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Abstract. This article is devoted to the problem of a hybrid approach in modelling, which
combines methods based on mathematical physics equations and data-driven methods. The
issue of choosing a hybrid model for circular membrane deflection under a load is considered.
To build models, the Laplace equation inaccurately describing the object and measurement data
of sufficiently high accuracy are used. With the help of cross-validation methods, an algorithmic
comparison of the generalising ability of a multilayer model, a physics informed neural network
model and a classical approach is made. The results obtained allow us to recommend neural
network and multilayer methods for modelling objects when a sufficiently accurate classical
description using a boundary value problem is unknown or excessively difficult and additional
information is available in the form of measurement results. Multilayer methods are preferable in
case of shortage of data or its dynamic nature, if a compact adaptive model is needed, including
for use in embedded systems and digital twins.
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AnHoTamus. JlaHHAas cTaThsl MOCBSIIEHA MPo0IeMe THOPUIHOIO MOIX0a B MOIEIMPOBAHUM,
MPU KOTOPOM COEIMHSIOTCSI METOIbl OCHOBaHHbBIE YPAaBHEHUSIX MaTeMaTUUECKON (PU3UKU 1 Me-
TOABI, yIpaBisgeMble JaHHbIMU. PaccMarpuBaetcst mpobyiema BbIOOpa TMOPUAHON Moaean sl
3aJauyM O MPOTruode Kpyrioi MeMOpaHbl Ha TKAHEBOI OCHOBE IO IeiicTBUEM rpy3a. st mocTpo-
SHUS MoJIelieil UCIToNIb3yeTcsl ypaBHeHMe Jlamiaca, HETOYHO OIMCHIBaloIIee OOBEKT, M JaHHbBIC
M3MEPEHUI JOCTATOYHO BBICOKOW TOuyHOCTU. C MOMOIIBIO METOMOB CKOJB3SIIETO KOHTPOJIS
MPOMU3BEICHO aJrOPUTMMYECKOE CpaBHEHHE 0DOOOIIAMIIE CITOCOOHOCT MHOTOCIONHOI MO-
JeJId, TIOCTPOCHHON C TMOMOIIbIO aHATUTUYECKONW MOAMMDUKALIMU KIACCUYECKUX UYMCICHHBIX
METOIOB, (U3NYEeCKU MH(MOPMUPOBAHHOU HEHpPOCETeBOI MOAEIU U KJIACCMYECKOIo MOAXOo.a.
TTonydeHHBIE pe3yIbTaThl TO3BOJSIOT PEKOMEHIOBATh HEMPOCETEBOI 1 MHOTOCTOMHBINA METOBI
IIPY MOJETUPOBAHUK OOBEKTOB, ST KOTOPHIX HEM3BECTHO MJIM M30BITOYHO CIIOXHO JOCTATOU-
HO TOYHOE KJIACCUUYECKOE OIMMCAaHUE C TTOMOIIBIO TPaHUYHON 3amaun mist 1uddhepeHInaaIbHbBIX
ypaBHEHUI U UMeeTCsI JOTOJHUTEIbHAs MHGhOpMAaIKs B BUIE Pe3yIbTaTOB U3MepeHnii. MHoro-
CJIOMiHbIE MOJEIU TPEANOUYTUTEIbHBI B CIydyae HeXBaTKM WJIM AUMHAMMUYECKUX JaHHBIX, TIPU He-
00XOIMMOCTH KOMITAKTHOM alanTUBHOUN MO/, B TOM YUCJIE, UISI UCTTOJIb30BaHMSI BO BCTPOEH-
HBIX CUCTeMax U UG POBBIX IBOMHUKAX.

KmoueBbie ciioBa: TuopuaHOe MOJAEIMPOBaHUE, TIPOrud Kpyrjioil MeMOpaHbl, ypaBHeHMe Jlara-
ca, hbuznyeckn MHGOPMUPOBAHHBIE HEPOHHBIE CETH, MHOTOCJIOHAS MOJIe/Ib, OCHOBaHHAsT Ha
(pu3KnKe apXUTEKTYpa
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Introduction

Simultaneously with the development of new technologies [1—2] and the widespread implementa-
tion of digital twins [3—4] there arises the problem of modelling real objects to meet the requirements of
the modern world. An incomplete list of factors that must be included in the state-of-the-art paradigm
of modelling is the following: the speed and cost of constructing models, their adaptability, the use of
equations that describe an object inaccurately, the absence of conditions allowing the application of
classical modelling methods, the possibility of using additional heterogeneous information, etc.

© Nazosckas T.B., Tapxos [.A., bopTkosckas M.P., Kasep3Hesa T.T., Kyapssuesa B.B., KoxaHoBsa IM.A., YépHas E.C., 2022. U3paTtenb: CaHKT-
MeTepbyprckuii NONUTEXHUYECKUI yHUBEPCUTET lNeTpa Benvkoro
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This article is devoted to the problem of hybrid approach to modelling when methods based on phys-
ics of an object (equations) and data-driven methods are combined.

Obviously, neither of these two types of modelling based on physics or data is perfect for using in dig-
ital twins. The hybrid approach is often applied in two situations: firstly, in modelling dynamical systems
when the data is used to update the model and forecast, for example, in [7—8], and, secondly, in solving
problems involving multifidelity [9—11].

The problem under consideration belongs to the second case. The differential equation is regarded
as low-fidelity data and the measurements — as high-fidelity data. We propose an original approach to
constructing models that combines multilayer methods [12], which are our analytical modification of
the known numerical methods of solving differential equations and data-driven methods. The resulting
hybrid multilayer model is compared with two other models constructed by means of a classical meth-
od and the common neural network approach, better known as the physics-informed neural network
(PINN). Multilayer method as the method of building a model with an architecture based on physics
and PINN as a hybrid method are regarded in the context of a new paradigm of modelling in work [13].
To compare models, a cross-validation allowing the estimation of different models from an algorithmic
point of view [14] is used.

All types of models constructed can be used for computational modelling the objects of a similar
nature after the parameter adjustment according to the actual measurement data.

Materials and Methods

Let us consider the task of approximating a deflection function for a circular membrane with a fixed
edge under a load placed at a distance from the center and without overlapping it. The domain under
the load is circular too. As a differential equation describing the real object, we use the Laplace equation
for small deviations of a membrane under a load [15]. This equation obvious reflects the behavior of the
membrane with low fidelity. In the process of the experiment, quite a big deflection described by more
complicated equations is observed. These equations have a bigger number of parameters and require
more information about physical properties of a membrane. As high-fidelity data, we use measurements
obtained during the experiment.

The experiment consisted of the following. After placing a load with radius ¥, = 3.95 cm and weight
300 g on the membrane with radius R = 50 cm at a distance 10 cm from a membrane center N = 24 meas-
urements of membrane deflection were taken in points around the load. In order to make high-fidelity
measurements a coordinate mesh was drawn and markups have been made every 10 cm. Experimental set-
up was wooden, a membrane material was elastane. All measurements were made by means of a laser level.

Depending on the method used to construct the membrane deflection model, the Laplace equation
was formulated in Cartesian or polar coordinates (Fig. 1). In the first case, we have an equation of the form

. +h! =0 (D

. . 2 ..

in the domain D = {(x,y)|(x + a) + y2 > roz, xt+ y2 < RZ} (eccentric ring), where R > a +r, > 2r,,
R is a radius of membrane, 7, is a radius of the area under the load, a is a distance from a membrane center
to a center of the loaded area.

The boundary value problem for equation (1) corresponds to zero deflection at the fixed edge of the
membrane

h(x,y)zO at {xz+y2 =R2},

the other conditions are unknown. Thus, we have an incorrect problem that we solve using additional
measurement data.
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Fig. 1. Cartesian and polar coordinates for non-symmetric and symmetric formulations
of the problem of finding the deflection of the membrane connected by a conformal mapping

If an equation of the form (1) is enough to apply the PINN, then other methods require some trans-
formations. Using the conformal mapping [16], equation (1) in the domain D is reduced to the Laplace
h., +h =0 equation in the symmetric closed domain D, (concentric ring).

Then in polar coordinates (p, 0), u = pcosd, v = psin6, we obtain the Laplace equation

o on) &°h 1 1
— | p—|+—=0 or A +=HW +—HK" =0. 2
p (p ) aez pp p p p2 00 ( )

The first ("classic") method is as follows. The solution is written as a series [17] which we approxi-
mate by its partial sum

h(P,e)=i(p" —Ln](An cosn®+ B, sinnb)+ D, lnl, (3)
P p

n=1

where the coefficients An, Bn, DO are found from the boundary conditions and the measurement data by
the least squares method. The relationship between the polar coordinates (r, ¢) and (p, 6) [16] allows us
to obtain the final expression for a solution directly for the original domain D.

A PINN is considered the second model. Parameters of a neural network with one hidden layer

N
h (x, Y,C;,a, ) = Z cv (x, y,a, ) and a radial basis function (a Gaussian function) exp (—b ((x —d, )2 +
i=1

+( y—d, )2 )) are adjusted during training, namely, minimising the loss function J = J, + 8/, + 6,J..
Here, summands Jl, J2, J3 correspond to the quadratic errors of satisfying the neural network solution
to the Laplace equation, boundary conditions and experimental data. The hyperparameters 81, 82 >0
reflect the contribution of the corresponding terms to the loss function after the initial random initiali-
sation of the PINN weights. This method is described in more detail in [16].

A new approach to solving the problem of modelling the deflection of a membrane under a load is the
multilayer method [12] based on the modification of classical numerical methods such as Runge—Kutta,
Euler and others. This technique leads to the multilayer functional approximations of the solution of the
Cauchy problem for a system of ordinary differential equations

y'=f(xayo)a

y(x)=y,, x€R, y,eR". (4)
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The interval [x, x] is divided in a certain way into 7 parts x, < x, < ... <x =X with corresponding
steps & .- Then the recurrence formula is used 7 times

Yia :F(f, hk’xkiykJrl’yk’yk—l""’yo)’ (5)

stipulated by specific classical numerical methods. The final expression y is regarded as an analytical
function y(x) of an end of the interval and is called a multilayer solution of the Cauchy problem. n deter-
mines the number of layers of the model and the length of the interval where the resulting solution sat-
isfies the known estimates for the basis classical method and is selected in accordance with the required
accuracy and permissible complexity of calculations.

We return to equation (2) in polar coordinates given in the symmetric domain Dl which is obtained
from the original domain using a conformal mapping, and the unknown function of deflection A(p, 0).

oh
Denote pa— =z and we reduce equation (3) to a normal system of differential equations with re-
P

spect to variable p:

oh_z

% P ©)
oz 1 0’h

ap  poo’

We apply our modification [12] of the implicit Euler method with one layer, that is, the operator F'in
expression (6) has the form

F(f, hy X 05 Vis yk+l) =)+ hf(xk+1>yk+l )’

and starting at some point selected further. We get the expressions:

hy=h (0)+2 Ko

p

~-R, 0’
Z1 :ZO (9)—%8—9}?

Given that A, (8) =5, |p=R0 . 2,(0) =z |p=R0 , the solution takes the form

— p_ROZ _ p_Ro 262}’1
h=hy(0)+ . . (0) ( S jaez' (7)

Let us find 20(9). The edge of the membrane is fixed so 4, |p: = 0 and from equation (7)

Expressing ZO(G) and substituting it into equation (7), we obtain
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[—p_R"j Tl b=y (0) B Rp (8)
p 00 p R—R,

The functions %, i can be written as:
h(p,0)= ian (p)cosnd, hy(p,0)= i/ln (p)cosnd
n=0 n=0
and replace the series with partial sums

hl(p,G):ian (p)cosn, ho(p,e)zzm:An(p)cosnO 9)

=0

3

Substitute expressions (9) into equation (8) and find the coefficients

9

4,a(p)
a, (p ) = 2
1— ( p— RO j n2
P
R—
& P ]g , RO, An are parameters that are found for the approximations of functions by
p =1Lt
expression (9) from the measurement data by means of the least squares method. In this case, the deflec-

tion values measured in the experiment are used directly and formulas corresponding to the conformal
mapping in the form

where o (p) =

r\/(R2 +a’ -1} )2 —4R*a* sin@

a(R2 +r2)+r(R2 +a2—r02)cosq)'

2.2 2
p:p(r,(p):k\/4a r-+4arQ coso+ Q- and tg0 =

4a’r* +4arQ, cos+Q’

+

Computation results

Using the data measured during the experiment described in the previous section two multilayer
models (9) with different numbers of terms in the final sum were constructed. To estimate the obtained
models and compare them with PINN model and "classical” solution, the method of cross-validation
was utilised [14, 18]. A relatively small number N = 24 of measurements used for training and calculat-
ing model parameters allows calculating estimates for all partitions of the sample into training and test
settings in the case of leave-one-out cross-validations. In addition, the ability of models to generalise is
tested for the first time using the cross-validation method for a smaller volume of the training set.

We performed 40 calculation variants for each type of the model constructed using the "classical”
method, neural network, and multilayer methods respectively. In experiments No. 1—24, the test sam-
ple consists of 1 test point, the remaining 23 points are a training sample; in experiments No. 25—40,
training samples contain 16 randomly selected points and the remaining 8 points make up a test sample.

Thus, a total of 120 models were built, 24 "classical" analytical solutions of the form (4) among them.
For each model, the unknown coefficients of approximation of the series (4) by the first summand (the
sum of the first order) were calculated by the least squares method for 23 points. The maximum devia-
tion is no more than 0.31 cm, the mean square deviation averaged over all variants for the training and
test samples is 0.13 cm.
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A solution was also obtained based on two terms of the partial sum of the series (5). A similar error
distribution was observed in the solution as in the calculation by the first-order method. The maximum
deviation was no more than 0.32 cm, the standard deviation averaged over the variants for the training
and test sample points was 0.13 cm and 0.16 cm, respectively. A small increase in the standard deviation
can be associated with an increase in instability in the load domain.

At the same time, the condition number of a matrix of the system for finding the coefficients of the
solution (5) based on the lz—norm, grew to 200. While for the approximation of a series by one term, it
ranged from 6 to 10 for different variants of training samples.

To train 24 PINN models, the same 23 points were used as in the calculations with the "classical"
method. The maximum deviation was no more than 0.22 cm, the mean square deviation averaged over
all variants for the training and test sample of points was 0.03 cm and 0.07 cm. It turned out that when
using PINN, the maximum deviation of the calculation results from the experimental data was about a
third less, the standard deviation was 2 times less than when using the "classical" method.

For each of the 24 partitions of the measurement data, multilayer models for finite sums (9) of the
first and second order were constructed for the first time. For multilayer models of the first type, the
maximum deviation is no more than 0.31 cm, the calculated mean square deviation for the training and
test sample of points was 0.13 cm and 0.12 cm respectively.

For the sum of the second order the maximum deviation of the multilayer model from the test sam-
ples of experimental data decreased and was 0.28 cm, the calculated mean square error for the training
and test samples decreased slightly and was 0.1 cm and 0.11 cm, respectively. In general, the results of
calculations by the multilayer method practically coincided in accuracy with the results obtained using
the "classical" method but the solution was more stable in the sense of maximum error for individual
objects.

For all models, the maximum deviations of the calculated data from the experimental data at the
points of the training and test samples, ERRIf:;” and ERR™" . the maximum standard errors at the

max ?

points of the training and test samples, MSEif:;" and MSE™" , the standard deviations of both
samples averaged over all calculations, the so-called averaged regularity criterion, <MSE >leam and
<MSE >m , are presented in Table 1. Table 2 shows the number of adjusted parameters m for each
method.

Thus, the PINN model allows us to get a minimum error in all indicators for leave-one-out exhaus-
tive cross-validation. For a profound comparison, we analyzed the results of leave-8-out cross-valida-

tion for sixteen random partitions of a set of measurement data.

>

Table 1
The maximum and standard deviation of the calculated values of the models
on the training and test sample for leave-one-out exhaustive cross-validation, cm
Method ERR ™" ERR™! MSE™"" (MSE)“" (MSE)*™"
"Classical", the first order sum 0.32 0.43 0.14 0.13 0.13
"Classical", the second order sum 0.32 0.47 0.13 0.13 0.16
PINN 0.15 0.22 0.06 0.03 0.07
Multilayer, the first order sum 0.28 0.31 0.13 0.13 0.12
Multilayer, the second order sum 0.29 0.3 0.12 0.11 0.1

44



Mo,qenwposaHme BbIYUCITUTENIbHbIX, TENEKOMMYHUKALMOHHbIX,
4 ynpasidaoWwmnx U counanbHO-3KOHOMUYECKNUX CUCTEM

The results of calculations using a training set with 16 points are presented in Table 3. It contains the
same estimates as Table 1. While maintaining the magnitude of estimates for training sets, the “clas-
sical” approach shows a weak ability to generalise on a test sample. A similar difference in estimates
compared to the case of a larger training set is observed for a neural network model.

We can see that for a multilayer model the maximum deviations and root-mean-square estimates
on both the training sample and the test sets differ little from those observed in the calculations for 23
points. Therefore, 16 points are sufficient to build the model, and the resulting solution does not depend
on the sample and maintains its generalising ability.

Table 2
The number of adjusted parameters for each method

Method m

"Classical", the first order sum 3
"Classical", the second order sum 5
PINN 48

Multilayer, the first order sum

Multilayer, the second order sum 4

Note that the estimates presented in Table 3 for test sets allow considering the quality of general-
isation for all three models and avoiding optimistic underestimation of the error for a more complex
PINN solution containing the maximum number of adjusted parameters (48 parameters in total, that
is, 4 parameters with 12 neurons).

Table 3
Maximum and standard deviation in the case
of the training (16 points) and test (8 points) samples, cm
Method ERR™™ ERR™" MSE"™ MSE™! (MSE)“" | (MSE)""
"Classical", the first order sum 0.32 0.58 0.15 0.24 0.13 0.16
"Classical”, the second order sum 0.35 0.98 0.14 0.44 0.12 0.24
PINN 0.15 0.43 0.05 0.24 0.02 0.1
Multilayer, the first order sum 0.3 0.44 0.14 0.21 0.12 0.16
Multilayer, the second order sum 0.29 0.4 0.13 0.2 0.11 0.15

For visual comparison of the obtained models, 3D images of some models were constructed. Fig. 2
on the left shows the dependence of the deflection of the membrane on the coordinate for one of the
calculations using the "classical" method, on the right — the difference between the result of numerical
calculations using the same model and experimental data. The results for a PINN model are shown
in Fig. 3. It can be seen that the shape of the membrane deflection became more natural, close to the
physical one observed in the experiment. An example of a solution obtained by the method of multilayer
approximations is shown in Fig. 4.

Conclusion

In this paper, a new multilayer approach to solving the incorrectly posed problem of finding the ana-
lytical function of deflection of a circular membrane under the action of a load placed far enough from
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Fig. 2. The model of membrane deflection and deviation from experimental data.
"Classical" method, the first order sum
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Fig. 4. The model of membrane deflection and deviation from experimental data.
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its center is considered. Instead of one of the boundary conditions, it is proposed to use measurement
data obtained on a full-scale experiment. An algorithmic comparison has been made using the cross-val-
idation method of a multilayer model with the basis implicit Euler method with a physics informed
neural network model and a classical approach using the representation of the solution of the Laplace
equation in polar coordinates through a trigonometric series.

As a result of the application of these techniques, 120 semi-empirical mathematical models were
constructed using a relatively small set of experimental data that set the amount of deflection at each
point of the membrane surface. With the help of the estimates obtained during the cross-validation,
the generalising abilities of all models for the problem under consideration were analysed for different
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volumes of training samples. Based on the conducted research, it can be concluded that PINN and
multilayer methods should be applied to modelling objects when a sufficiently accurate classical de-
scription using a boundary value problem for a differential equation (a system of differential equations)
is unknown or excessively difficult and additional information is available in the form of measurement
results. At the same time, PINN models are more effective in a situation with many measurements, and
the accuracy requirements are quite high. It is advisable to apply analytical modifications of numerical
methods when there are few measurements or they arrive dynamically and a compact adaptive model is
required, for example, in embedded systems.
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