
© Mezheneva I.O., Lukashin A.A., Chatoyan S.K., 2024. Published by Peter the Great St. Petersburg Polytechnic University

Computing, Telecommunication and Control, 2024, Vol. 17, No. 3, Pp. 61–70.
Информатика, телекоммуникации и управление. 2024. Том 17, № 3. С. 61–70.

Research article
DOI: https://doi.org/10.18721/JCSTCS.17306
UDC 004.8

RECONSTRUCTION OF ATTRACTORS  
OF SUPERCOMPUTER USER'S ACTIVITY AND IDENTIFICATION 

OF CRITICAL DEVIATIONS IN THEIR BEHAVIOR

I.O. Mezheneva, A.A. Lukashin ✉ , S.K. Chatoyan
Peter the Great St. Petersburg Polytechnic University,  

St. Petersburg, Russian Federation
✉ lukash.spb.ru@gmail.com

Abstract. The modern job scheduling system in supercomputer platforms is based on the 
estimates of the request for computing resources provided by users (often based on subjective 
considerations). However, it has been found that such estimates can be significantly inaccurate. In 
this regard, a practically important task arises: building a behavior model of user tasks executed in 
a supercomputer, identifying and evaluating critical deviations from the predicted behavior profile 
(based on an assessment of user confidence). Methods of nonlinear dynamics and topological 
data analysis are used to solve this problem. The article presents the results of experimental 
studies for various data sets obtained at the “Polytechnic Supercomputer Center” of Peter the 
Great St. Petersburg Polytechnic University. The Betti curves of the supercomputer user profile 
are calculated. The results of the evaluation of the comparison of several user profiles with the 
reference profile are presented. A desirability scale and numerical intervals for the proposed classes 
are proposed.
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Аннотация. Современная система диспетчеризации задач в суперкомпьютерных плат-
формах основана на оценках потребности в вычислительных ресурсах, предоставленных 
пользователями (зачастую на основе субъективных соображений). Однако было установ-
лено, что такие оценки могут быть существенно неточными. В связи с этим возникает 
важная в практическом отношении задача – построение модели поведения пользователь-
ских заданий при их выполнении в суперкомпьютере, выявление и оценка критических 
отклонений от прогнозируемого профиля поведения (на основе оценки доверия к пользо-
вателю). Для решения этой задачи используются методы нелинейной динамики и тополо-
гического анализа данных. Приводятся результаты экспериментальных исследований для 
различных наборов данных, полученных в «Суперкомпьютерном центре “Политехниче-
ский”» Санкт-Петербургского политехнического университета Петра Великого. Посчи-
таны кривые Бетти профиля пользователя суперкомпьютера. Представлены результаты 
оценки сравнения нескольких профилей пользователей с эталонным профилем. Предло-
жена шкала желательности и числовые интервалы для предложенных классов.

Ключевые слова: высокопроизводительные вычисления, гибридные вычислительные си-
стемы, топологический анализ данных, скалярные временные ряды, планирование задач
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Introduction

Job scheduling is one of the key systems for supercomputer platforms, which significantly affects 
their performance [1]. The basis of this process is an assessment of the resource requirements of jobs, 
such as processor time and memory capacity. Based on this information, the dispatcher generates a 
schedule for completing tasks. However, existing dispatch systems rely on estimates provided by users, 
which often turn out to be inaccurate, resulting in inefficient use of valuable computing resources [2].

As the experience of operating the “Polytechnic Supercomputer Center” (SCC Polytechnic) shows, 
the inaccuracy of such estimates is usually due to the following reasons [3]:

• lack of experience of users of supercomputer platform resources in assessing the necessary needs 
for computing resources to solve a particular task;

• insufficient consideration of the specifics of the task being solved;
• complexity of predicting the behavior of complex algorithms, especially when using third-party 

libraries.
Moreover, since the dispatcher does not allocate resources beyond the requested amount, users tend 

to overestimate their estimates to ensure successful job completion.
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The study is performed on the data, which was collected during the operation of the SCC Polytech-
nic. The dataset contains information about around 1.5 million of submitted jobs. SCC Polytechnic 
provides access to four different supercomputer clusters with the following parameters:

1. Cluster “Tornado” – consists of 612 nodes with 28-cores computers;
2. Cluster “Cascade” – consists of 81 nodes with 48-cores computers;
3. Cluster “Tornado-k40” – consists of 56 nodes with 28-cores computers with 2 GPUs each;
4. Cluster “NV” – consists of nodes with 48-cores computers with 8 GPUs each.
Each task in the dataset is submitted into one of these clusters and has information about its real 

execution and final task status.
In this regard, there is a need to develop methods for analyzing the behavior of users of supercomput-

er platforms – a method for reconstructing the dynamics of resource consumption, in particular, identi-
fying deviations and evaluating them as critical. The proposed approach to computing behavior patterns 
is widely used for detecting anomalies in cybersecurity, retail, and other domains [4, 5]. Understanding 
the behavior patterns of supercomputer users allows to develop algorithms for improving the efficiency 
of using supercomputer resources.

The research methods include the theory of embedding time series in a reconstructed phase space, 
the theory of persistent homology, the theory of step functions, and decision theory methods based on 
the Harrington function.

The methodology of building profiles

The development of a methodology for building profiles based on complex and voluminous data, 
aimed at identifying deep patterns and abnormal behavior, as well as building descriptors reflecting vari-
ous behavioral models, will be considered from the point of view of approaches based on topological da-
ta analysis (TDA) [6]. TDA, as a branch of data science, combines the principles of algebraic topology, 
differential geometry, functional analysis, mathematical statistics, and computer science.

In this approach, user behavioral profiles are built based on “data point clouds”, which are disor-
dered datasets that do not depend on a specific metric time (or similar) structure [7]. Topological spaces 
are mapped to these clouds of data points, to which TDA methods are then applied.

In particular, in task planning systems for supercomputer platforms, user behavior is often present-
ed in the form of time series that cover multidimensional information about requests for computing 
resources: the type of resource, the amount of resources required (number of cluster nodes, processor 
requirements, memory, etc.) and the duration of the task (including actual operational data). Therefore, 
the first step in building a behavioral profile is to transform data from time series into point clouds and 
match them to the corresponding topological spaces. Thus, it is a process that ensures the integrity of 
information and the preservation of the existing “geometry” in the data, i.e. the choice of the appro-
priate topological space is carried out in such a way as to “cover” all the elements of the time series [8].

The main idea of TDA is to map a data set to the corresponding topological spaces, approximate 
them with simplicial complexes, and then apply the persistent homology technique to study the prop-
erties of these structures [6]. In the context of simplicial complexes, the theory of persistent homology 
relies on the mechanism of simplicial filtering, which systematically generates several nested, weakly 
dependent complexes, thereby revealing their evolution and stability at different levels of analysis. In 
this process, the key metrics are topological invariants, such as persistent homology groups and their 
numerical measure, the Betti numbers, which provide a deep understanding of the structural features 
of the data, and their geometry. The significance of each property is assessed through its “persistence” 
in filtration time – a concept that, although conditionally related to time, more accurately reflects the 
changing depth of analysis or the scale of consideration. The significance of this approach lies in the fact 
that the duration of the existence of such invariants directly correlates with the geometric structure of 
the studied simplicial complexes, which are approximating models of topological spaces corresponding  
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to data clouds. Thus, persistent homology acts as a means for quantifying the stability and multilevel 
analysis of the topological (geometric) data characteristics.

Step 1. Converting a time series to a point cloud
The development of an approach to the embedding space construction is based on the fundamental 

Takens theorem application, which is aimed at the attractor reconstructing of a dynamical system from 
a scalar observable [9]. The embedding theory establishes that to obtain a representation of the phase 
space of such a system, it is possible to replace true, often inaccessible, system variables with sequences  
of d-dimensional vectors with a delay collected from samples of the time series       at successive time 
points:

where τ is the time delay, d is the dimension of the embedding.
The main guarantee provided by the Takens theorem is that such an embedding structure preserves 

the key characteristics of the original time series up to continuous maps [8]. This means that when 
constructing a topological embedding, we can freely choose any continuous function, among which the 
shift introduced through delay is the simplest option among possible transformations.

We will determine the optimal parameters of the embedding dimension and the time delay using an 
algorithm developed based on the L-statistical methodology. This technique follows from the concept of 
the noise measure, first proposed by Casdagli [10, 11], and aimed at quantifying the embedding quality, 
based on the analysis of the disintegration of close trajectories in the reconstructed space. If the attach-
ment is unreliable, even minor changes can significantly distort the true state of the system, increasing 
the influence of noise and reducing the accuracy of reconstruction.

Unlike the classical Casdagli approach, the improved L-statistics modifies, freeing itself from the 
need to determine a specific prediction horizon for measuring noise amplification [12]. The algorithm 
implementing this principle is based on the analysis of the proximity of neighbors and strives to preserve 
both the geometric and topological characteristics of the original and restored attractors. The goal is to 
maintain a correspondence between the structural features of the original time series and their projec-
tions in the embedding space, ensuring maximum informativeness without loss of significant properties. 
Combining the principles of redundancy and irrelevance into a single metric, L-statistics is formalized 
as an objective function, the optimization of which seeks to reduce both aspects simultaneously [12].

As a result, the time series is transformed into a discrete cloud of points inside a topological (usually 
Euclidean space) space, i.e. ℝd. Next, TDA procedures are applied sequentially to the point cloud.

Step 2. Topological data analyses
Let us start with the assumption that the point cloud is inscribed in a metric topological space (which 

is guaranteed for the embedding procedure) by introducing the Euclidean metric. The next step will 
be to triangulate this structure using the Vietoris–Rips complex. Taking into account the sensitivity of 
the triangulation process to the level of proximity of points (and, accordingly, the proximity parameter 
introduced during the construction), we use a strategy for calculating persistent homology [6], in which 
the Euclidean metric gradually increases and the evolution of topological features is recorded in the 
form of a filtered Vietoris–Rips complex [13]. Homology groups are calculated for each Ki complex:

where       is the cycle group,       is a group of complex boundaries.
Persistent homology groups track the changes that occur, when the Euclidean metric (proximity 

parameter) changes – the appearance and disappearance of topological features – and associate the 
corresponding persistence with them.
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As a topological descriptor – the basis of analysis, reflecting topological features in a form conven-
ient for analysis – in this work, Betti curves were chosen, expressed through changes in Betti numbers 
during the process of filtration. They are step functions describing the life cycles of topological features  
and their resistance to changes in proximity scale. Betti numbers         are calculated using the for-
mula (in the context of a vector space):

Betti curves were chosen because, being step functions, they allow us to calculate the average curve 
and to provide a simple method for estimating distances [14].

Step 3. Identification and evaluation of deviations from the basic profile
Our hypothesis is based on the idea that any deviation in the user's behavioral model entails a modi-

fication of the point cloud structure (a change in geometry in the data), which, in turn, manifests itself 
through noticeable shifts in topological properties. In this context, Betti curves act as a tool for visual-
izing the dynamics of these changes, providing a mapping of the metamorphoses of homology groups 
– key topological invariants.

The comparison of the obtained Betti curves with the reference profile generated according to a sin-
gle methodology is performed using the Wasserstein and L1. metrics. The evaluation process following 
the topological analysis requires a multidimensional approach to decision making, which involves the 
use of complex evaluation criteria – the construction of a generalized indicator. Within the framework of 
this task, we have chosen a methodology for constructing a generalized desirability indicator developed 
by E.K. Harrington [15].

Table  1
Desirability scale

Gradation names (linguistic meanings) Numerical intervals

Vary bad 0–0.2

Bad 0.2–0.37

Acceptable 0.37–0.63

Good 0.63–0.8

Very good 0.8–1

The generalized Harrington desirability function provides a mechanism for converting complex top-
ological characteristics into homogeneous numerical parameters, which greatly simplifies further in-
terpretation and analysis. The application of this approach allows not only to more accurately assess 
the scale of deviations, but also to optimize the comparison process, making it more transparent and 
accessible to perception.

To determine the estimate, a “desirability curve” (one of Harrington's logistic functions) is used, 
given as follows [13]:

where      represents the encoded values of individual characteristics (scalar value), and x is a varia-
ble indicating the level or value of each characteristic. The x-axis is interpreted as a scale of individual 
indicators, and the d-axis is interpreted as a desirability scale, divided into five discrete ranges that de-
termine the degrees of deviation.
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The generalized desirability index is calculated as a geometric mean according to the formula [14]:

where m is the number of individual quality criteria; di is the individual scores for each criterion.
The choice of the geometric mean in constructing a generalized desirability indicator is because the 

geometric mean plays the role of a “smoothing” mechanism that reduces the effect of random fluctua-
tions in estimates and provides a more stable and adequate overall picture of quality [15].

Thus, the mechanism of forming a generalized desirability index works as a highly sensitive filter that 
allows to identify significant deviations and evaluate them by a comprehensive desirability scale.

Experimental results

In the framework of the study, the data obtained from the Supercomputer center Polytechnic and 
presented as a source of information on the effectiveness of performing computational tasks were select-
ed as the analyzed data.

The studied dataset contains 1545793 records of launched tasks and their execution results. A task 
may be completed successfully or it may not be completed due to a user error or lack of the requested 
execution time. Information about each task contains the number of requested resources (processors 
and supercomputer nodes), as well as the results of the task, including how many and what resources 
were issued, when and how the task was completed. In addition, 10 problem areas were identified: as-
trophysics, bioinformatics, biophysics, energetics, geophysics, IT, mechanical engineering, mechanics, 
physics, and radiophysics. Each task belongs to one of them.

Data analysis was made based on the following job parameters from the dataset:
1. ReqNodes – Requested minimum amount of nodes for the job/step.
2. ReqCPUS – Number of requested CPUs.
3. CPUTimeRAW – Time used (Elapsed time * CPU count) by a job or step in CPU-seconds.
4. ElapsedRaw – Job's elapsed time in seconds.
5. AllocNodes – Number of nodes allocated to the job/step. 0 if the job is pending.
6. AllocCPUS – Count of allocated CPUs.
7. TimelimitRaw – What the time limit was/is for the job. Format is in number of minutes.
8. Priority – Slurm priority.
9. Partition – Partition on which the job ran (the name of the cluster, e.g., Tornado).
This data combines user requests for computing resources with detailed performance metrics in the 

form of time series, including key parameters such as the requested and actual task execution time, the 
amount of processor time used, the degree of launch success, and other critical performance indicators.

Fig. 1 provides a visual representation of the multidimensional nature of these time series for one 
particular user. On the graph, each point represents a snapshot of the system state for one of the tasks – 
thus, a sequence of 15 such points reflects the results of the analysis for 15 sequentially completed tasks.

For each user, data is extracted and examined individually, taking into account all characteristics as 
part of a single multidimensional time series, using an approach where the transformation is carried out 
using a Takens embedding based on an algorithm for selecting parameters based on L-statistics. Due to 
the complexity of time series that require embedding in a space with a dimension of at least 2n + 1, a 
direct visual representation of this point cloud becomes unrealizable at dimensions d > 3.

However, using the theory of persistent homology, we transform these point clouds into analytically 
controlled information. We create filtered Vietoris–Rips complexes that allow to extract persistent ho-
mology and construct average Betti curves for each user. This process forms a unique “topological por-
trait” of the user, which reflects his characteristics and behavior within the framework of computational 
tasks [16].

1
,mm

ii
D d

=
= ∏



Applied problem solving with machine learning

67

Fig. 2 illustrates an example of such a user profile in the form of Betti curves, where each step on the 
curve reflects changes in the topological structure of user data, taking into account different levels of 
detail and time scales.

To create a reference profile of the “ideal” user, we used a time series of the most successful users 
selected according to two criteria: more than 95% successful completion of tasks and a minimum devi-
ation in the use of resources from the stated needs. The results of this analysis are presented in Fig. 3, 
showing Betti curves reflecting optimal topological behavior characteristics.

Table 2 shows the results of evaluating the comparison of several user profiles with a reference profile.
Thus, the proposed methodology allows to compare current user behavior with historical data as well 

as to provide a quantitative assessment of their behavioral effectiveness, the basis for determining the 
level of trust in each user.

However, it is worth noting the limitation of this approach: for new users, it is required to collect a 
sufficient amount of initial data to accurately build their profile and reliable assessment. A lack of initial 
data can make it difficult to accurately model behavior and leads to inaccuracies in the assessment.

Conclusion

Within the framework of this study, an algorithm based on topological data analysis is proposed, 
which builds user profiles of a supercomputer center with acceptable computational complexity using 
simple and effective procedures for identifying behavioral patterns. This approach demonstrates a wide  

Fig. 1. Time series

Fig. 2. Betti curves of the user profile
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