Computing, Telecommunication and Control, 2023, Vol. 16, No. 2, Pp. 7-16.
MHdopMaTurKa, TeNEKOMMYHUKauMm 1 ynpasneHuve. 2023. Tom 16, N2 2. C. 7-16.

\
|

Intellectual Systems and Technologies
NHTennekTyanbHble CUCTEMbI U TEXHOJIOM UK

Research article @ 018
DOI: https://doi.org/10.18721/JCSTCS.16201 T
UDC 004.85

FLEXIBLE DEEP FOREST CLASSIFIER
WITH MULTI-HEAD ATTENTION

A.V. Konstantinov' ® , L.V. Utkin' &
S.R. Kirpichenko'’

! peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

= lev.utkin@gmail.com

Abstract. A new modification of the deep forest (DF), called the attention-based deep forest
(ABDF), for solving classification problems is proposed in the paper. The main idea behind the
modification is to use the attention mechanism to aggregate predictions of the random forests
at each level of the DF to enhance the classification performance of the DF. The attention
mechanism is implemented by assigning the attention weights with trainable parameters to
class probability vectors. The trainable parameters are determined by solving an optimization
problem minimizing the loss function of predictions at each level of the DF. In order to reduce
the number of random forests, the multi-head attention is incorporated into the DF. Numerical
experiments with real data illustrate the ABDF and compare it with the original DF.
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Annoramua. B crathe mpemraraetcs HoBasi MoauduKalus TIyOOKOTo jeca, Ha3bIBacMas
[JIyOOKMM JIECOM Ha OCHOBE MEXaHM3Ma BHUMAaHUs, Ul pellieHus 3anad KiaccubuKauu Ipu
orpaHMYeHHOI BeIOOpKe. OCHOBHAS Maes MOTU(PUKAIINN 3aKITI0YaeTCI B MCITOJIB30BaHUM Me-
XaHW3Ma BHUMAaHWSI 711 arpeTUpOBaHus TIpeaCcKa3aHUil CIyJaifHBIX JIECOB B BUIE BEKTOPOB Be-
POSITHOCTE! KJIacCOB Ha KaXXIOM YpPOBHE WJIM CJIO€ TITyOOKOTro Jieca IJIST MOBHIIIEHUS 3(deK-
THUBHOCTHU KjIacCU(UKALIMK Bce Moaean. MexaHU3M BHUMAaHUsI peau3yeTcs IyTeM IIPUCBOCHUS
Beca BHMMaHUSI KOHKATEHUPOBAHHBIM BEKTOPaM IIPUMEPOB U BEKTOPOB BEPOSITHOCTE KJ1aCCOB
TakK, YTO MOJeJIb BHUMaHUSI UMeeT oOyuyaeMble mapaMeTpbl. O0yyaeMbie TapamMeTphbl ONpeaess-
FOTCST TIyTeM peIleHUs 3aJa9i ONTUMU3ALNKA, MUHUMU3UPYIOEeH (YHKIWIO MOTePh OIIMOKI
MpefcKa3aHWil Ha KaXJIOM YpPOBHE IIyOOKOTO Jjieca B Ipoliecce oOydeHUsT TIIyOOKOro jieca Ha
KaxnoM ypoBHe. YTOObI YMEHBIINTH KOJIMYECTBO CIIyJalfHBIX JIECOB, B TJTYOOKMI JIeC BKIIIOUEHO
TaK Ha3bIBa€MOE€ MHOTOMEpHOe BHUMaHUe. UMCIeHHbIE 9KCIIEPUMEHThHI Ha PealbHbIX JaHHBIX
WUTIOCTPUPYIOT MpeUiaraeMyto MOAM(PUKALIMIO ¢ TOYKM 3PEHUsI TOYHOCTH KJIacCU(DUKALMU U
CPaBHUBAIOT €€ C OPUTUHATbHBIM TJTYyOOKUM JIECOM.

KioueBbie ciioBa: MalllMHHOE OO0y4YeHME, KiaccuUKalus, caydaiiHbli Jec, N1epeBo pelIeHU ,
riayookoe odyyeHue, MexaH3M BHUMAaHUS
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Introduction

A lot of ensemble-based machine learning methods have been proposed [1, 2] due to their efficiency.
These methods use a combination of the so-called base models to obtain more accurate predictions. Three
types of the ensemble-based methods can be pointed out: bagging [3], stacking [4], and boosting [5]. Each
type of methods has cons and pros. One of the important bagging methods is the random forest (RF) [6],
which combines predictions of many randomly built decision trees. RFs are popular because they are sim-
ply trained and provide outstanding results for many datasets.

RFs can be regarded as powerful machine learning models. However, they cannot compete with deep
neural networks. In order to partially overcome this disadvantage Zhou and Feng [7] proposed the so-
called Deep Forest (DF) or gcForest, which copies the structure of multi-layer neural networks and con-
sists of several layers or forest cascades. Each layer of the DF consists of several RFs, which produced
predictions combined to use them at the next layer. The DF does not require gradient-based algorithms for
training. This peculiarity makes the DF simple. Moreover, they have less hyperparameters in comparison
with neural networks. Due to efficiency of the DF, many modifications have been proposed [8—16]. The
DFs were used in various applications [17—21].

© KoHcTaHTUHOB A.B., YTKUH J1.B., Kupnuuerko C.P., 2023. UzgaTenb: CaHKT-MeTepbyprckuii NOIMTEXHUYECKUI YHUBEPCUTET MeTpa Benukoro
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In order to improve RFs, the attention-based RFs were proposed in [22], where the trainable attention
weights are assigned to each tree and each example. The weights depend on how far an instance, which
falls into a leaf of a decision tree, is from the instances, which fall into the same leaf. The attention weights
in the RF are used to compute the weighted average of the decision tree predictions.

It is important to note that the attention mechanism is successfully applied to neural networks to en-
hance their prediction abilities. It is based on the human perception property to concentrate on an impor-
tant part of information and to ignore other information [23]. Therefore, the attention mechanism opened
a door for implementing many neural network architectures, including transformers, the natural language
processing models, etc., which are considered in detail in [23—26].

The attention-based RFs (ABRF) opened another door to the attention models different from the neu-
ral networks or their components. Therefore, we proposed a new attention-based model incorporated into
the DF to enhance the DF prediction accuracy. The main idea behind the attention in the DF is to assign
the attention weights to every RF at each layer to optimally combine the RF predictions and to produce
new attended training feature vectors at each layer of the DF for training trees and RFs at the next layer.
The attention-based DF is abbreviated as the ABDE

The paper is organized as follows. A short description of the DF proposed by Zhou and Feng [7] and
the attention mechanism are given in Section 2 and 3, respectively. Section 4 shows a general architecture
of the attention-based DFE. Numerical experiments with real data illustrate the attention-based DF and
compare it with the original DF in Section 4. Concluding remarks are provided in Section 5.

A short introduction to the DF

Before considering the weighted DE, we briefly introduce gcForest proposed by Zhou and Feng [7].
The DF can be divided into two parts. The main part of gcForest is a cascade forest structure where each
level of a cascade receives feature information processed by its preceding level, and outputs its processing
result to the next level [7].

The main part of the DF proposed in [7] is a cascade forest structure shown in Fig. 1. One can see from
Fig. 1 that each layer (level) of the cascade consists of several RFs whose number is a tuning parameter.
Every RF produces a class probability distribution vector. The probability distributions of classes are de-
termined in the standard way by counting the percentage of different classes of instances at the leaf node
where the considered instance falls into. The RF class probability vectors are computed by averaging the
class distribution vectors across all trees in the RE. The vectors produced by all RFs at each level are con-
catenated to each other. Moreover, the obtained concatenated class probability distribution vectors are
concatenated with the input feature vector producing the training or testing vector for the next level. The
feature vectors of the last level are combined into a single class probability vector by means of averaging.
The final prediction corresponds to the largest probability from the class probability vector. The greedy
algorithm is used to train the DF so that the next level of the forest cascade is trained on the feature vectors
obtained from the previous level.

We suppose that there are Q levels (layers) of the DF, every level contains F forests, every RF consists
of T decision trees. It is assumed for simplicity that /" and T are identical at all levels.

Suppose that there are 7 training instances S = {(X, y)), (X,, ,), .., (X , ¥ )}, X, = (X, ..., X, ) €
e R™, is a feature vector from m features, v efl, .., C} is the target output. The class probability vector
p,= (p, > --» P, ) as the prediction of the /" tree is defined as follows. Let the vector x fall into a leaf of
the /™ tree. Then there holds
nl,c nl,c
Die :Pr{c|x} === ,
24 n[ i nl
=1 bt
where c¢ is the class index c € {1, ..., C}, n 1o 18 the number of instances from the class ¢ which fall into the

same leaf as the vector X in the /™ tree.



4 WNHTennekTyanbHble CUCTEMbI U TEXHONOMK

<) g e
8 O/ =7 m m/ P
> O e | = L &5 53 c
g m = ol g5 S
= B[ RF [ RF | D[ RF =0 3
z@C)[ RF 1O 0 : 0 = 3
[ .ﬂ P8 & £ @
oy f 2o Ll £ s O = =] o
= -0| 5 -s0 5 4 -0 2 —
= & SlEE © £
al O] 53 O3 0O ® = ©
c ! 5% ] ) <
£ [} ] S © i

I Il [ < =

! ] |

1 =] ]

i !

Level 1 Level 2 Level Q

Fig. 1. Architecture of cascade forest

In other words, p, is the percentage of instances from class ¢, which fall into the leaf where the instance
x falls into. The following condition is fulfilled for all trees:

C
Zpl,c =1
c=1

The class probability vector vj(i) = (vi (@), ..., v, A1) as the prediction produced by the i RF for X, is
defined as N ’

. 1 &
Vie (Z)Z?ZEPY,Z, c=1,...,C.

According to [7], the concatenated vector Xj(‘f) after the g™ level of the DF cascade is

S0 = (5,0, (v, (7).

It consists of the original vector X, and F class probability vectors obtained from F' RFs.
The attention mechanism and the attention-based RF

According to [24], the attention mechanism can be considered in terms of the Nadaraya—Watson ker-
nel regression model [27, 28]. Given the training set S, the machine learning task is to find a function f:
R™ — R predicting the target value ) ofa new instance x based on the dataset S. Then the Nadaraya—Wat-
son regression model can be written as follows:

n

7= o(xx )y,
i=1
where o(X, Xi) are the attention weights depending on how the vector X, from the training set is close to
the input vector X, i.e. the closer X, to X, the greater a(X, X).
The weights are expressed through the kernel K as:

K(x, X,-) .
Z;K(’“ X.i)

Vector X, vectors X, and outputs y are called query, keys and values, respectively, [29]. Generally, weight
a(Xx, Xi) depends on the trainable parameters w. If the Gaussian kernel is used to represent the attention
weight, then we can write the following:

a(x,x,)=

10
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exp(—”w(x —X, )”2) |
ijl exp(—”w(x —~ xj) 2)

Here w is the vector of trainable attention parameters, a(X, X, W) is an attention scoring function
that maps two vectors to a scalar. It should be noted that there are various forms of incorporating train-
able parameters. As a result, different expressions for the attention weights or for the scoring function
have been studied and proposed. One of the popular scoring functions is defined as

o(x, x,) = softmax (x, x,, W) =

s(x,x;)=w, tanh(qu+ kal.),

where W _or WV, Wq, and Wk are the vector and matrices of trainable parameters.

The corresponding attention is the well-known additive attention [29]. Another popular attention is
the dot-product attention [30, 31]. The attention-based RF proposed in [22] is based on the Huber’s
e-contamination model [32] with a specific trainable parameter, which is the contamination probability
distribution.

Generally, the attention function (pooling) can be represented as an attention function f:

€= f(War kan va[)a

where e is the output of the attention module (embedding).

Another approach for improving and extending the attention mechanism is to use the multi-head at-
tention which is based on joint use of the different representation of queries, keys, and values in order to
take into account multiple different aspects of data. The multi-head attention is implemented by means
of different trainable parameters (heads) w ), W ), and W . In this case, each attention head e? is
written as

e(ﬂ) — f(wtgh)x’ W]E/’l)xi, W‘Eh)yz )-

When the attention is implemented by neural networks, the heads are determined by different initiali-
zation of the neural network parameters. After computing vectors e, h = 1, ..., H, the heads are concat-
enated.

The attention-based DF

Let us return to the DF. Suppose that we have the trained RFs consisting of 7" decision trees at the
first level of the forest cascade and the instance X is fed to the i RF. Let us compute the reconstruction
of input feature vector X (i ) produced by the i RF as follows:

£(1) =Y a(x £ ()24 (7),

k=1

where the reconstruction produced by k™ tree is:

W (i = .
X (l) #Sgk)(x)jesf(x)Xj

Here 31,(")()() is the set of instances from the training set S which fall into the same leaf from the k™" trees
in the i™ RF as the vector x falls; #3 /(x) is the number of elements in the set 3 /(x). It can be seen from

11
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Fig. 2. The modified architecture of a level incorporating the multi-head attention

the above expression that f((i ) can be viewed as the weighted average over the vectors from S which are
close to X. It is important to point out that attention mechanism parameters for obtaining f((i ) can be
optimized. However, these approaches complicate the training procedure, and we use the simplest averag-
ing based on Gaussian kernel.

In order to indicate that the multi-head attention with H heads is used, we will denote the mean vectors
X (i ) and the vector v(7) of the class probabilities as f((i, h) and v(i, h), where i is the number of the RF,
i=1, .., F, histhe number of the head in the multi-head attention, 2 = 1, ..., H. So, the prediction of
the i RF at the first cascade, which is used in the 4™ head of the attention, is the vector of probabilities
v(i, h). We propose to concatenate the vectors f((i, h) and v(i, /) in order to use the extended RF output
(f((i, h)||V(i, h)). If there are F' RFs at the level, then their outputs (f((i, h)HV(i, h)),i=1, ..., F, canbe
combined by applying the multi-head attention with A heads. In this case, we obtain H embedding vec-
tors e(7), which can be concatenated for training the next level of the DF. The concatenated vector de-
noted as K is transformed to a vector X, of the smaller size to use it at the next level of the DF cascade.
This scheme is repeated for each level.

The proposed attention-based architecture of the DF level is shown in Fig. 2. One can see from Fig. 2
that the input vector X is fed F'to RFs (RF-i), which provide mean vectors f((i , h) and the probabilities
of classes v(i, /). Then concatenated vectors f((i, h) ||v(i, h) are attended with the vector X (Attent /),
and we obtain H vectors e)(7), which are concatenated to each other into the vector E. After that, the
vector X is calculated as X = W E, where the matrix W _is trained jointly with the attention mod-
ules. Predictions of each head in the multi-head attention depend on subset of samples that correspond to
the head: only samples from the subset are used to reconstruct the input vector and to estimate the class
probabilities. The subsets for heads are generated using H-fold division of the training set S. The attention
parameters are trained by using the same folds.

The proposed architecture has several advantages. First of all, it is flexible. We can change the number
of RFs, the number of heads in the multi-head attention. We can change sizes of embeddings e(i), the
size of the vector X . All attention modules as well as the procedure of reducing the concatenated vector
(e®(D)||...|| e”(H)) to the vector X have trainable parameters which allow us to obtain the best results.
Secondly, we can reduce the number of RFs, which are hardly trained, by increasing the number of heads
in the multi-head attention. This is a very important feature of the attention-based architecture. Thirdly,
changing parameters of each level, we can obtain the heterogeneous structure of the DF, which leads to
improved predictions of the whole model.

The simplest implementation of the attention-based DF is when the non-parametric attention mech-
anisms are used and the output feature vector X  is obtained by averaging the vectors e”(1), ..., (H).
In this case, we train only the RFs. Other components are performed by computing their outputs under
condition of certain inputs.

12
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Numerical Experiments

In order to illustrate the attention-based DF, we investigate the model for datasets from UCI Machine
Learning Repository [33]. Table 1 is a brief introduction about these datasets, while more detailed infor-
mation can be found from the data resources. Table 1 contains the number of features m for the corre-
sponding data set, the number of instances 7 and the number of classes C.

The ABDF implementation is based on the Bosk framework which is available at https://github.com/
NTAILab/bosk.

Each level of the cascade structure consists of two RFs, each RF consists of 100 decision trees for
almost all datasets except for the datasets WDBC, TTTE and Biodeg where numbers of trees in the cor-
responding RFs are 1000, 500, 500. The number of cascade levels is taken 3. The number of heads in the
multi-head attention is 4.

Accuracy measure A used in numerical experiments is the proportion of correctly classified cases on a
sample of data. To evaluate the average accuracy, we perform a cross-validation with 100 repetitions, where
in each run, we randomly select n,_= 3n/4 training data and n_, = n/4 testing data. Different values for the
hyperparameters were tested, choosing those leading to the best results.

Numerical results of comparison of the original DF and the ABDF are shown in Table 2, where the
first column contains abbreviations of the tested data sets, the second column contains the accuracy (the
mean and standard deviation) of the ABDEF, the third column contains accuracy values of the original DE
It can be seen from Table 2 that the proposed attention-based DF outperforms the original DF for most
considered datasets.

Another interesting question is how the number of heads in the multi-head attention impacts the
prediction accuracy. To study this question, datasets WDBC and TTTE are used, and the accuracy
measures are obtained for numbers of heads 2, 4, and 6. The corresponding values of the accuracy for
the dataset WDBC are 95.34, 96.64, and 97.20. Values of the accuracy for the dataset TTTE are 96.87,
97.08, and 97.36. It can be seen from the results that the number of heads increases the classification ac-
curacy. On the other hand, the large number of heads in the multi-head attention significantly increase
the computation time for training the ABDF. An optimal number of heads can be selected only in the
testing phase.

Table 1
Brief introduction to datasets

Data set Abbreviation m n C
Haberman’s Breast Cancer Survival Haberman 3 306 2
Ionosphere Ion 34 351 2
Seeds Seeds 7 210 3
Teaching Assistant Evaluation TAE 5 151 3
Tic-Tac-Toe Endgame TTTE 9 958 2
QSAR Biodegradation Biodeg 41 1055 2
Parkinsons Parkinsons 22 195 2
Connectionist Bench Sonar 60 208 2
SPECT Heart SPECT 22 267 2
SPECTF Heart SPECTF 44 267 2
Breast Cancer Wisconsin WDBC 30 569 2

13



4 WNHTennekTyanbHble CUCTEMbI U TEXHONOMK >

Table 2
Accuracy values (the mean and standard deviation) for comparison of the ABDF with the original DF

Dataset ABDF DF
Haberman 71.6913.38 67.4+4.25
Ion 93.98+1.76 91.7+2.74
Parkinsons 92.65+2.08 91.84+3.65
Seed 95.28+3.50 93.21£2.56
SPECTF 80.15+4.63 81.04+4.43
SPECT 82.941+4.33 82.181+6.46
WDBC 96.411+2.14 95.31+1.90
Sonar 85.77+5.52 83.0814.11
TAE 61.05+8.47 59.74+7.81
TTTE 97.92+1.05 97.6310.93
Biodeg 86.63+1.38 87.27+1.65

Conclusion

The paper presented a new efficient modification of the DE The main idea behind the proposed model
is to incorporate the multi-head attention into each level of the DE. Numerical experiments showed that
this idea leads to the model that outperforms the original DE

The proposed model has several advantages. First, it allows us to reduce the number of RFs by increas-
ing the number of heads in the multi-head attention mechanism at each level of the DF cascade. We can
even use a single RF because the multi-head attention plays role of the base models like RFs. Secondly, it
provides outperforming results due to usage of the attention-mechanism. Thirdly, it is flexible due to the
data representation at the levels of the DF. Indeed, the output vector X can have a structure different
from the input vector produced by the previous level. As a results, RFs at the next level do not depend on
RFs from the previous level, and we can expect better results due to some kind of the diversity of the base
models. Fourthly, the ABDF opens the door for developing new modifications of the DF based on various
forms of the attention mechanism. One of the direct modifications is to change the procedure for comput-
ing the average feature vector f((i ) producing by the i'" RE. We used the simplest procedure of weighted
averaging of all vectors that fall into leaves jointly with the vector x(7). However, the self-attention can be
applied to take into account the context of data as it is performed in Transformers. The self-attention can
be incorporated into the multi-head attention. The above modifications as well as many other ones can be
regarded as directions for further research.
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