Computing, Telecommunication and Control, 2024, Vol. 17, No. 2, Pp. 24-37.
4 NHdopMaTurKa, TeNEKOMMYHUKaumm 1 ynpasneHuve. 2024. Tom 17, NQ 2. C. 24-37.

|
Software of Computer, Telecommunications
and Control Systems

[MporpaMMHoOe obecrnevyeHne BblYNCIUTENbHBIX,
TE/TEKOMMYHUKALMOHHbIX U YNPaBASOWMNX CUCTEM

Research article @ 01S)
DOI: https://doi.org/10.18721/JCSTCS.17203 s
UDC 004.052.3

ALGORITHM FOR MONITORING
AND IMPROVING THE STABILITY OF THE IT INFRASTRUCTURE
BASED ON AVAILABILITY AND RELIABILITY METRICS

D.A. Varlamov, 1.V. Nikiforov = ® , S.M. Ustinov

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

= jgor.nikiforovv@gmail.com

Abstract. Most companies have their own IT infrastructure that consists of complex systems
and services. The stability of systems and services is important for companies, as problems with
them can lead to loss of resources and human time. Thus, it is important to analyze previous IT
service outages, which aims to identify and adjust the most critical and vulnerable elements of
the infrastructure that are prone to breakage or failure. Research objective is to develop a new
algorithm for improving the stability of IT infrastructure of a company by analyzing and taking
into account the statistics of previous services outages. As a result, a new algorithm is proposed
to identify and fix problems in IT services before they lead to serious consequences and reduce
the time to find the source of problem. The algorithm is based on two new metrics: availability
and reliability, which distinctive feature is the consideration of statistics of previous failures and
outages in the system. The architecture of a high-performance software tool that allows real-time
monitoring and evaluation of IT services stability metrics is presented. The effectiveness of the
proposed algorithm is demonstrated by implementing it in a software tool and observing the growth
of stability indicators — availability and reliability — after the detection and elimination of a weak
link in IT services. The use of the developed algorithm allowed to reduce the time during which the
material and human resources of the company were idle by 25%. The practical significance of the
presented algorithm was tested in one of the large industrial information technology companies
with more than 10000 employees. Based on the information obtained with created software, it was
possible to obtain recommendations for improving the stability of company’s IT services.

Keywords: metrics, availability, reliability, stability, IT infrastructure, outage, monitoring

Citation: Varlamov D.A., Nikiforov 1.V., Ustinov S.M. Algorithm for monitoring and improving
the stability of the IT infrastructure based on availability and reliability metrics. Computing,
Telecommunications and Control, 2024, Vol. 17, No. 2, Pp. 24—37. DOI: 10.18721/JCSTCS.17203

© Varlamov D.A., Nikiforov I.V., Ustinov S.M., 2024. Published by Peter the Great St. Petersburg Polytechnic University

4 Software of Computer, Telecommunications and Control Systems >

Hay4dHasa cTaTbs —(D@
DOI: https://doi.org/10.18721/]JCSTCS.17203 & T
YOK 004.052.3

AJITOPUTM MOHUTOPUHIA U NOBbLIWWEHUA CTABUJIbBHOCTU
MHO®OPMALMOHHO-TEXHOJIOTUYECKOMU UHDOPACTPYKTYPbI
HA OCHOBE METPUK AOCTYNHOCTU U HAAEXHOCTH

A.A. BapnamoB, U.B. HukugopoG = @, C.M. YcmuH0oB

CaHkT-MNeTepbyprcknii NoAnUTEXHUYECKUA yHUBEepcuTeT MNeTpa Benunkoro,
CaHkT-NeTepbypr, Poccuitickaa Pepepauma

= jgor.nikiforovv@gmail.com

Annoramysa. BoabIIMHCTBO KOMITAHUIT MMEIOT COOCTBEHHYIO MH(POPMALIMOHHO-TEXHOJIOTI -
YeCKy10 MHMPPACTPYKTYpPY, COCTOSIIYIO U3 CIOXKHBIX CUCTEM U cepBUCOB. CTaOMIBHOCTH PAOOTHI
CEPBMCOB BaXKHa JUUII KOMITaHUI, TaK KaK IMPOOJIeMbl C HUMU TIPUBOIST K TIOTEPSIM PECYPCOB U
YyeJioBeveckoro BpeMeHu. [103ToMy BaskHBIM SIBJISIETCST aHAIU3 TIPEIBIIYIIINX OTKJIIOUeHUI cep-
BHUCOB, KOTOPKIIT HAaIIpaBJIeH Ha BRISIBIICHNE U HATAXKNUBAHNE YI3BUMBIX JIEMEHTOB MH(MPACTPYK-
TYPbI, IOIBEPKEHHBIX IOJIOMKE WIN OTKa3y. Ileab uccaedosanus: pa3paboTaTh aJITOPUTM IS 1O~
BBIILIEHUsI CTAOMIbHOCTA MH(MOPMALIMOHHO-TEXHOJOTMYECKOM MH(MPACTPYKTYPhI IIPEAIPUSITUS
3a CYET aHa/IM3a 1 yyeTa CTaTUCTUKU MPEeIbIAYIINX OTKIIOUeHU. Pe3yabmamol: TPEII0XKEH HO-
BBII aJITOPUTM, TTO3BOJISIIOIIMI BBISBIISITh U YCTPaHSATh MPOOJIeMbl B MH(MDOPMAIITMOHHO-TEXHO-
JIOTMYECKUX CepBUCaX MPEIIPUSITHS 10 TOTO, KaK OHU TIPUBEIYT K CEPbE3HBIM ITOCIEACTBUSM,
1 COKpAaIllaTh BpeMs Ha MOMCK MUCTOYHUKA IIPOOJIeMbl. AITOPUTM OCHOBAH Ha IBYX HOBBIX Me-
TPUKAaX: JOCTYITHOCTb U HaAEXKHOCTb, — OTJIMYUTEIbHON 0COOEHHOCThIO KOTOPHIX SIBJISIETCS yYET
CTaTUCTUKM MPEIbIAYIINX OTKIoueHuil. [1pencraBieHa apXuTekTypa BhICOKOMPONU3BOIUTEIb-
HOTO MPOrpaMMHOIO CPEACTBa, MO3BOJISIONIET0 B pexKUMe PeaJbHOrOo BPEMEHU OCYIIECTBIISITh
MOHUTOPUHT U OLIEHKY ITOKa3aTeJieil CTabMIbHOCTU cepBHUCOB. JlemMoHcTpupyetcst 3 heKTUB-
HOCTb TIPEIIJIOKEHHOTO aJITOPUTMa TYyTEM €ro peaau3alliy B IPOrpaMMHOM CPEACTBE U HabJt0-
JIEHUST POCTa TToKa3aresel CTabMIbHOCTU — TOCTYITHOCTH U HaJIEKHOCTU — TTOCTIe OOHAPYKEeHUS
1 yCTpaHEHMs c1aboro 3BeHa B MH(GOPMAIIMOHHO-TEXHOJOIMISCKINX CepBHCax. Mcmonb3oBaHMe
pa3paboTaHHOTO AJTOPUTMa IMO3BOJUIO Ha 25% COKpaTUTh BpeMsl, B TeUeHHE KOTOPOIo Ma-
TepuajbHble W YEJIOBEUECKUE PeCypChl KOMIAHUU MpocTauBaiu. [Ipakmuyeckas 3Ha4umocme:
MpeICTaBIeHHBI aJITOPUTM MPUMEHEH Ha IMpakKTUKe B OTHOW M3 KPYIMHBIX MPOMBIILIEHHBIX
MHGOPMALIMOHHO-TEXHOJOrn4ecknx komnanuii ¢ 6osiee yem 10000 corpynHukoB. Ha ocHoBe
nHGOPMAIIUH, TTIOJTYYSHHON IIPU ITOMOIIN CO3IaHHOTO IIPOrPaMMHOTIO CPEACTBA, YIAIOCH ITOJIY-
YUTHh PEKOMECHIAIINH 110 TIOBBIIICHUIO CTAOMJIPHOCTA MH(MOPMAIIMOHHBIX CEPBMCOB KOMIIaHUH.

KoueBbie cioBa: METPUKU, JOCTYITHOCTb, HAACKHOCTD, CTa6I/IHBHOCTb, I/IH(I)OpMaHI/IOHHO—TCX-
HOJIOrnyeckKasd I/IH(I)paCTp}IKTypa, OTKIIOYCHUE, MOHUTOPUHT

Jnga uutupoBanusa: Varlamov D.A., Nikiforov 1.V., Ustinov S.M. Algorithm for monitoring and
improving the stability of the IT infrastructure based on availability and reliability metrics // Comn
puting, Telecommunications and Control. 2024. T. 17, Ne 2. C. 24-37. DOI: 10.18721/JC-
STCS.17203

Introduction

Stability of internal services is important for all companies using information technology infrastructure.
The stability of IT services affects the speed and quality of work of all employees of the company [1]. Any
downtime of services entails costs and losses for the company. Analysis of previous IT service outages is
designed to find the most critical and vulnerable infrastructure elements that are prone to breakage or
failure to predict in advance which of the elements have a greater probability of failure [2]. This process
allows you to solve problems in the infrastructure before they lead to huge resource and human time losses
as it reduces the time to find the source of the problem. That is why it is urgent to create, improve and

© Bapnamos [.A., Hukudopos W.B., YcTuHoB C.M., 2024. U3paTensb: CaHKT-MeTepbyprckuii NonMTEXHUYECkUin yHuBepcuTeT MeTpa Bennkoro

4 I'IporpaMMHoe obecneyeHune BbIYNCIUTENBbHbIX, TEIEKOMMYHUKALUMUOHHBLIX N yNPaBnAaoLWmMx CUCTEM

automate algorithms to increase the stability of the IT infrastructure [3, 4]. The main components of the
IT infrastructure that stand out in our work are software, hardware, and computer networks.

The article [5] proposes to assess the stability of the IT infrastructure based on user perception. The
authors suggest using one metric to assess stability: availability. Various options for calculating this met-
ric are offered, including those that take into account the severity of failures. In our work, we propose to
use not one, but two metrics to assess the stability of the IT infrastructure: availability and reliability. We
distinguish two classes of problems with the IT infrastructure: outage and degradation. Outage refers to
a condition in which the service cannot perform its basic functionality. Degradation refers to a condition
in which the service is able to perform its basic functions, but some of the additional functions cease
to work correctly. We cannot use a single metric to evaluate a system that can be in one of three states:
healthy, degrading or failing, because it is unclear to what extent degradation and to what extent outages
will affect it. We need to have two metrics: one will only be affected by outages, and the second one will
be affected by degradations and outages. Considering both classes of problems, the combination of the
two metrics will give us a more informative assessment of IT infrastructure stability.

The goal of the work is to develop and implement in the software a new algorithm for improving the
stability of IT infrastructure, a distinctive feature of which is the accounting of statistics of previous out-
ages. To achieve this goal in the work, it is required to perform the tasks listed below.

1. To study existing solutions to improve IT infrastructure stability.

2. To study existing algorithms to calculating key indicators of IT infrastructure stability.

3. To propose a new algorithm for calculating key indicators of IT infrastructure stability, taking into
account the state of degradation.

4. To propose the algorithm for improving stability of IT infrastructure. A distinctive feature of the
algorithm is the accounting of statistics of previous outages.

5. Implement the proposed algorithm in a software tool.

6. Evaluate the effectiveness of the developed algorithm and the software that implements it.

Overview of solutions to improve stability

There are various algorithms for improving stability. For example, in the article [6] authors consider
an algorithm to increase the stability of I'T services in large companies with overlapping IT frameworks.
To improve the quality of IT services, they propose to use a combination of reliability, assurance, respon-
siveness, empathy and tangibles to improve the quality of services. However, they focus on providing IT
services as a service, and in our article, we focus specifically on IT infrastructure within the company.

The article [7] describes an algorithm for monitoring and measuring the quality for the Internet of
Services (IoS) — an ecosystem in which online and offline services provided by many different service
providers are intertwined. The authors developed and implemented an algorithm based on establishing
a hierarchy of indices divided into three types: value, quality and capability (VQC). After dividing in-
dices, service providers establish a dynamic hierarchy that defines the calculation relationship between
indices, which helps to monitor the stability of the system in real time. This algorithm is effective when
it comes to integrating services from different service providers. However, the company's IT infrastruc-
ture often has one or very few service providers, and in this case, the advantages of the VQC algorithm,
tailored for IoS, are not fully used.

The article [8] contains various approaches to using machine learning to improve the security and
stability of power systems. Machine learning allows you to quickly identify and detect problems re-
lated to cyberattacks, voltage instability, power quality disturbance, etc. The article discusses various
algorithms to the implementation of machine learning: artificial neural networks (ANN), decision tree
(DT), support vector machines (SVM). The same algorithms can be used not only to improve the sta-
bility of power systems, but also to apply them to IT systems. However, machine learning methods have
a number of disadvantages: firstly, a large amount of data is needed for training the model. It may take

26

4 Software of Computer, Telecommunications and Control Systems >

years to collect enough data for datasets from monitoring systems. Secondly, they have low estimation
accuracy and often make mistakes, and therefore are poorly applicable in big IT systems where the price
of mistake is very high.

In the article [9], the authors proposed a novel clustering-based algorithm Log3C, which allows
you to promptly and precisely identify impactful system problems by utilizing log sequences and key
performance indicators (KPIs) of the system. This algorithm was evaluated on real logs collected from
the Microsoft online service system, and the results confirmed its effectiveness. However, implementing
this approach on a scale of the whole IT infrastructure of a company may be accompanied by scaling
problems. Collecting logs from all IT services and then analyzing all these logs can lead to high perfor-
mance overhead and using this algorithm may not be so effective regarding the computing and storage
resources that it needs.

In our work, we implement a solution based on the use of metrics to assess stability and search for
vulnerable elements and weak links in the IT infrastructure, which is a distinctive feature of the proposed
algorithm. Our algorithm distinguishes the degradation and outage states of the services. This helps us
to calculate two more accurate metrics that shows us vulnerable elements of the IT infrastructure that
are prone to problems.

Comparative analysis of existing algorithms to calculating stability metrics

A comparative analysis of existing algorithms for calculating IT infrastructure stability metrics needs
to be conducted in order to identify their advantages and disadvantages.
Availability [10] is calculated by the formula

Availability =100% x M, (1)
AST

where AST is the agreed service time and DT is the sum of downtime. The advantages of this metric
include ease of calculation and data collection. However, this metric has a disadvantage: it does not take
into account the severity of failures. The severity of a failure means how much it affects the company’s
production process: slows it down or stops it completely.

Service Level Agreements (SLA) Compliance Ratio [11] is a compliance coefficient for SLA. It is
calculated by the formula

. . N
SLA Compliance Ratio = —-,)
N fail
where N , is the number of outages, resolved in compliance with SLA, and N ,is the number of outages.
The advantage of this metric is that the resulting number has visual clarity for the client, and therefore
inspires confidence. However, the disadvantage of using this metric is the need to document realistic re-

quirements that can be implemented from the very beginning.
Mean Time Between Failures (MTBF) [12] is calculated by the formula

mrBF =ta=1a 3)

Nfuil
where T is the total elapsed time, 7, is the total downtime and NM is the number of failures.
Mean Time To Repair (MTTR) [13] is calculated by the formula

MTTR = Lnain (4)
N fail

27

4 I'IporpaMMHoe obecneyeHune BbIYNCIUTENBbHbIX, TEIEKOMMYHUKALUMUOHHBLIX N yNPaBnAaoLWmMx CUCTEM

where T uin 18 the total maintenance time and N il is the number of failures.

The advantage of the MTBF and MTTR metrics is that they allow us to understand how well the
service will be available in the context of various real-world conditions. However, their disadvantage is
that they do not take into account the severity of failures.

First contact resolution rate (FCRR) [14] is calculated by the formula

rerr =4 (5)

Sail

where NL1 is the number of incidents resolved by the first line support and N > is the number of failures.
The advantage of this metric is its convincing economic justification. However, its disadvantage is that
this metric depends more on the quality of IT infrastructure support than on its smooth operation.

Based on the comparative analysis given in Table 1, it can be concluded that all metrics have strengths
indicated in the “Advantages” column, but none of them can be called optimal and universal, since each
of them has their weaknesses indicated in the “Disadvantages” column. Therefore, it is proposed to
introduce new metrics for the stability of the IT infrastructure.

Table 1
Comparison between different metrics for calculating stability of the IT-infrastructure
Metric Formula Advantages Disadvantages R_a nge
of possible values
. The severity of
S, AST — DT . .
Availability AST-DT x100 Ease of calculatl.on failures is not taken From 0% to 100%
AST and data collection .
nto account
Need to document
SLA Compliance N, The resgltmg number realistic requirements
Ratio N has visual clarity that can be FromOto 1
fail for the client implemented from
the very beginning
Allows us to
r_T wzlrll fﬁészzil‘iioxm The severity of From 0 seconds
MTBF e _—dr . . failures is not taken to the entire
N be available in the . .
fail . into account measurement period
context of various
real-world conditions
Allows us to
T w::llrll Ct]}igszzil\?icheovv:ﬂl The severity of From 0 seconds
MTTR —pain. . . failures is not taken to the entire
N, be available in the . .
fail . into account measurement period
context of various
real-world conditions
Depends more
- . on the quality of
FCRR N Convvlunsiig(g:;(izggomlc IT infrastructure FromOto 1
N] support than on its
smooth operation.

Improved stability metrics

To assess the effectiveness of the developed algorithm, it is proposed to introduce two stability met-
rics: availability and reliability.

28

4 Software of Computer, Telecommunications and Control Systems >

Availability is calculated by the formula

Availability =100% x M, (6)
AST

where OT is the sum of outage time. Availability describes the extent to which the service can perform
its basic functionality.
Reliability is calculated by the formula

Reliability =100% x AST =0T = DT , (7)
AST

where DT is the sum of degraded time. Reliability describes how much the service is able to perform all
its functionality.

The advantage of these metrics is that when they are used together, the severity of failures can be tak-
en into account. They can be calculated based on the data from existing monitoring systems. However,
for their correct calculation, it is necessary to separate the outage (OT), and degradation (D7) state of
a system.

The range of possible values of the proposed metrics is from 0% to 100%. At the same time, the “reli-
ability” metric can never be greater than the “availability” metric. To reduce the number of calculations
performed, the “reliability” metric can be calculated by the formula

Reliability = Availability — DT x100% (8)
AST

if the value of “availability” metric has already been calculated and the sum of degraded time is also

known.

The availability and reliability metrics help us to evaluate the periods of IT-infrastructure stability.
However, we need to focus on decreasing the time our infrastructure is instable, so we will also propose
two metrics to evaluate instability time. They are called “Service absence” and “Service fragility” and
calculated by formulas

Absence =100% — Availability 9
and
Fragility =100% — Reliability. (10)

Service absence tells us about the percentage of time when the IT infrastructure was completely
unavailable and could not be used, which caused resources loss. Service fragility tells us about the per-
centage of time when the IT infrastructure was either fully unavailable or some non-critical functions
of it were broken which caused slowdown of company operations and also caused resources loss. The
decreasing of these two metrics will help us understand how much IT downtime was reduced with our
algorithm and eventually will give us an understanding of how many resources and production capacities
we managed to save.

Proposed algorithm of failure analysis

We propose an algorithm for improving the IT infrastructure stability, and failure analysis is the dis-
tinctive feature of it. The “absence” and “fragility” metrics proposed in the paper will be calculated as

29

4 I'IporpaMMHoe obecneyeHune BbIYNCIUTENBbHbIX, TEIEKOMMYHUKALUMUOHHBLIX N yNPaBnAaoLWmMx CUCTEM

/ IT infrastructure \

Software Software
Computer
Networks
Hardware Hardware
Software
Hardware
Monitoring Configuration
data data
/Modules of monitoring data Module of configuratox
collection data collection
Monitoring Configuration

data l data

Module of current
infrastructure state storage

Current infrastructure|state snapshot

Module of historical

Software infrastructure state storage

analytical tool

Historical|joutages data

Module of data analysis
and metrics calculation

Analyzed datajand metrics

Module of
data visualization

Fig. 1. Proposed algorithm of failure analysis

a part of this algorithm to help us detect the most vulnerable and unstable parts of IT infrastructure.
This algorithm is presented in Fig. 1. The top of the figure shows an IT infrastructure consisting of three
components: software, hardware and computer networks. The bottom of the figure shows the software
analytical tool, which is an essential component of the algorithm. The software analytical tool consists
of several modules that work independently.

The algorithm consists in collecting the data about IT infrastructure and passing it through all mod-
ules of the software analytical tool as in a pipeline. After the data completes all five stages of the pipeline,
we get a visualized information about the most vulnerable components of the IT infrastructure. Each
stage of a pipeline is presented by its own module and has its own distinctive features.

The first stage of the pipeline is divided in two parts that work in parallel. The first part is implement-
ed in the modules of monitoring data collection. They are responsible for collecting monitoring data and
logs from various distributed components of the IT infrastructure: software, hardware, and computer
networks [15], which allows you to get a complete picture of the state of the IT infrastructure. The first
part is presented by multiple modules, because each part of IT infrastructure has its own specifics in
monitoring data, and a single module cannot collect all logs and metrics from all of IT infrastructure.
The second part of the first stage is implemented in the module of configuration data collection. It is
responsible for storing internal dependencies of I'T infrastructure components on each other. In follow-
ing stages, this data allows us to find and trace patterns in the behavior of outages, thus more accurately
detect the causes of outages and most vulnerable components of IT infrastructure.

30

4 Software of Computer, Telecommunications and Control Systems >

The second stage of the pipeline is implemented in the module of current infrastructure state storage.
It is responsible for aggregating the data from multiple monitoring data collection modules and con-
figuration data collection module. Such aggregation is implemented using the API [16] and helps us to
get a complete understanding of the state of the entire IT infrastructure at a single moment in time. To
speed up the module the API allows using “bulk update” request — a single request to update data on all
components synchronously.

The third stage of the pipeline is implemented in the module of historical infrastructure state storage.
It is responsible for storing the snapshots of connections between the components of the IT infrastruc-
ture and their states at each moment of time. This provides us a sufficiently large amount of data for
calculating metrics and the ability to analyze previous outages that occurred during the previous years.

The fourth stage of the pipeline is implemented in the module of data analysis and metrics calcula-
tion. It is responsible for analyzing IT infrastructure outages, searching for dependencies between these
outages and making recommendations to improve stability. This module also provides the calculation of
the reliability and availability metrics proposed by us.

The fifth stage is the last stage of the pipeline. It is implemented in the module of data visualization.
It is responsible for visualizing the aggregated and analyzed data on the state of IT infrastructure com-
ponents, the connections between them and calculated metrics. This ensures the visibility of the calcu-
lated metrics for the end user, since it is clear where the calculated values came from, and which outages
affected them. In addition, the observability of the IT infrastructure is ensured, which allows users to
quickly find the source of outages and resolve incidents.

Features of the software implementation

The architecture described above was implemented using a stack of technologies. The software was
created as subsystem inside a massive monitoring architecture of an enterprise company, so not all ele-
ments of the architecture were created from scratch. Fig. 2 shows the architecture of the implemented
software and notes which software components already existed before our implementation, and which
were implemented by us.

In particular, monitoring data collection modules were already implemented using Nagios, Zabbix
and Solarwinds software products. The log collection module was implemented using the Elasticsearch
software product. The IT infrastructure configuration storage module was implemented using the ser-
vice-now software product.

In the course of the work, the module for storing data on the current health of the IT infrastructure
was implemented in a software tool we created, called “Healthcheck DB”. This software tool is written
in the Golang language and uses a PostgreSQL database.

The module for storing historical data on the state of the IT infrastructure health was implemented
in the course of work by configuring the Prometheus software along with VictoriaMetrics as remote
database.

The module of data visualization was implemented in the course of work by configuring the Grafana
software. At the same time, the module of data analysis and metrics calculation were implemented using
queries from Grafana to Prometheus in Prometheus Query Language (PromQL), and the data visuali-
zation module was implemented using dashboards with visualizations [17] of various types in Grafana.

The deployment of all the modules we created was automated. Automation was created in the form
of so-called “playbooks” in the configuration management tool Ansible, which allowed us to deploy the
software we created on virtual machines with dedicated addresses on the network. At the same time, the
software tools themselves work in isolated Docker containers.

In order to secure the collected data, backups of all used databases were created. Backups were im-
plemented as automations in the Jenkins software. These automations are performed once a day, create
a backup of each database and save it in the universal artifact repository manager Artifactory.

31

4 I'IporpaMMHoe obecneyeHune BbIYNCIUTENBbHbIX, TEIEKOMMYHUKALUMUOHHBLIX N yNPaBnAaoLWmMx CUCTEM

-

IT infrastructure

N

Software Software ——
Computer
Networks
Hardware Hardware
| Software
K Hardware /
Networks/monitoring Logs Hardware|monitoring ~ Software|monitoring
/Solarwinds Nagos\

Elasticsearch

Zabbix

Networks
status data

Software
analytical tool

Logs|data

Healthcheck DB

Prometheus
endpoint

Healthcheck|snapshots

Prometheus

Hardware
status data

Infrastructure
mapping

Software
status data

Service-now

Infrastructure
canfiguration data

Legend:

- components
implemented by us

- components that
already existed

Timese r\esldata
AN Grafana /

Fig. 2. Architecture of the implemented software

During the entire development process, the Jira software tool [18] was used for task management.
To collaborate on code and version control, the GitHub software tool [19] was used. The Visual Studio
Code software tool was used as a development environment for writing code. Confluence software was
used to store the project documentation.

Description of the dashboards

As a result, several dashboards [17] were created, in order to search for and demonstrate elements of
the IT infrastructure that are prone to outages.

Fig. 3 shows a dashboard that demonstrates reliability and availability metrics values for individual
hosts of various services for different time intervals in the form of tables. The presented visualization allows
you to quickly identify problem periods for each host of services and track the dynamics of changes in
metrics in various time intervals: from the last 3 months to the last day. The dashboard also includes filters
that allow you to select a list of necessary hosts of services, for example, those used by a certain production
team. Thus, it is possible to assess the dynamics of stability of a certain segment of the IT infrastructure.

Fig. 4 shows a dashboard that demonstrates the values of reliability and availability metrics for ser-
vices as a whole in the form of tables and graphs. The values in the graphs are discrete and are collected
with 1 min frequency. The presented visualization allows you to quickly identify problematic periods of
services and track the dynamics of changes in availability and reliability in various time intervals: from
the last 3 months to the last day. Thus, it is possible to assess the dynamics of the stability of the entire
IT infrastructure.

32

Software of Computer, Telecommunications and Control Systems>

Availability metrics

Host Last 90 days Last 30 days Last 7 days Last 24 hours
confluence1.example.com 100% 100% 100% 100%
confluence2 example.com 100% 100% 100% 100%

jira1l.example.com 100% 100% 100% 100%
jira2 example.com 100% 100% 100% 100%
Jenkins1.example com 99.874% 99.582% 99.549% 99.814%

Reliability metrics

Host Last 90 days Last 30 days Last 7 days Last 24 hours
confluence1.example.com 99.917% 100% 100% 100%
confluence2.example.com 100% 100% 100% 100%

Jjiral example com 99.653% 99.768% 99.356% 100%
jira2.example.com 100% 100% 100% 100%
jenkins1.example .com 97.944% 958.104% ‘ 98.156% ‘ 98.865% ‘

Fig. 3. Dashboard with availability and reliability metrics for service hosts

Awvailability metrics Awvailability graph
Service Last 90 days ‘ Last 30 days Last 7 days ‘ Last 24 hours 100%
99.9%
Confluence Wiki 100% 100% 100% 100% W
99.8% /__\/—_\-
Jira 100% 100% 100% 100%
99.7%
Jenkins 99.592% 99.145% 100% 100%
99.6%
Kafka 100% 100% 100% 100%
Jira Jenkins
Reliability metrics Reliability graph
Service Last 90 days Last 30 days Last 7 days ‘ Last 24 hours 100%
99%
Confluence Wiki 97.152% 93.125% 100% 100%
98% J—
Jira 99 667% 99.638% 100% 100% — —
97%
Jenking 95.430% ‘ 95.535% 97.256% ‘ 99.583% \/\/\
96%
Kafka 100% 100% 100% 100%
Jira Jenkins

Fig. 4. Dashboard with availability and reliability metrics for services

Fig. 5 shows a dashboard that demonstrates the states of service hosts for a certain period (by default,
for the last 24 hours) in the form of a heatmap [20]. On this dashboard, the red highlights the moments
of time when service hosts were in the outage state, orange marks the state of degradation and green
marks the “correct” state.

The presented visualization allows you to find general trends in service failures. For example, in Fig. 5
there is a simultaneous transition of several hosts of “Jenkins” service into a state of degradation at once,
which suggests that these failures had a common cause.

33

4 MporpamMmMHoe obecneyeHune BbIYNCINUTENBbHbIX, TEIEKOMMYHUKALUMUOHHBLIX N YNPaBiaoLWmMX CUCTEM

confluence1 example.com

confluence2 example.com

Jjiral.example.com

Jjira2.example.com

Jjenkins1_example.com

jenkins2_example_.com

jenkins3_example.com

Jenkins4 example.com

Jenkins5.example.com

Jjenkins8_example.com

(CORRECT DEGRADATION OUTAGE | 21:00 00:00 03:00 06:00 09:00 12:00 15:00

Fig. 5. Dashboard with service hosts states heatmap

Host health chanegs Host infrastructure table
jenkins1.example.com Object name Object type
Time 21:00 00:-00 03:00 06:00 09:00 12:00 15:00
HAP23.dc.com vecenter datacenter
CORRECT DEGRADATION OUTAGE
Problem Problems with impact on host HAP23.com veenter cluster
CPU load jenkinsvm.com vmware instace
Root Disk hap23vcs.com server
Blocked threads Cisco USC ucs chassis

Fig. 6. Dashboard with service host detailed information

Fig. 6 shows a dashboard that provides detailed information about a service host with a list of its
infrastructure elements and problems with them. The presented visualization allows you to find the
sources of outages and identify vulnerable elements of the IT infrastructure that caused several failures.

Results

The described algorithm to improve the stability of the IT infrastructure was applied in one of the
manufacturing companies with more than 10000 employees. Based on the information obtained with
the help of the software we created, we managed to get recommendations on improving the stability
of one of the services. In particular, one of the found problems was associated with simultaneous daily
backups occurring on several hosts at once. The network file system could not cope with a large simul-
taneous load, which is why the service went into a degradation state.

Changes were applied at the end of January 2022: daily backups on each host started to be performed
at different times, which reduced the load on the network file system. Table 2 shows the results of imple-
menting the algorithm in manufacturing company. Prior to our changes, the service stability indicators

34

\

Software of Computer, Telecommunications and Control Systems >

for January 2022 were as follows: availability 98.50%, reliability 92.58%. After the implementation of
the developed software, the service stability indicators for February were as follows: availability 98.69%,

reliability 94.43%.
Table 2
Results of implementing the algorithm in manufacturing I'T-company

Metric January 2022 February 2022 Relative change
Availability 98,50% 98,69% 0,19%
Reliability 92,58% 94,43% 2,00%

Absence 1,50% 1,31% —12,67%

Fragility 7,42% 5,57% —24,93%

Such an increase in metrics is a significant achievement, since even tenths and hundredths of a per-
cent are important when agreeing on SLAs [21]. There are results that are even more impressive if we
turn to the relative change of absence and fragility metrics. We managed to reduce the absence periods
by 13% and fragility periods by 25% relative to the same values in the previous month. This shows a
significant decrease of time during which the material and human resources of the company were idle.

Conclusion

In the course of the work, an algorithm was proposed to improve the stability of the IT infrastructure,
based on the collection and analysis of data on its status. The proposed algorithm is based on two new
metrics: availability and reliability, which were created based on a comprehensive study and compara-
tive analysis of existing stability metrics. A distinctive feature of the new metrics is that they take into
account the severity of failures in the system. The proposed software architecture of the system and its
implementation in the software tool responsible for monitoring the stability of IT services made it possi-
ble to detect vulnerable elements of the IT infrastructure in an enterprise manufacturing company. After
eliminating the vulnerabilities found, the relative decrease of instability periods was recorded using two
metrics at once: the absence time of the service decreased by 13%, and the fragility time decreased by
25%. Such significant decrease of time during which the material and human resources of the company
were idle shows the effectiveness of the developed algorithm.

REFERENCES

1. Drobintsev P.D., Kotlyarova L.P., Voinov N.V., Tolstoles A.A., Maslakov A.P., Krustaleva I.N. Auto-
mating preparation of small-scale production for reliable net-centric IoT workshop. CEUR Workshop Pro-
ceedings: APSSE 2019, 2019, pp. 75-85.

2. Lazareva N.B. Organizatsiia otkazoustoichivogo (HA) klastera [Organization of high-availability (HA)
cluster]. E-Scio.ru, 2021, no. 2 (53), pp. 61—66.

3. Unagayev S. Organizatsiia I'T-infrastruktury kompanii [Organization of IT-infrastructure in a compa-
ny]. Sistemnyi administrator [System administrator], 2013, no. 4 (125), pp. 40—41.

4. Autenrieth P., Lorcher C., Pfeiffer C., Winkens T., Martin L. Current Significance of IT-Infrastructure
Enabling Industry 4.0 in Large Companies. 2018 IEEE International Conference on Engineering, Technol-
ogy and Innovation (ICE/ITMC), 2018, pp. 1-8. DOI: 10.1109/ICE.2018.8436244

5. Wang G., Zhang W., Huang C., Chen Z. Service Availability Monitoring and Measurement Based on
Customer Perception. 2018 IEEE 9™ International Conference on Software Engineering and Service Science
(ICSESS), 2018, pp. 328—331. DOI: 10.1109/ICSESS.2018.8663889

35

4 I'IporpaMMHoe obecneyeHune BbIYNCIUTENBbHbIX, TEIEKOMMYHUKALUMUOHHBLIX N yNPaBnAaoLWmMx CUCTEM

6. Ahmad A., Ngah L., Ibrahim I. A Review of Service Quality Elements towards the Overlapping IT Frame-
work Process on the IT Hardware Support Services (ITHS). International Journal of Advanced Trends in Com-
puter Science and Engineering, 2020, Vol. 9, no. 1.4, pp. 423—432. DOI: 10.30534/ijatcse/2020/6091.42020

7. Pan C., Xu H., Li W., Tu Z., Xu X., Wang Z. Quality Monitoring and Measuring for Internet of Ser-
vices. 2021 International Conference on Service Science (ICSS), 2021, pp. 107—114. DOI: 10.1109/
1CSS53362.2021.00025

8. Alimi O.A., Ouahada K., Abu-Mahfouz A.M. A Review of Machine Learning Approaches to Pow-
er System Security and Stability. IEEE Access, 2020, vol. 8, pp. 113512—113531. DOI: 10.1109/AC-
CESS.2020.3003568

9. He S., Lin Q., Lou J., Zhang H., Lyu M., Zhang D. Identifying impactful service system problems via
log analysis. ESEC/FSE 2018: Proceedings of the 2018 26" ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering, 2018, pp. 60—70. DOI:
10.1145/3236024.3236083

10. Bukhsh M., Abdullah S., Bajwa I.S. A Decentralized Edge Computing Latency-Aware Task Manage-
ment Method With High Availability for [oT Applications. IEEE Access, 2021, vol. 9, pp. 138994—139008.
DOI: 10.1109/ACCESS.2021.3116717

11. Li L., Dong J., Zuo D., Wu J. SLA-Aware and Energy-Efficient VM Consolidation in Cloud Data
Centers Using Robust Linear Regression Prediction Model. IEEE Access, 2019, vol. 7, pp. 9490—9500. DOI:
10.1109/ACCESS.2019.2891567

12. Jiang C., Wang H., Yang Y., Fu Y. Construction and Simulation of Failure Distribution Model for
Cycloidal Gears Grinding Machine. IEEE Access, 2022, vol. 10, pp. 65126—65140. DOI: 10.1109/AC-
CESS.2022.3184318

13. Li A., Han G., Ohtsuki T. Multiple Radios for Fast Rendezvous in Heterogeneous Cognitive Radio
Networks. IEEE Access, 2019, vol. 7, pp. 37342—37359. DOI: 10.1109/ACCESS.2019.2904942

14. Al-Akwaa N. The application of Lean Six Sigma principles in the technical support call center: First

contact resolution. USA: California State University, Dominguez Hills, 2015. 144 p.

15. Rukavitsyn A.N. Data clustering in distributed monitoring systems. Informatsionno-upravliaiushchie
sistemy [Information and Control Systems], 2019, no. 2, pp. 35—43. DOI: 10.31799/1684-8853-2019-2-35-43

16. Huang Q., Xia X., Xing Z., Lo D., Wang X. API Method Recommendation without Worrying about the
Task-API Knowledge Gap. 2018 33 IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), 2018, pp. 293—304. DOI: 10.1145/3238147.3238191

17. Vazquez-Ingelmo A., Garcia-Peiialvo F.J., Theron R. Information Dashboards and Tailoring Capa-
bilities — A Systematic Literature Review. IEEE Access, 2019, vol. 7, pp. 109673—109688. DOI: 10.1109/
ACCESS.2019.2933472

18. Kovalev A.D., Yoinov N.V., Nikiforov I.V. Using the Doc2Vec Algorithm to Detect Semantically Sim-
ilar Jira Issues in the Process of Resolving Customer Requests. Studies in Computational Intelligence, 2020,
Vol. 868, pp. 96—101. DOI 10.1007/978-3-030-32258-8 11

19. Voinov N., Rodriguez Garzon K., Nikiforov I., Drobintsev P. Big data processing system for analysis of
GitHub events. Proceedings of 2019 22" International Conference on Soft Computing and Measurements
(SCM 2019), 2019, pp. 187—190. DOI: 10.1109/SCM.2019.8903782

20. Perrot A., Bourqui R., Hanusse N., Auber D. HeatPipe: High Throughput, Low Latency Big Data
Heatmap with Spark Streaming. 2017 21 International Conference Information Visualisation (IV), 2017,
pp. 66—71. DOI: 10.1109/iV.2017.45

21. Zharinova O.V. Improving the efficiency of IT infrastructure management using ITIL. StudNet, 2021,
vol. 4, no. 2, p. 43.

36

Software of Computer, Telecommunications and Control Systems>

INFORMATION ABOUT AUTHORS / CBEAEHUA Ob ABTOPAX

Varlamov Dmitrii A.
Bapnamos JImutpuii AnipeeBuy
E-mail: varlamov_dmitry99@mail.ru

Nikiforov Igor V.

Huxudopos Urops Banepoesny

E-mail: igor.nikiforovv@gmail.com

ORCID: https://orcid.org/0000-0003-0198-1886

Ustinov Sergey M.

Yerunos Cepreii MuxaittoBmy

E-mail: usm50@yandex.ru

ORCID: https://orcid.org/0000-0003-4088-4798

Submitted: 03.06.2024; Approved: 24.07.2024; Accepted: 30.07.2024.

Ilocmynuaa: 03.06.2024; Odobpena: 24.07.2024; Ilpunama: 30.07.2024.

37

