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Abstract. The paper proposes an approach that combines radiomic features and deep learning
to enhance the accuracy of image classification obtained from lung computed tomography (CT)
scans. The deep convolutional neural network ResNet18 was used to extract convolutional features
from CT images. Radiomic features describing texture, shape, and intensity were combined with
these convolutional features to improve the feature description of the lung CT image dataset.
Using Principal Component Analysis (PCA) and feature selection methods, the most informative
set of 250 features was obtained. Machine learning models, including Random Forest and Support
Vector Machines (SVM), were used for classification. The SVM classifier showed the best results,
achieving a classification accuracy of 0.97. The addition of genetic data allowed an improvement
in classification accuracy. The study underscores the importance of combining advanced
computational methods and data processing methodologies to solve image classification tasks.
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AnHoTanusa. B paboTe mpenyioxkeH Moaxo/, COYSTAIOIIMA B ce0e TPU3HAKK PATUOMUKH U TIIy-
OOKOTro 00yueHUsI [JIsT TTOBBILIEHUs] TOYHOCTU KJIacCU(PUKALMU U300paKeHU, TTOJyUeHHBIX C
nomouibio KoMnbloTepHOit ToMorpaduu (KT) nerkux. Iist u3Bae4eHUs: CBEPTOUHBIX MPU3HAKOB
n3 KT-u3zobpaxeHuii Oblia UCMoJb30BaHa I1ybokast cBEpTouHas HelipoHHasi ceTb ResNetlS8.
PagmoMmyeckne NpU3HAKM, OMKCHIBAIOIINE TEKCTYpY, (POPMY M MHTEHCUBHOCTH, OBIIN OOB-
eIUHEHBI C 3TUMM CBEPTOUYHBIMH TIPpM3HAKAMU IJI YIAYYIICHUS MIPU3HAKOBOTO OMMCAHMS Ha-
o6opa manHbIXx KT m3o6paxkenuii nérkux. C mMoMoIpo MeTona riaBHbIX KomoHeHT (MI'K) u
METOAO0B O0TOOpa MPU3HAKOB ObLI MOJyYeH Hanbosiee MH(GOPMATUBHBIA HAOOp, COCTOSIIMI U3
250 mpusHakoB. Just kinaccupukauuy IpUMEHSJIMCh MOJIeIM MAIlIMHHOTO 00y4YeHMsI, BKJTIoJast
Cryyalinbiii iec 1 Meton onopHbix BektopoB (MOB). Kitaccudukarop MOB noxka3zain ayuiinve
pe3yabTaThl, JOCTUTHYB TOYHOCTU Kjaccudukanuu 0,97. JlobaBjieHUe TeHETUUECKUX JaHHbBIX
MMO3BOJIMJIO YIYYIIATh TOYHOCTh KiIaccumdukamum. KcciemoBaHme MOMUYEPKMBAECT BaXKHOCTH
00BETMHEHMS MEPEIOBBIX BEIYMCINTEILHBIX METONUK M METOMOJIOTHI 00pabOTKU JaHHBIX IS
pelIeHus 3a1a4 KjaccuuKalud n300pakeHuii.
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HBIC; KOMITBIOTepHAsi TOMOTpadus
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Introduction

Algorithms play a central role in many classification tasks, covering a variety of areas. Machine learning
methods for non-binary classification are of paramount importance, requiring adaptations to the specific
features of each area. In particular, the combination of image processing methods, such as extracting deep
convolutional and textural features, allows for analyzing textures in medical images and identifying and
classifying pathologies.

Deep convolutional features, formed by convolutional neural networks, are an important component
in image processing. Deep learning architectures like ResNet18, ResNet101, and ResNet152 have shown
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high performance in feature extraction tasks. These networks are trained to recognize complex image
textures, automatically extracting high-level representations, making them invaluable for understanding
complex structures in medical images.

Textural features complement deep convolutional features by providing information about variations
in pixel intensity and their spatial distribution. These features encompass statistical measures, capturing
textural characteristics within images. Methods such as the Gray-Level Co-occurrence Matrix (GLCM),
Gabor filters, Local Binary Patterns (LBP), and others study the structure of textures present in images.
They enable the identification of areas with significant intensity variations, oriented textures, fine-grained
textural differences, and even specific morphological aspects within images.

Existing methods for processing CT images have several notable limitations that require careful consid-
eration [1]. Many modern CT image processing methods primarily rely on image features. These features
often lack sufficient depth and informativeness, which can lead to reduced diagnostic accuracy, especially
in cases where complex textures in images have diagnostic significance. On the other hand, in some cas-
es, existing methods may not effectively utilize the capabilities of deep learning methods. Deep learning
architectures, such as ResNet18, allow for the extraction of convolutional features that can significantly
improve diagnostic accuracy [2].

The aim of this work is to combine radiomic and deep convolutional features to develop an algorithm
for the detection and classification of cancer in lung CT images [3, 4].

Materials and Methods

Data acquisition

For this study, the NSCLC Radiogenomics dataset was used, which includes CT images of lung patients
with various types and stages of lung cancer [6]. This dataset contains medical imaging, genomics, and
clinical data. The NSCLC Radiogenomics dataset was prepared with the following objectives:

1. Understanding the genome-image relationships: it serves as a resource for exploring and uncovering
the complex relationships between genomic data and characteristics of medical images.

2. Development of prognostic biomarkers: researchers can use this dataset to develop and evaluate
prognostic biomarkers of medical images, potentially improving patient stratification and treatment plan-
ning. In this study, medical data from 80 patients were used.

In this study, medical data from 80 patients were used.

Feature Extraction

The paper developed a set of features by extracting two types of features: radiomic and convolutional
[7]. Let's consider them in detail.

Radiomic features

For the study, 660 radiomic features were extracted for each computed tomography, including first-or-
der features based on shape and texture. Table 1 shows the main texture and shape features extracted from
CT images. For further work, 129 different textural features were selected, including Haralick [8], Gray
Level Co-occurrence Matrix (GLCM) [9], gradient, Gabor [10], and Local Binary Patterns (LBP).

Haralick Features (based on GLCM): Haralick features were chosen for their ability to detect subtle
textural differences in the image. They are particularly useful for identifying fine-grained textural patterns,
which may indicate specific pathological features in lung nodules. These features are calculated based on
GLCM. For example, one of the Haralick features, contrast, can be calculated as follows:

Contrast = Y P(i, j)-[i— j 2

i,j

where P (i i ) is the normalized GLCM, i and are the gray levels in the image.
Other Haralick features have their own equations, but they similarly involve calculations based on the
GLCM:
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Table 1

Description of the features along with their biological rationale
and their association with the morphology of the region of interest (Rol)

Features

Biological rationale and their association with the morphology of the Rol

Gray-Level Co-occurrence
Matrix (Texture)

Localizes regions with significant intensity variations within the nodule. It helps
identify areas with different textures or patterns inside the Rol

Steerable Gabor (Texture)

Captures oriented textures through changes in direction and scale, which can
be useful in describing the microarchitecture or structural patterns within the
Rol

Haralick (Texture)

Uses second-order derivatives to capture subtle textural differences in the
nodule. It helps in identifying fine-grained textural patterns that may be
indicative of certain pathological features

Law (Texture)

Represents spots, ripples, and wave-like appearances in the nodule. These
features can be relevant in characterizing specific morphological aspects of the
Rol

Fourier (Shape)

This feature involves both low-frequency components, which describe the
global shape of the nodule, and high-frequency components, which capture
local details or irregularities in the nodule's morphology

Explicit Descriptor (Shape)

This feature includes measures related to contrast, edge sharpness, and the
halo effect around the nodule. These aspects can provide insights into the
distinctiveness and shape characteristics of the Rol

N,
P(i.7)=~L
T

where Ni/ is the number of times a pixel with intensity i is adjacent to a pixel with intensity j in the image,
N s the total number of pixel pairs in the GLCM, which is equal to the sum of Nij for all possible combi-

nations of 7 and .

In other words, P (i ] ) quantifies the probability that a pixel with intensity i is adjacent to a pixel with
intensity j in the image, considering all possible pixel pairs. This probability is normalized by dividing by
the total number of pixel pairs V. to ensure that P(i, J ) represents a probability distribution across all

pixel pairs.

2. Gray-Level Co-occurrence Matrix (GLCM) features: GLCM statistics, including Energy, Correla-
tion, and Entropy, are chosen to provide insights into the spatial relationships of pixel intensities within
the nodule. These statistics help quantify aspects like uniformity, correlation, and randomness in texture
patterns. Common GLCM statistics include:

— Energy:

— Correlation:

— Entropy:

Energy = /ZP (i,j)2 ,
i.j

. ) P(i.
Correlation:Zi’j(l H)(J H) (l J),

Gicj

63



4 |/|HTeJ'IJ'IEKTyaJ'IbeIe CUCTEMbI N TEXHONOINN >

Entropy = _ZP(i,j)-log(P(i,j)),

L

where [ represents the mean or average gray level of the image. It is calculated as follows:

w=i-P(ij),
i,J

3. Gradient: Gradient-based features do not have a single equation but often involve calculating gra-
dients (first-order derivatives) of the image to measure variations in pixel intensities. For example, the
magnitude of the gradient can be computed as:

2 2
Magnitude = (g] + a )
ox oy

ol ol
where (/) is the image, and (G_j and ((’Tj are the partial derivatives in the horizontal and vertical
X V

directions, respectively.
4. Gabor Features: Gabor filters are defined by a sinusoidal wave modulated by a Gaussian function,
and they can be used to extract texture features. The equation for a 2D Gabor filter is:

x12+y2yr2 ( xr j
G(x, ;1. 0,y,0,7)=exp| ———5— |cos| 2n—+Vy |,
(x,34,0,y,0,7) p( = v

where (A) is the wavelength (distance between the peaks of the sinusoidal wave in the Gabor filter), (0) is
the orientation (specifies the orientation angle of the sinusoidal wave in the Gabor filter), () is the phase
offset (introduces a phase shift in the sinusoidal wave), (6) is the standard deviation of the Gaussian en-
velope (determines the spread or width of the Gaussian envelope around the sinusoidal wave), (y) is the
aspect ratio (controls the elliptical shape of the filter's Gaussian envelope), and (x') and ()) are rotated
coordinates (coordinates represent the spatial location in the image after a rotation by the angle 0). By
varying these parameters, Gabor filters can capture different types of texture information.

5. Local Binary Patterns (LBP): LBP is a texture descriptor that encodes the local spatial pattern of
pixel intensities. It works by comparing the intensity of a central pixel with its neighbors, classifying each
neighbor as either brighter or darker than the central pixel. LBP features can capture patterns such as tex-
tures with varying granularity.

Convolutional features

In the study, various deep neural networks were explored for feature extraction from CT images. Spe-
cifically, the characteristics of three widely used deep networks, Resnet18 [11], Resnet101 [13], and
Resnet152 [14], were compared. The results showed that features extracted from Resnet18 outperformed
those from other networks (Resnet101 and Resnet152) in the task of classifying CT images. For this rea-
son, Resnet18 was chosen as the preferred network for feature extraction, which was then combined with
radiomic features to create the final feature set. This feature set was used for training machine learning
models and assessing their effectiveness in classifying lung CT images for the presence of nodules and their
T stage.

Transfer learning was used to fine-tune the pre-trained Resnet18 model on the CT dataset. A 1x512
dimensional vector from the last convolutional layer was extracted as features for each CT image [12].

Feature selection

Statistical analysis and machine learning-based classification were conducted to identify key features
with a strong correlation to genetic data. Specifically, a combination of Principal Component Analysis
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Fig. 1. Flowchart of the proposed method

(PCA) [15] and feature selection methods [16—18] was used to determine the most informative features
from the categories of radiomic and convolutional features. Using a combination of PCA and feature
selection methods, a set of 250 informative features, including both radiomic and deep features, was de-
termined.

Classification

Subsequently, machine learning models, including Random Forest and Support Vector Machines
(SVM) [19-21], were trained to classify lung CT images into seven categories based on the presence of
nodules and their T stage. 5-fold cross-validation was used to evaluate the effectiveness of each model.
Fig. 1 shows that after obtaining convolutional features, they are combined with radiomic features, which
consist of shape, intensity, and texture features. The combined data is then subjected to a classification
algorithm to classify them into 7 classes: T-1a, T-1b, T-2a, T-2b, T-3, T-4, T-is.

Experimental Results

The analysis of the lung CT image dataset showed that radiomic and convolutional features are highly
informative in predicting the subtype of lung cancer and T stage. Radiomic features are quantitative fea-
tures reflecting aspects of tumor visualization, including shape, texture, and intensity. On the other hand,
convolutional features represent trainable image representations extracted by a pre-trained deep neural
network.

The analysis identified a subset of radiomic features, including texture features, which strongly corre-
late with the genetic heterogeneity of lung cancer. Texture features are sensitive to variations in the spatial
distribution of pixel intensities within the tumor and have been shown to be highly informative in predict-
ing tumor heterogeneity and aggressiveness. Using a combination of PCA and feature selection methods, a
set of 250 informative features, including both radiomic and deep features, was determined. These features
were used to train machine learning models, including Random Forest and SVM classifiers with cubic
kernel functions, to classify lung CT scans into seven categories based on the presence of nodules and their
T stage.

The combination of convolutional and radiomic features achieved the highest classification accuracy,
with an average F1-score of 0.95, Recall of 0.96, and Accuracy of 0.97 across the seven categories. The
SVM classifier proved to be the most effective model, achieving an Accuracy of 0.97. These results demon-
strate the potential of this approach in improving the accuracy of lung cancer diagnosis and treatment
planning. Moreover, the convolutional features extracted using Resnet18 were particularly informative in
predicting the presence and T stage of nodules in lung CT scans. This highlights the importance of using
deep learning methods in combination with radiomic features for accurate and reliable lung cancer clas-
sification.

Overall, the results demonstrate the potential of CT tomography to improve the accuracy of lung can-
cer classification and provide more precise diagnosis and treatment planning for patients. By identifying
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key CT scanning characteristics that have a high correlation, an automatic system was developed for clas-
sifying lung CT images into seven categories based on the presence of nodules and their T stage, which can
improve patient treatment outcomes and reduce healthcare costs.

Discussion

The results of our study highlight the significant impact of incorporating radiomic features, including
texture, shape, and intensity features, in the classification of CT images into seven distinct categories. To
understand the relative performance of these features, we compared three different models: Deep Learn-
ing (No Radiomics, VGG-16), Deep Learning + Radiomics features, and Deep Learning + Radiomics
features + gene data.

When we evaluate the performance of these models, it becomes evident that radiomic features play a
vital role in improving the accuracy of CT image classification. The inclusion of radiomic features signifi-
cantly enhances the F1-Score, Recall, and overall Accuracy of our classification models (Table 2).

Table 2
Comparative Performance of Classification Models
Model F1-Score Recall Accuracy
S.K. Lakshmanaprabu et al. [21] — — 0.94
Deep Learning (No Radiomics) 0.75 0.68 0.78
Deep Learning + Radiomics features 0.91 0.88 0.93
Deep Learning + Radiomics features + gene data 0.95 0.96 0.97

Table 2 highlights a significant performance gap between using only deep learning and integrating ra-
diomic features. Notably, the inclusion of genetic data further enhances performance, demonstrating the
potential of multidimensional data integration. The invaluable role of radiomic features in improving di-
agnostic accuracy must be acknowledged. The limitations of the deep learning model without radiomic
features can be attributed to its inherent constraints in capturing complex patterns in CT images. Radi-
omic features, in contrast, provide quantitative insights into tumor characteristics, making them sensitive
to variations in pixel intensity and spatial distribution, crucial for predicting tumor heterogeneity and
aggressiveness.

In our study, Principal Component Analysis (PCA) and feature selection methods allowed the ex-
traction of a set of 250 informative features, including both radiomic and deep features. These features
were essential for training machine learning models, including Random Forest and Support Vector Ma-
chines (SVM) with cubic kernel functions, for classifying lung CT scans. The SVM classifier, in particular,
emerged as the most effective model, achieving an Accuracy of 0.97. The combination of convolutional
and radiomic features achieved the highest classification accuracy, with an Fl-score of 0.95, Recall of
0.96, and Accuracy of 0.97 across the seven categories.

Table 2 also shows another study that attempted to classify lung CT images. This approach employed
an Optimal Deep Neural Network (ODNN) and Linear Discriminant Analysis (LDA) to analyze lung CT
images. Deep features were extracted from these images and LDA was used for dimensionality reduction
to classify lung nodules as either malignant or benign. The ODNN was then optimized using a Modified
Gravitational Search Algorithm (MGSA) for lung cancer classification. This alternative approach report-
ed an impressive sensitivity of 96.2%, specificity of 94.2%, and accuracy of 94.56%. Compared to this
alternative study, our approach, enriched with radiomic features and genetic data, achieves an accuracy of
97%, representing a substantial 3% increase compared to models based on deep learning without radiom-
ics. The addition of radiomic features significantly improved diagnostic accuracy, emphasizing the promise
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of combining multi-modal data sources for redefining cancer classification and personalized treatment
planning.

Furthermore, the comparison of different deep networks for feature extraction showed that Resnet18
outperforms other architectures, emphasizing its potential as the preferred choice for feature extraction in
radiomic studies. Although our study focused on lung cancer classification, the developed approach can
be applied to other types of cancer, demonstrating the potential of using multiple data sources, including
genetic data and visualization data, to enhance the accuracy of cancer diagnosis and treatment planning. A
limitation of our study is the relatively small sample size and manual segmentation. Future research using
larger datasets and automated segmentation methods can provide further insights into the potential of our
approach for lung cancer classification and personalized treatment planning.

Conclusions

The study aimed to explore the relationship between features based on computed tomography and ge-
netic heterogeneity in lung cancer patients with the goal of improving the accuracy of cancer classification.
It was shown that the integration of radiomics and deep learning methods can significantly improve the
accuracy of lung cancer diagnosis and treatment planning, while the use of genetic data in combination
with visualization data can help identify key features associated with lung cancer.

Adding radiomic features to deep features increased the classification accuracy by 13%, from 78% to
91%. Furthermore, the inclusion of genetic data further improved accuracy by 4%, reaching an impressive
95%. This demonstrates the substantial impact of multidimensional data integration on the performance
of our classification models.

Our approach showed high accuracy in predicting the presence and T stage of nodules in lung CT
scans, as well as the ability to differentiate between malignant and benign nodules. It was also found that
convolutional features extracted using Resnet18 were particularly informative in predicting the presence
and T stage of nodules, highlighting the potential of deep learning methods for feature extraction in radi-
omic studies.

The ability to accurately predict the presence and T stage of nodules in lung CT scans can have signifi-
cant implications for individualized treatment planning and identifying patients at high risk of developing
lung cancer. The study indicates the potential of using multiple data sources to develop automated cancer
classification systems and personalized treatment planning to improve patient outcomes and reduce the
burden of lung cancer. The obtained results underscore the importance of continuing to develop and refine
innovative approaches to cancer diagnosis and treatment planning, with the ultimate goal of improving
patient outcomes and reducing the impact of lung cancer on individuals and society.
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