed to collect a certain number of database modeling
task texts. In the process of studying open access datasets on Kaggle and Huggingface, it became clear
that, with a high degree of probability, the required dataset in ready or partially ready form does not ex-
ist, at least in the public domain. Therefore, a search on the Internet resulted in several open resources
with the required tasks texts in Russian’ [7—8].

Unfortunately, the amount of data found was insufficient to form the minimum required dataset,
since, according to the spaCy developers’ recommendation, the dataset for training should contain at
least a couple hundred records®. However, using the found sources, we managed to form a set of only 58
tasks. We decided that the size of the training set for the trial implementation could be about a hundred
records, and yet, it was necessary to find the missing records somewhere.

Therefore, we decided to use Large Language Models (LLMs), since at this level of development of
Al technologies we can use generative Al models to generate new task texts. We decided to use domestic
solutions: Sber GigaChat’ and YandexGPT'". Web user interfaces in the public domain were used to
work with the models. Using various queries to the models, 30 new tasks of varying levels of text com-
plexity were generated (according to the empirical evaluation of the tasks already in the set), ranging
from simple (Fig. 4) to medium (Fig. 5).

This resulted in a total dataset size of 88 records. This amount was still less than the recommended
number, but was much closer to the minimum recommended one hundred records. There was also the
possibility that generating more records could cause the model to “learn” the pattern of text construc-
tion offered by the generative Al and overtrained as a result. In addition, in general, the use of a large
amount of surrogate data during training is considered to be an acceptable but undesirable practice,
since the artificially generated data can often be very different from the real data that the model will en-
counter during its work. Thus, we decided to settle on a compromise — the number of records in the final
dataset of about a hundred records and the ratio of generated texts to “natural” texts from open sources
and their variability should allow us to obtain adequate results for real-life application.

After the initial dataset was formed, we wanted to improve the quality of the data collected. The data
was examined for anomalies, problems with text formatting and overall low-quality texts that could lead
to undesired interference with training were flagged.

7 Tekhnologii baz dannykh i znaniy — Individualnyye zadaniya dlya samostoyatelnoy raboty [Database and knowledge technologies — Individual
tasks for self-study], Available: http://bseu.by/it/tohod/indv_zadaniya.htm (Accessed: 20.03.2024) (in Russ.); FKN+ANTITOTAL — Varian-
ty zadach — proyektirovaniye baz dannykh [Task options — Database engineering], Available: https://fkn.ktul0.com/?q=node/72 (Accessed:
20.03.2024) (in Russ.); Zadacha i teoriya po SQL, MySQL, PostgreSQL i bazam dannykh voobshche [Tasks and theory for SQL, MySQL,
PostgreSQL and databases in general], Available: https://gist.github.com/codedokode/10539213 (Accessed: 20.03.2024) (in Russ.)

§ Training Pipelines & Models spaCy Usage Documentation, Available: https://spacy.io/usage/training (Accessed: 20.03.2024)

? Sber GigaChat, Available: https://developers.sber.ru/gigachat (Accessed: 20.03.2024) (in Russ.)

1" YandexGPT, Available: https://ya.ru/ai/gpt-2 (Accessed: 20.03.2024) (in Russ.)

98

4 Applied problem solving with machine learning >

Jananne: Co30aTe NOFMNECKYH MOAENL Ga3d QAHMMX ONA CMCTEMN YNDABNEHHA
EENLERETEN
CHCTENA YNPABNEHUA 3BAAYANN NPEAHAIHAYEHE [NA OPrAHWIGUAR M KOHTPONA
BREAONHEHHA 33034 0 woMaMae. OWd NOIBONAET COIRADATL IDAAUH, HIIHAYATD
OTBETCTEEHHNY, YT aTe CPOKW B . OTC & Nporpecc W
OCTABNATE KOMMEHTADHM.
Norwueckas MOQens Ga3W AAHHEX [ONMHA BXMNOYBTE CNELYOEWE INEHEHTH:
1. Tabnuua “3apaun® © MonsMi:
- MaewTWpukatop aagaun (ID)
- Hazeanwe 3apaun
- Onucaxue 3apadm
- OTeeTCTBEHWWI 30 3ANauY
- llaTa coanawds 3amauu
" J]EI'E JABEPWEHMR Iafaun
- Craryc 3apavw (B NpOYECCE, BEMNONHEME, OTMEHEHA)
2. Tabnuua "HOMMEHTAPAW™ C NONANKZ
- MaenTudukaTop wommentapus (10}
- MpeHTugukatop 3apaun (ID)
- ABTOp HOMMEHTapua
- TEKCT KOMMEHTapWA
- [aTa COIRAWMA KOMMECHTAPHA
3. Tabnwya "CraTyce™ c NONAMW
= WoenTupuwatop cratyca (I0)
- Hazeawwe craTyca
4, TaGnuuya "0TEETCTBEHHWE™ © NONAMN:
- MaenTugMKaTOp oTeeTcTeeHkoro (ID)
= WNA OTBETCTBEHHOrOD
= DaMAnNWA OTBETCTBEHHOMD
5. Tabndyga "CBAIN" C NONAMM:
= MaenTudurarop aagawn (I0)
- MoenTuduxartop oveetcTeeHsoro (I0)
Mpu COZREHUM NOTWYECKOA MOREMW BA3M QaHHHX HEOGXOOMMO YYECTb CRELYIUWE
TpeGoBaHNA:
1. Kamfan 3afava AOAXHA MMETH YHHKANBHOE HAIBAHWE W ONWCAHME.

. Kampam sapava ponsHa GuTe CBA32MA C OTBETCTEEHHHM 33 €2 BHNONHEHWE.
. Kampam 3apasa AONXHA MMETL NATY CO3NAHAR W [ATy 38BEPLEHMA.

. Kampom 3anaud MOMeT WHMETh WECHOMbKO KOMMENTIDWED.

. Kawpam 3anaua MOMET WMETE HECHOMBHO OTBETCTEEWHMX.

L S]

. Hampam 3apawa WOMET WMETE HECKONBKO CTATycoB.

Fig. 5. Average level generated text

Formatting and punctuation problems were corrected first:

1) Unnecessary line breaks were eliminated.

2) Insignificant task headings without punctuation and with unnecessary hyphenation were elimi-
nated.

3) Missing punctuation marks were added.

Then the task texts were analyzed for anomalies — errors, incorrect wording, etc. As a result, most of
the anomalies were corrected; if too significant changes had to be made to correct anomalies, such texts
were discarded, due to the excessive labor-intensive nature of such corrections and were not included in
the updated dataset.

Finally, texts that differed too dramatically from others, while providing either insufficient or poor
quality information about the database model, even from a human perception point of view, were also
excluded from the final set. We decided to consider such tasks as inherently incorrect and not to include
them in the training set. As a result of all the improvements made, the final dataset size was reduced to
80 records.

Data markup and corpus preparation

To use the collected data set as a corpus for training the neural network model, it was necessary to
mark up the data, and to convert the obtained corpus to such a format that would be easily read by spa-
Cy when generating binary files with a special extension, which would then be used to train the model.

Data markup, or annotation, involves selecting all necessary entities and relations in texts — in our
case, these are logical entities and their attributes, as well as relations of attribute dependencies on spe-
cific entities. This required finding a suitable tool that would have sufficient functionality to perform the
required actions, namely to annotate entities and relations between them throughout the text.

99

4 PeweHnune NpUKnaaHbIX 3a4a4 METOAaMnN UCKYCCTBEHHOIO MHTENJIEKTA >

An ideal choice for such a tool would be Explosion Prodigy'!, an advanced text annotation software
with extensive functionality that allows to quickly and conveniently solve a wide range of data annota-
tion tasks, which, moreover, is developed by the spaCy developers. However, since this tool is a paid tool
and this study was conducted without additional funding, we decided to consider free analogs.

Thus, it was necessary to find an alternative tool in the public domain that offered the required func-
tionality. As a result of studying the market of solutions offered in this area, a free open source software
focused on annotating text data, Doccano'?, was selected. This tool turned out to be the only one that
fully met all the requirements and offered a convenient user interface to work with.

While annotating and re-evaluating records from the dataset, we decided to extend the originally
planned set of labels for entities and relations. As a result, the following set of labels was used for anno-
tation:

1) For entities: LENTITY (logical entity), LATTRIBUTE (attribute of a logical entity), DESC
(utility description for any other entities, primarily for attributes).

2) For relations: ATTIBUTE_OF (is an attribute), DESCRIBED_BY (is described).

The LENTITY and LATTRIBUTE labels were used to label logical entities and their attributes,
while the DESC label was added to provide greater precision when labeling attributes in complex cases.
This applies to cases when two or more attributes had the same description in the text, such as “date and
time of order”. In this case, we defined LATTRIBUTE labels for “date” and “time”, and DESC label
for “order” to subsequently form two attributes “order date” and “order time”. To make such a solution
work, DESCRIBED _BY relation label was introduced to show which entity with DESC label describes
an entity with LATTRIBUTE label. Finally, ATTRIBUTE_OF label was used to define the relation
between the attribute and the logical entity to which it refers.

Thus, the original dataset was annotated using Doccano with labels described in the previous para-
graph. The result was a corpus written in JSONL file format with the following structure:

1) The text field is the task text itself in its original form.

2) The entities field is a set of JSON objects with information on annotated entities in the text (id,
start of entity, end of entity, label).

3) The relations field is a set of JSON objects with information on annotated relations in the text (id,
id of parent entity (from), id of child entity (to), label).

Afterwards it was necessary to edit the obtained corpus so that it could be easily converted to the
internal spaCy format. It is worth noting that in the implementation of the custom relation extraction
component, spaCy developers also provide a script for parsing the annotated corpus obtained using their
Prodigy tool to convert into the internal binary format. Since our corpus still lacked some of the infor-
mation needed, according to spaCy internal notation, we decided to write a script to supply the corpus
with missing details and convert it into the required format.

Experiments

The model described in this paper was trained using the generated corpus. The following hyperpa-
rameter values were used for training, as shown in Table 1. The settings for the transformer and NER
component were left at their default values, while the relation extraction component window size was
set to 1000 to ensure that it could cover large intervals between potentially related entities within all or
most of the text. The rejection threshold was set to 0.3, as experiments with the current version of the
model have shown this threshold to be better than the more obvious threshold of 0.5. Table 2 shows the
performance metrics of the trained model.

' Prodigy — Radically efficient machine teaching. An annotation tool powered by active learning, Available: https://prodi.gy (Accessed:
20.03.2024)
12 Doccano — open-source data labeling tool for machine learning practitioners, Available: https://doccano.github.io/doccano (Accessed:
20.03.2024)

100

4 Applied problem solving with machine learning >

Table 1
Hyperparameter values for training

Hyperparameter Value
Overall batch size 1000
NER hidden layer width 64
Transformer maximum batch items 4096
Transformer window 128
Transformer stride 96
RE window 1000
RE threshold 0.3

It is worth noting the excellent performance result of NER component. Despite the relatively high
total error, the indicators of accuracy, recall, and F-measure are very good, showing that the model cor-
rectly performs 98% of predictions.

Table 2
Performance metrics
Metric
Loss Precision Recall F-score
Component NER 4872 0.96 1.0 0.98
Value RE 8 0.31 0.44 0.36

At the same time, the indicators for the relation extraction component are not as good, with only
36% of the conditional accuracy of predictions. It can be assumed that the problem is largely due to the
fact that we consider not individual sentences, but entire texts, including those that determine the pres-
ence of relations between entities in different sentences. After all, the originally used implementation of
this component was supposed to work more with individual sentences.

Conclusion

This article outlined the details of a partial implementation of a system for automatic generation of
database models based on a task text in natural language. As a result, excellent results were obtained on
the trained model for searching logical entities and their attributes in texts, while the component for
searching relations between attributes and logical entities needs to be improved.

It is worth noting that the system is still a work in progress, since in addition to the refinement of the
existing components, more extensive functionality such as defining attribute data types and searching
for restrictions should be implemented. In addition, it will be necessary to post-process the results pro-
vided by the model after processing the source texts, since it is necessary to form a visual representation
of the database model described in the task for the user.

REFERENCES

1. Lapin I.A., Sabinin O.Yu. Research and planning the development of an automated system for building
relational database models based on provided task text in natural language. Theoretical & Applied Science,
2023, Vol. 11, No. 127, Pp. 311-320. DOI: 10.15863/TAS.2023.11.127.39

101

4 PeweHnune NpUKnaaHbIX 3a4a4 METOAaMnN UCKYCCTBEHHOIO MHTENJIEKTA >

2. Singh N., Kumar M., Singh B. et al. DeepSpacy-NER: an efficient deep learning model for named en-
tity recognition for Punjabi language. Evolving Systems, 2023, Vol. 14, Pp. 673—683. DOI: 10.1007/s12530-
022-09453-1

3. Lample G., Ballesteros M., Subramanian S., Kawakami K., Dyer C. Neural architectures for named
entity recognition. Proceedings of NAACL, 2016. DOI: 10.48550/arXiv.1603.01360

4. Jaiswal S. Natural Language Processing — Dependency Parsing. Medium, 2021, Available: https://
towardsdatascience.com/natural-language-processing-dependency-parsing-cf094bbbe 37 (Accessed:
20.03.2024)

5. Kozhevnikov V.A., Sabinin O.Yu. System of automatic verification of answers to open questions in Rus-
sian. St. Petersburg State Polytechnical University Journal. Computer Science. Telecommunications and
Control Systems, 2018, Vol. 11, No. 3, Pp. 57—72. DOI: 10.18721/JCSTCS.11306

6. Dy Dx. Utilizing dependency trees and NER models for relation extraction task. Medium, 2021,
Available: https://medium.com/@dxdy/utilizing-dependency-trees-and-ner-models-for-relation-extrac-
tion-task-effa5463cb8 (Accessed: 20.03.2024)

7. Sidorova N.P. Bazy dannyh: praktikum po proektirovaniyu relyacionnyh baz dannyh [Databases: A
Hands-On Guide to Designing Relational Databases]. Moscow: Direkt-Media, 2020. 92 p.

8. Potapov A.S., Astahova I.F., CHulyukov V.A., Starikov V.N. Praktikum po informacionnym sistemam.
Oracle [Oracle Information Systems Workshop]. Kiev: YUnior, 2004. 177 p.

INFORMATION ABOUT AUTHORS / CBEAEHUA Ob ABTOPAX

Lapin Igor A.
Jlanmn Urops AekcanapoBuny
E-mail: lapin_ia@spbstu.ru

Sabinin Oleg Yu.

Caounnn Oner IOpseBuy
E-mail: sabinin_oyu@spbstu.ru

Submitted: 22.04.2024; Approved: 29.07.2024; Accepted: 06.08.2024.
Ilocmynuana: 22.04.2024; Odobpena: 29.07.2024; Ilpunama: 06.08.2024.

102

