Computing, Telecommunication and Control, 2022, Vol. 15, No. 4, Pp. 86-97.
4 MNHdopMaTurKa, TeENEKOMMYHUKauMmK 1 ynpasneHuve. 2022. Tom 15, N2 4. C. 86-97.

Research article @ 018
DOI: https://doi.org/10.18721/]JCSTCS.15407 S
UDC 004.852

FIXING 1-BIT ADAM AND 1-BIT LAMB ALGORITHMS

D.A. Tarasov' 2 , V.A. Ershov?

! National Research University Higher School of Economics,
St. Petersburg, Russian Federation;

2Yandex LLC, St. Petersburg, Russian Federation

= tarasov.denis.al@gmail.com

Abstract. Today, various neural network models are trained using distributed learning in order
to reduce the time spent. The most common way of distributed learning today is the approach,
in which the data are divided into parts and sent along with the model to different devices, each
device calculates updates for the model, then the updates are aggregated on the server, the server
updates the weights of the model and transfers their new version to the devices. Slow network
communication between devices can significantly reduce distribution efficiency. Recent studies
propose one-bit versions of the Adam and LAMB algorithms, which can significantly reduce
the amount of transmitted information, thus improving the scalability of training. However, it
turned out that these algorithms diverge in some neural network architectures. The goal of this
work is an empirical study of these algorithms, to find the solution of the discovered divergence
problem and propose new aspects of testing gradient descent algorithms.

Keywords: machine learning, deep learning, gradient descent, distributed training, optimization

Acknowledgements: We thank Andrey Kirilenko for help in solving different technical issues, which
appeared during our research. We also thank Gleb Yengalych for comments on the manuscript.

Citation: Tarasov D.A., Ershov V.A. Fixing 1-bit Adam and 1-bit LAMB algorithms. Computing,
Telecommunications and Control, 2022, Vol. 15, No. 4, Pp. 86—97. DOI: 10.18721/JCSTCS.15407

© Tarasov D.A., Ershov V.A., 2022. Published by Peter the Great St. Petersburg Polytechnic University

4 The Seventh Conference on Software Engineering and Information Management (SEIM-2022) >

Hay4dHasa cTaTbs —(D@
DOI: https://doi.org/10.18721/]JCSTCS.15407 & T
YK 004.852

PELUEHMUE NPOBJIEM AJITOPUTMOB
1-BIT ADAM U 1-BIT LAMB

A.A. Tapaco8' = , B.A. EpuioB?

! HaumoHanbHbIN UCCNef0BaTENbCKUIA YHUBEPCUTET «BbICLIAA LWKOAA SKOHOMUKNY,
CaHkT-NeTepbyprckuii dmunman, CaHkT-NeTepbypr, Poccuiickaa Pegepaums;

2 «AHpekc», CaHKT-MeTepbypr, Poccuitickas Gepepaums

= tarasov.denis.al@gmail.com

AnHoramusa. Ha ceromHsIIrHuii neHb pa3IndHBIC HEpOoCceTeBhIe MOJCIN yJaT ¢ TTOMOIIBIO
pacrmpeneieHHOro o0y4eHus1, YTOObl CHU3UTh 3aTpauriBaeMoe BpeMsi. CaMbIM pacIpoCTpaHeH-
HBIM CIIOCOOOM pacIpeaeeHHOro O0yUYeHUS SIBJISIETCS MOAXO0/I, IIPU KOTOPOM JaHHbIe pa30u-
BalOTCs HA YaCTU M BMECTE C MOJIE/IbIO OTIIPABIISIIOTCS Ha pa3Hble YCTPOMCTBA, KaX/10€ YCTPOui-
CTBO BBIYMCJISIET OOHOBIJICHMS IJIST MOJEINIHM, 3aTeM OOHOBIIEHWS arrpervupyioTcs Ha cepBepe,
cepBep OOHOBJISIET Beca MOJIENIU M TIepeIaeT NX HOBYIO BEPCUIO Ha YCTpoiicTBa. MemjieHHOe ce-
TEeBOE B3aMMOCICTBUE, CBI3bIBAIOIEE YCTPOMCTBA, HA KOTOPBIX IPOUCXOAUT OOy4EeHUE, MO-
JKeT 3HAYMTEJIbHO CHU3UTD 3((hEeKTUBHOCTD pacipeaeneHusi. HemaBHue uccienoBaHus mpe-
JlaraloT OJHOOMTHBIE Bepcuu aaroputMoB Adam u LAMB, mo3Bossgoiine COKpaTUTh 00bEM
repeaaBaeMoil MHGOPMalluu B HECKOJbKO pa3, BCICACTBUE YEro MacIITabupyeMOCTh 00yde-
Hus ynydymaercsd. OQHAKO Ha MPaKTUKE 0Ka3aJoCh, YTO JAHHBIC aJTOPUTMBI PACXOMSITCS Ha
HEKOTOPBIX apXUTEKTypaxX HEMPOHHBIX ceTeil. Llenb cTaTh — SMIUPUUYECKOE HUCCIEIOBaHIE
YKa3aHHBIX aJITOPUTMOB, pellleHre OOHapy:KeHHON MPOOJIeMbl PACXOAMMOCTH, a TaKXKe pac-
CMOTpEHHE HOBBIX ACIIEKTOB JJISI TECTUPOBAHMS aJITOPUTMOB IPaJMEHTHOIO CIIYCKa.

KioueBblie cjioBa: MalllMHHOE O0yYeHUe, IIyOMHHOE 00yUeHNe, FpaAueHTHBIN CITYCK, pacIipee-
JICHHOE 00y4YeHUe, ONTUMU3ALIIUS

Bbaarogapuoctu: biarogapum AHapes KupuieHKO 3a TOMOIIb B PEIIEHUU TEXHUUYECKUX MPO-
0J1eM, BO3ZHUKIIMX BO BpeMsI ucciienoBaHusl. Takke 61arogapum Ieba EHranbiua 3a KOMMeHTa-
PHU K pYKOTIACH.

Jna murupoBanms: Tarasov D.A., Ershov V.A. Fixing 1-bit Adam and 1-bit LAMB algorithms
// Computing, Telecommunications and Control. 2022. T. 15, Ne 4. C. 86—97. DOI: 10.18721/
JCSTCS.15407

1. Introduction

The latest breakthroughs in deep learning bring about many challenges from areas such as natural
language processing, computer vision, and more. The training of neural networks is usually performed
on GPUs (Graphical Processing Units) or TPUs (Tensor Processing Units) and their power constantly
grows, but the training speed-up is compensated by the fact that models become more complex and the
amount of data used for training increases. Training a single model may require weeks, while people need
to run many experiments to find a good set of hyperparameters or continuously train existing models using
new available data. Therefore, there is a lot of research, the goal of which is to reduce training time while
maintaining quality.

Optimization problems arising in training neural network models are solved using the stochastic
gradient descent (SGD) method and its various modifications. The aim of several studies is to get an
optimization algorithm with not only better convergence rate in theory, but one which provides a speed-up
in practice as well: SGD with Nesterov momentum, RMSProp [1], Adagrad [2], Adadelta [3], Adam [4],

© Tapacos [.A., Epwos B.A., 2022. U3gaTens: CaHKT-MeTepbyprckuii NONMTEXHUYECKUI yHUBEPCUTET MeTpa Bennkoro 87

4 KoHdepeHuust no paspaboTke NporpamMMHOro obecrneyeHuns 1 yrnpasneHnto nHdopmaumei (SEIM-2022)

LARS [5], LAMB [6], Novograd [7], etc. At the moment, SGD with Nesterov momentum and Adam are
the most used ones.

In terms of computation speed, one of the most effective ways to speed up training is to increase the
batch size for each training step while reducing the number of steps. Using large batches can lead to worse
performance of the trained model, so either some tricks, such as in [8], or suitable optimization methods,
such as LARS and LAMB, are required. GPUs and TPUs have limited video memory, so the following
approach has found widespread use: the data are divided into the required number of parts and training is
performed on several devices, while all the calculated gradients are averaged before the gradient descent
step, so that all processes have a model with the same weights. The described approach makes it possible
to linearly speed up training if the network communication between devices has sufficient bandwidth and
suitable methods are used. However, in practice, network bandwidth may turn out to be a bottleneck that
does not allow obtaining a linear increase in the training rate [9].

In [10, 11] 1-bit Adam and 1-bit LAMB algorithms were presented, which propose compressing the
transmitted data before synchronisation in order to reduce the amount of transmitted information and,
accordingly, accelerate the learning process without a loss of quality. One-bit compression is the most
compact among compression approaches, which preserves some useful information about each value.
However, in practice, during our experiments, it turned out that these algorithms can lead to divergence
for certain models.

Our contributions are as follows:

1. We empirically study 1-bit Adam and 1-bit LAMB algorithms convergence on different tasks.

2. We propose to consider two methods that, to our knowledge, have not been discussed during
development of new SGD algorithms.

3. Using these techniques we discover weaknesses of 1-bit Adam and 1-bit LAMB algorithms, as well
as a proposing a simple empirical solution to one of the critical problems associated with the original
implementations.

2. Previous work

In this section, we will provide a short overview of 1-bit optimizers based on [10]. The idea of the one-
bit modifications of Adam and LAMB comes from the idea of the one-bit SGD [12]. A single step of the
SGD algorithm looks like this:

¢
W =W, —Qg, =W, _azgk’
k=0

where w is the model weights at step #; x, is a training sample at step #; o is the parameter of the learning
rate, and if f, (x) is the objective function, then g, = Vf, W, (xt) , these notations are used further.

If we denote the compression operator by C (x) , then the SGD step with compression can be done as
follows:

¢ ¢
Wia =W, —OLC(gt):Wt _a(gt _St): Wo _(ngk +a28k
k=0 k=0

8k denotes the error introduced by compression after step k. As it is seen, error accumulates and without
its compensation, there is no guarantee of convergence. Therefore, the update is slightly modified so that
the error does not accumulate:

Win =W, _(X‘C(gt +6t—1): W, _a(gt _St +6t—1):

88

4 The Seventh Conference on Software Engineering and Information Management (SEIM-2022) >
t ! !
=w,—oY g +aY (8,-8,_)=w,—a) g +0d,
k=0 k=0 k=0

o
If o depends on the step number, the error compensation must look like C (g+ —’Stj instead of
t-1

C (g, +9,,)
1-bit Adam. 1-bit Adam is a modification of the widely used Adam algorithm. Adam weights update
rules:

m.,, = Blmt +(1_Bl)gt’

Vin = Bzvt + (1 _BZ)(g,)2 5
m

=W, —o——=,
v, T¢€

where 3, 3, are numbers between 0 and 1; € is a small constant for numerical stability.
Because of the quadratic dependence of the second momentum (vk) on gradients, it is impossible to
apply error-compensated gradient compression similar to SGD compression.

Vin =By, + (1 -B,)(C(gt +9,,))2 =
=By, +(1-B,)(g, +3,., -8,)2 =
=By +(1-B,)((,) +(8,,-8,)" +22,(5,., -8,))
(SH -9,)2 from the equality above is not cancelled if the sum is written out, and as a result, the error

accumulates.
o

AV, +€

to apply compression to the first momentum (m,) in the following manner:

If we consider as a changing learning rate (individual for each parameter), then we are forced

v, te

m,, =C|Bm, +(1_Bl)g1 +m6t71 =
= Bzvt +(1_B2)((gt)2 +(8t—1 _St)2 +2gt (St—l _SZ))'

But after the compression, we cannot express v, and, accordingly, get the coefficient to compensate
for the error.

In [10], the authors argued that after some training time, the second momentum stops changing much,
and used this observation to build a one-bit version of Adam, see Algorithm 1. First, after several steps
(the original work recommends 15—25 % of steps, if the amount for which the model should be trained is
known) updates are made in accordance with the original Adam algorithm. After that, the steps begin at
which one-bit compression of the first moment occurs, and the second moment remains unchanged. In
addition to the compressed vector, its stretching coefficient is also transmitted between training nodes in
order to preserve the magnitudes of the initial moments. A theoretical analysis of the algorithm and more
details are available in [10].

89

4 KoHdepeHuust no paspaboTke NporpamMMHOro obecrneyeHuns 1 yrnpasneHnto nHdopmaumei (SEIM-2022)

Algorithm 1:

1. Initialize: «, B, f2,€,wy,my = 0, = 0, compres-
sion errors § = 0, number of training steps T, number
of warm up steps T,,, C1(x) = Ly0)(x) = L[xc0)(x), 1
training nodes

2: Perform T,, steps of the original Adam algorithm,

keep the last second momentum vy, and stop updat-

ing it

fort=T,,..,Tdo

(On i-th node)

Sample a random subset of examples x;
(1) — wfwf(xt(l)) |
7: ﬁlmt 1 + (1 - ﬁl)g(l) 5t(i)l

Agl) = Cll(mgl)).
5t(l) _ mt(l) _5®

@

9: t
10: (On server)
—,_1n A(l)
11 m; = ;Zt:o e my + 01
my
12: m; = C; (my))
13: 5t = m{ - ﬁt
14: (On i-th node)
15 omy = il
[l
16: W, =W —
r— Wr—-1— ﬁ_,_e
17: end for

1-bit LAMB. Adam, as the research showed, gives poor results with large batch sizes. To solve the
problem, the LAMB algorithm was proposed, which takes Adam as a basis and slightly modifies it with the
following update rules:

m) =Bm +(1-8,)g",
z+1 Bz (_Bz)(gt(l))za

() — m.;
t+1
e
|
t+1 _CIlp () ’ cmin’ Cmax s

ut+l

! li

ol =)

c . ,c___are new algorithm hyperparameters responsible for clipping, index (1) denotes that vector belongs

min’ ~ max

to the /™ layer of the network, so coefficient c() is different for each layer.

90

The Seventh Conference on Software Engineering and Information Management (SEIM-2022) >

In [11], the authors tried to apply the idea from 1-bit Adam without changes, i.e. also stop updating
the second moment and use the one calculated at the last step before compression stages. However, this
approach led to suboptimal solutions, so the algorithm was complicated to obtain quality results comparable
to the original LAMB. We will not describe this algorithm in detail and provide only its pseudocode, see

Algorithm 2.

Algorithm 2:

9:
10:

11:

12:
13:
14:

15:
16:

17:

18:

19:

20:

21:
22:

23:

24:
25:

Initialize: «, f1, Ba, B3, €, Tmins Tmaxs ihs w(()l),m(()l) =

(1) = 0, c{glv)g = 0, rO = 1, compression errors
5 = O number of training steps T, number of warm
up steps Ty, C1(x) = Lxz0](X) = L[x<](x), n training
nodes

Perform T, steps of the original LAMB algorithm, at
each step update cc(u?g = ﬁgc‘gl\}g +(1- ﬂg)c Keep

O] O]

the last second momentum v, stop updating cgyg.
fort=T,,..,Tdo

(On i-th node)
Sample a random subset of examples x;
g = Vufiy i)
g;) = pimy +(1 - ﬂl)gti) + 5t(i)l
Agl) = Cl(mt(i))
(5t(i) _ mfi) _ rht(i)
(On server)

—,_1n [m) 0
my = Zl =070 my + &1
t

m; = Cy (m;)
5t - m{» - mt
(On i-th node)

()

my = 5= Mg
([
for layer [do

O _ m—pim
8t 1— ﬁ

v = By + (1= fo)(Y

(o]

1 . [!
rt() = chp(r(),(1 - rth)rt()1’ 1+ rth)rt()1

rt(l) = clip(r(l)

o _ (l) (l)
Ct It Cavg

> Y'mino rmax)

O]
) _m
W= W —ac (g)

vy, e
end for
end for

91

4 KoHdepeHuust no paspaboTke NporpamMMHOro obecrneyeHuns 1 yrnpasneHnto nHdopmaumei (SEIM-2022)

3. Discovered effects

During our experiments with the considered algorithms, we discovered effects that are not mentioned in
the corresponding works. For research, we used the original implementations provided in the DeepSpeed'
library. Because 1-bit LAMB in the experiments has the same behaviour and shares the same problem as
1-bit Adam, we show only graphs with 1-bit Adam, in order to reduce the volume.

Divergence. The original work of 1-bit Adam provides the results of training ResNet [13] on ImageNet
and CIFARI10 datasets, training and fine-tuning BERT [14], and training DCGAN [15] on CelebFaces
dataset. 1-bit LAMB was considered only for the task of training and fine-tuning BERT.

We confirm that training ResNet? using one-bit algorithms on ImageNet and CIFAR10 goes without
problems and even find the effect that sometimes the compression stage can be started earlier than
recommended by the authors, without loss of quality, which is described below.

We attempted to train networks of the VGG? [16] family using one-bit algorithms for the classification
problem on the CIFAR-10 and ImageNet datasets, Transformer* [17] for the task of translating from
English into German on the WMT-14 dataset and Jasper® [18] for speech recognition task on LibriSpeach
dataset. From the model listed above, only Jasper did not begin diverging after the onset of the compression
stage. VGG divergence with 1-bit Adam is also observed in [19].

Optimization of simple functions. While trying to identify the divergence problem cause, we looked at
the behaviour of algorithms when minimising simple functions, such as the sum of squares, and compared
it with the behaviour of algorithms without compression.

It can be observed that compression can lead to both slower convergence when approaching the
optimum of the function, but at the same time it can have better convergence up to a certain moment, see
Fig. 1. This observation shows that one-bit versions of the algorithms require more optimization steps to
get as close to the function optimum as the original algorithms.

Early compression without quality loss. For the considered algorithms, the authors recommend starting
the compression stage after 15—25 % of the training steps. However, our experiments showed that when
training ResNet on the CIFAR10 dataset, compression can be started even after only 3 optimization steps
and the quality of the model does not suffer very much, and after 100 the quality is the same as that of the
algorithm without compression, see. Fig. 2. In other settings (for example, when training ResNet on the
ImageNet dataset), early compression was affecting the quality of the trained model, but this effect may
be the subject of further research.

4. Divergence problem

The divergence problem described in Section 3 is critical to the use of the algorithms. Our goal was to
identify the cause of this behaviour and find a solution.

Zero gradients are not the only problem. The DeepSpeed documentation, where the algorithm
implementations were taken from, recommends that parameter groups known to contain zero gradients
should be updated without compression , since one-bit compression encodes zero into a non-zero value,
because of which there may be an update of parameters whose gradients are zero. However, we may not
know in advance which parameters have a zero gradient. In addition, as our experiments have shown,
such parameters are not the only problem. To test the hypothesis that the problem is in zero gradients, we
replaced 1-bit compression, with 2-bit compression — positive values of gradients encoded as 1s, negative
values encoded as —1s and zeros encoded as 0s. However, even with the 2-bit compression models diverged,
which indicates that zero gradients are not the only problem with the considered algorithms.

! https://github.com/microsoft/DeepSpeed

2 Implementations were taken from https://github.com/pytorch/vision and https://github.com/kuangliu/pytorch-cifar

* Implementations were taken from https://github.com/pytorch/vision and https:/github.com/chengyangfu/pytorch-vgg-cifar10
4 Implementation was taken from https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Machine-Translation

5 Implementation was taken from https://github.com/NVIDIA/DeepLearningExamples

92

4 The Seventh Conference on Software Engineering and Information Management (SEIM-2022) >

a) b)
x2 +y?, learning rate 1le — 4, initial point (1e — 3, 1e — 3) x2 +y?, learning rate 1e — 6, initial point (1e — 3, 1e — 3)
106 10—
10-10 10711
S 10714 S107Y
s 2 10-23
- 10718 Z10
5=y o
B 10-22 © 1072 —— Adam
‘:-', ¥ g — 1-bit Adam, compression 100
T 10726 H—— 1-bit Adam, compression 50 L107% 1-bit Adam, compression 500
1073 1-bit Adam, compression 100 10-41 T 1-bit Adam, compression 1000
—— 1-bit Adam, compression 200 — 1-bit Adam, compression 2000
0 100 200 300 400 500 0 1000 2000 3000 4000 5000 6000 7000
Iteration Iteration

Fig. 1. Minimising x? + y? function with the original Adam and 1-bit Adam algorithms:
a — optimization with learning rate 10~ for 500 iterations; » — learning rate is 10-¢ and the number
of iterations is set to 7000; "compression n" denotes that compression stage started after n» optimization steps

a) b)
—— 1-bit Adam, compression 3
8 ---- 1-bit Adam, compression 100 80
g ~ Adam
g < 70
= >
g @ 60
S 3
=4 <50
§ —— 1-bit Adam, compression 3
2 40 ---- 1-bit Adam, compression 100
.......... Adam
30
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoches Epoches

Fig. 2. Training ResNet on CIFAR10 dataset with usage of Adam and 1-bit Adam algorithms.
Each epoch contains 250 optimization steps; "compression n" denotes that compression stage started
after n optimization steps; a — loss function values, b — accuracy of prediction on the test set

Different magnitudes of gradients. To understand the possible reason, we decided to analyse the values
of the gradients in different models. As it turned out, the ResNet gradients have values of close orders for
different layers, the maximum difference in mean and median values is about 100 times, see Fig. 3. At the
same time, for example, VGG16 gradients can be very different: the differences of mean and median values
are of the 10% order, see Fig. 4. For the Transformer model, mean gradient values are not that representative
but median values show that gradient values differ from each other a lot in this model too, see Fig. 5. From
these observations, we concluded that this might be the problem.

If we apply the compression procedure used in Algorithm 1 and Algorithm 2 to the following vector of
numbers

m: =(10",10", -107, =107, 10),
as a result of compression, there will be a vector
m: = (1, 1, -1, —1, 1).

After multiplying by scaling coefficient, we end up with vector

93

4 KoHcepeHuusi no paspaboTke NporpaMMHOro obecrneyeHus 1 ynpasneHuio nHcdopmaumelt (SEIM-2022)

10" —— mean
—— median

0]
=
S
o 1072
C
9
©
&
()

1073

0 10 20 30 40 50 60

Layer number

Fig. 3. Mean and median values of gradients from different layers of ResNet18
at 1000™ training step with Adam optimizer on CIFAR10 dataset

. il

v
=
@©
> —_—
Z mean
o 10 —— median
3
& 1078

10—10

0 10 20 30 40 50

Layer number

Fig. 4. Mean and median values of gradients from different layers of VGG16
at 1000™ training step with Adam optimizer on CIFAR10 dataset

1074 w
" [s
=2
T 10°°
o —— mean
c o
K e —— median
g 10
&)

10—10

0 30 60 90 120 150 180 210
Layer number

Fig. 5. Mean and median values of gradients from different layers of Transformer
at 1000™ training step with Adam optimizer on WMT-14 dataset

94

4 The Seventh Conference on Software Engineering and Information Management (SEIM-2022) >

”l”mzo.oms-(l, L =1, -11).
m

Thus, it turns out that the last element of the restored vector with value of 0.0045 differs from the last
element with value of 107¢ in the original vector by 4500 times. As it turns out in practice, such changes
for the gradient may be enough for the model to start diverging even after one optimization step with
compression. If in a vector with zero elements there is at least one nonzero, then after compression and
restoration of the norm in the new vector there will be no zeroes. Considering the example with the sum of
squares, we can also observe this effect: one-bit optimizers may start diverging if one of the arguments is an
order of magnitude larger than the second, see Fig. 6.

Possible solution. As shown above, after the procedure for compressing the vector of the first momenta,
some of the first momenta can become orders of magnitude larger than the true ones. Then in the formula
of weights update

m
e (1)

W, =Ww
VTw+8

t

too large update step will be made for the corresponding parameters (the denominator is a constant),
which may lead to a model divergence.

To solve the problem, we tried several approaches, for example, clip the first momentum at each training
node after synchronisation so that the values do not exceed those obtained in the previous step, or restore
the second momentum, as is done in line 18 of Algorithm 2, to use it for weights update. Nevertheless,
none of this worked and led to a divergence, most likely due to the fact that the changes were not taken
into account in the error compensation rules, or did not give a significant effect immediately — one step
with problematic compression may be enough for the models to diverge, i.e. the problem must be solved
immediately.

There is an option to change the value of the hyperparameter o to a smaller value or increase e after the
start of compression. This method works, but it requires an additional search for the values, because we
want the model trained in this way to show comparable results. In this regard, after starting training with
compression, we propose to put the e under the square root in (1) so the update rule has the following form:

—a M)

w=w .
v, +E

t t-1

This modification does not complicate the calculations in any way, and, as our experiments showed,
the convergence of unproblematic models does not suffer in any way, and for divergent models, it helps
to prevent divergence while saving performance. Fig. 7 shows how this change can help to train VGG 16
which diverged with original implementations on the CIFAR10 dataset.

5. Conclusion and future work

In this work, we conducted an empirical study of 1-bit Adam and 1-bit LAMB algorithms and found
a problem associated with the original implementation. We proposed a simple solution to the problem:
it is computationally simple and quite effective in practice, while not requiring any additional tuning of
the parameters. Further studies of the considered algorithms can be focused on their application to other
neural network architectures, search for a non-empirical solution to a discovered problem or the effect that
in some situations compression can be started almost from the very beginning of model training.

In addition, we hope that the techniques that we used in this work to find problems will be taken into
account when creating new modifications of gradient descent where information about the gradients of

95

4 KoHdepeHuust no paspaboTke NporpamMMHOro obecrneyeHuns 1 yrnpasneHnto nHdopmaumei (SEIM-2022)

x? + y?, learning rate 1e — 4, initial point (1e —3, 1le — 4)

10-° WMMWW'W-V“~'-“*“"W-‘*“'Wwwwwmwww
) N\
210713
©
c 10777 iy
o
ks] 10—21
§ —— Adam
L 10725 —— 1.pit Adam, compression 50
10-2° 1-bit Adam, compression 100
—— 1-bit Adam, compression 200
0 100 200 300 400 500

Iteration

Fig. 6. Divergence of 1-bit Adam while minimising x> + 32 function
because of different magnitude orders of parameters

a) b)
0.4 —— 1-bit Adam, compression 100 80
~---- Adam
[
=
20.3 £ 60
c >
©]
g £
2 0.2 940
@ <
S
0.1 20 —— 1-bit Adam, compression 100
---- Adam
0 5 10 15 20 25 0 5 10 15 20 25 30
Epoches Epoches

Fig. 7. VGG 16 training on CIFAR10 dataset using Adam and 1-bit Adam modified according to (2).
Each epoch contains 24 update steps; "compression n" means that compression started after » update steps;
a — loss function value, b — prediction accuracy on the test set

one parameter used when updating other parameters. Using these techniques can help detect problems
similar to those that we found in 1-bit Adam and 1-bit LAMB.

REFERENCES

1. Hinton G., Srivastava N., Swersky K. RMSProp: Divide the gradient by a running average of its recent
magnitude. Neural networks for machine learning, Coursera lecture 6e, 2012, P. 13.

2. Duchi J., Hazan E., Singer Y. Adaptive subgradient methods for online learning and stochastic optimi-
zation. Journal of Machine Learning Research, 2011, vol. 12 (7).

3. Zeiler M.D. Adadelta: An adaptive learning rate method. arXiv preprint arXiv: 1212.5701, 2012.

4. Kingma D., Ba J. Adam: A method for stochastic optimization. International Conference on Learning
Representations, 2014, 12.

5. You Y., Gitman I., Ginsburg B. Large batch training of convolutional networks. arXiv preprint arXiv:
1708.03888, 2017.

6. Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, Cho-Jui Hsieh. Large batch optimization for deep learning: Training Bert in 76
minutes. arXiv preprint arXiv: 1904.00962, 2019.

96

4 The Seventh Conference on Software Engineering and Information Management (SEIM-2022) >

7. Ginsburg B., Castonguay P., Hrinchuk O., Kuchaiev O., Lavrukhin V., Leary R., Li J., Huyen Nguyen,
Yang Zhang, Cohen J.M. Stochastic gradient methods with layer-wise adaptive moments for training of deep
networks. arXiv preprint arXiv: 1905.11286, 2019.

8. Goyal P., Dollar P., Girshick R., Noordhuis P., Wesolowski L., Kyrola A., Tulloch A., Yangqing Jia,
Kaiming He. Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv preprint arXiv: 1706.02677,
2017.

9. Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, Xin Jin. Is network the bottleneck
of distributed training? Proceedings of the Workshop on Network Meets AI & ML, 2020, Pp. 8—13.

10. Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru Lian,
Ji Liu, Ce Zhang, Yuxiong He. 1-bit Adam: Communication efficient large-scale training with Adam’s con-
vergence speed. ICML, 2021.

11. Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, Yuxiong He. 1-bit LAMB:
Communication efficient large-scale large-batch training with LAMB’s convergence speed. ArXiv,
abs/2104.06069, 2021.

12. Frank Seide, Hao Fu, Jasha Droppo, Gang Li, Dong Yu. 1-bit stochastic gradient descent and its appli-
cation to data-parallel distributed training of speech dnns. 15" Annual Conference of the International Speech
Communication Association. Citeseer, 2014.

13. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep residual learning for image recognition.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, Pp. 770—778.

14. Devlin J., Ming-Wei Chang, Lee K., Toutanova K. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. arXiv preprint arXiv: 1810.04805, 2018.

15. Radford A., Metz L., Chintala S. Unsupervised representation learning with deep convolutional gen-
erative adversarial networks. arXiv preprint arXiv: 1511.06434, 2015.

16. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv: 1409.1556, 2014.

17. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. At-
tention is all you need. Advances in Neural Information Processing Systems, 2017, Pp. 5998—6008.

18. Li J., Lavrukhin V., Ginsburg B., Leary R., Kuchaiev O., Cohen J.M., Huyen Nguyen, Ravi Teja Gadde.
Jasper: An end-to-end convolutional neural acoustic model. arXiv preprint arXiv: 1904.03288, 2019.

19. Shaoduo Gan, Xiangru Lian, Rui Wang, Jianbin Chang, Chengjun Liu, Hongmei Shi, Shengzhuo Zhang,
Xianghong Li, Tengxu Sun, Jiawei Jiang, Binhang Yuan, Sen Yang, Ji Liu, Ce Zhang. Bagua: Scaling up dis-
tributed learning with system relaxations. ArXiv, abs/2107.01499, 2021.

INFORMATION ABOUT AUTHORS / CBEAEHUA Ob ABTOPAX

Tapacos /lennc AnekceeBny
Denis A. Tarasov
E-mail: tarasov.denis.al@gmail.com

Epmos Bacummii Anekceesnu

Vasily A. Ershov
E-mail: noxoomo@yandex-team.ru

Tlocmynuna: 29.11.2022; Odobpena: 26.12.2022; Ipunama: 12.01.2023.
Submitted: 29.11.2022; Approved: 26.12.2022; Accepted: 12.01.2023.

97

