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Deep Forest is a new machine-learning algorithm that combines the advantages of Deep 
Neural Networks and Decision Trees. It uses representation learning and allows building accurate 
compositions with a small amount of training data. A significant disadvantage of this approach is 
the inability to apply it directly to regression problems. First, feature generation method should 
be determined. Secondly, when replacing classification models with regression models, the set 
of distinct values of the Deep Forest model becomes limited by the set of values of its last layer. 
To eliminate the shortcomings, a new model, the Deep gradient boosting is proposed. The main 
idea is to iteratively improve the prediction using a new feature space. Features are generated 
based on the predictions of previously constructed cascade layers, by transforming predictions to 
a probability distribution. To reduce the time of model construction and overfitting, a mechanism 
for points screening is proposed. Experiments show the effectiveness of the proposed algorithm, in 
comparison with many existing methods for solving regression problems.
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ГЛУБОКИЙ ГРАДИЕНТНЫЙ БУСТИНГ  
ДЛЯ РЕШЕНИЯ ЗАДАЧ РЕГРЕССИИ

А.В. Константинов
Санкт-Петербургский политехнический университет Петра Великого,

Санкт-Петербург, Российская Федерация

Глубокий лес является новым подходом машинного обучения, сочетающим преимуще-
ства глубоких нейронных сетей и деревьев решений. Он использует обучение представле-
ниям и позволяет строить точные композиции при условии небольшого количества обу-
чающих данных. Существенный недостаток данного подхода – невозможность напрямую 
применить его к задачам восстановления регрессии. Во-первых, требуется определить 
способ генерирования набора признаков. Во-вторых, при замене классификационных 
моделей на регрессионные, множество значений модели Глубокого леса становится огра-
ниченным множеством значений последнего слоя. Для устранения недостатков предложе-
на новая модель Глубокого градиентного бустинга. Основная идея состоит в итеративном 
улучшении предсказания, с использованием нового пространства признаков. Генериро-
вание признаков производится на основании предсказаний ранее построенных моделей, 
путём трансформации их к распределению вероятностей. Для снижения времени постро-
ения модели и переобучения предложен механизм раннего отсева точек. Эксперименты 
показывают эффективность предложенного алгоритма по сравнению со многими суще-
ствующими методами решения задачи регрессии.

Ключевые слова: регрессия, Глубокий лес, градиентный бустинг, ансамбли, деревья решений.
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Introduction

Over the past few years, one of the most important developments in the field of ensemble methods, that 
is, methods for constructing model compositions [1–4], has been a combination of ensemble-based mod-
els, including Random Forest [5] and stacking [6], proposed by Zhou and Feng and called Deep Forest, or 
gcForest [7]. The Deep Forest structure consists of layers similar to multilayer neural networks, but each 
gcForest layer contains several Random Forests, instead of perceptrons. As it was noted [7], Deep Forest 
is much easier to train, and it also has the ability to obtain high-quality results with extremely small data 
sizes available for training unlike Deep Neural Network, which requires a lot of effort to select hyperpa-
rameters and large data sizes for training. A lot of numerical experiments provided in [7] show that Deep 
Forest is superior to many widely used methods, or demonstrates results similar to existing methods when 
using default parameters.

One of the main advantages of Deep Forest is the ability to build deep models using representation 
learning without differentiable modules, that is without using reverse error propagation. Representation 
training allows you to identify complex dependencies in the data, and Deep Forest is built in such a way 
that a small amount of training sample is sufficient for training. For this reason, many modifications of 
Deep Forest have been developed, as well as adaptations to specific application tasks. In particular, Wang 
et al. [8] suggested using Deep Forest for predicting health status, or diagnostic health monitoring. Yang et 
al. [9] used Deep Forest to solve the problem of finding ships using thermal maps. Zheng et al. [10] con-
sidered the application of Deep Forest to the pedestrian detection problem.

The Deep Forest structure is cascaded [7]. Each layer of the cascade is an ensemble of decision trees. 
This structure embodies the idea of learning representations: the feature space changes from layer to layer, 
creating an increasingly informative representation of the input data. Each level of the cascade, or layer, 
receives a set of features generated by the previous layer, and the features obtained at the output of the layer 
are transmitted to the next level. The cascade architecture is shown in Fig. 1 (RF in the Figure is a random 
forest, and ET is Extra Trees, extremely randomized trees [11]). The diagram shows that each level of the 
cascade consists of two different pairs of random forests that generate probability distributions of classes 
(dimension 3), concatenated together with the original input. It is important to note that the structure of 
the layers can be modified to improve Deep Forest when solving problems of a specific type. The predic-
tions of the last layer contain a set of probability distributions of classes, from which you can get the final 
prediction by averaging. Deep Forest’s ability to learn representations can be supplemented by the second 
part of Deep Forest, called multi-grained scanning, which allows processing data with a spatial structure. 
Multi-level scanning uses the sliding window principle to process the original features. The result of such 
a scan is new feature vectors corresponding to windows of various sizes. Moreover, the scanning itself is 
performed using a set of decision trees trained with the original set of classes. In this paper, the first part 
of Deep Forest is considered, since the tasks under consideration do not require the use of multi-level 
scanning, which significantly affects the results in such areas as image or sound processing. For the input 
data instance, each forest in the layer determines an estimate of the probability distribution of classes by 
counting the frequencies of different classes for data instances that fell into the same sheet as this instance 
during training. After that, the overall estimate of the probability distribution of classes is calculated as the 
average of the estimates of each decision tree included in the random forest. The probability distribution of 
classes is represented by a vector, which is then concatenated with the original feature vector in order to use 
it as an input feature vector at the next stage. The use of the probability distribution vector for constructing 
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the next layer is similar to the idea of stacking [6]: in it, the basic models of the first layer are built using the 
original data set. After that, the stacking algorithm builds a new data set for training the second layer (me-
ta-model), using the output vectors of the classes of the first layer as input features, and the same values are 
used as labels (values of the target variable) as for training the first layer. Also, the stacking algorithm often 
includes a cross-validation procedure to increase the generalizing ability when constructing the second 
layer. Unlike the standard stacking algorithm, Deep Forest uses both the original feature vector and the 
class vectors obtained from the previous layer on each layer. Zhou and Feng [7] also suggest using random 
forests of various types to provide a greater variety of predictions and create more informative features for 
the next layer.

Deep Forest has a significant shortcoming in comparison with neural networks: it is incapable of using 
arbitrary differentiable loss functions for any problems other than the standard classification one. In par-
ticular, traditional Deep Forest fails to solve such problems as transfer learning and distance metric learn-
ing. However, paper [12] eliminates this shortcoming by introducing weights allocated to decision trees, 
which allows the authors to solve a considerably wider range of problems with the help of the modified 
Deep Forest. Introduction of the weights for data instances similar to AdaBoost algorithms [13] together 
with the confidence screening mechanism allows both increasing the accuracy of classification and de-
creasing the time of building Deep Forest in a number of cases [15]. The AdaBoost algorithm [13] is based 
on the idea of boosting–iterative model construction as a combination of basic models, so that each sub-
sequent basic model compensates for the shortcomings of the model in the previous iteration. According 
to [13], the training examples with the largest error in the previous iteration should correspond to large 
weights, but this approach is not the only possible one for applying the idea of boosting. Thus, one of the 
most popular approaches over the past decade is gradient boosting and its modifications [16]. Its key fea-
ture is the application of the principles of gradient descent in the functional space [17]. Each subsequent 
basic model is constructed in such a way as to approximate the value of the derivative of the loss function 
multiplied by minus one. Adding the predictions of the new base model to the already constructed combi-
nation corresponds to one step of gradient descent. Moreover, if the training example has an error close to 

Fig. 1. Deep Forest cascade scheme

Layer Q
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the minimum, the partial derivative will be close to zero, which is similar to the low weight of the training 
example in AdaBoost. Gradient boosting of decision trees is one of the most commonly used approaches 
for solving regression recovery problems with tabular data. The disadvantages of gradient boosting include 
the impossibility of parallel construction of ensemble elements, which leads to low performance with a 
large number of iterations, as well as a set of values determined by the training set in the leaves of each in-
dividual decision tree, which significantly limits the set of values of the entire ensemble. However, in [18], 
an algorithm for randomized gradient boosting (hereinafter referred to as RMGB) was proposed, based on 
partially random decision trees. This approach allows you to get a much larger set of values of the trained 
model, as well as improve performance by reducing the time of building each individual decision tree.

Despite Deep Forest’s great success in solving the classification problem, the cascade structure of mod-
els based on decision trees has not previously been used to solve the regression recovery problem, where 
the target variable has a continuous distribution. There are approaches that combine the principles of 
building neural networks and decision trees [19, 20]. Thus, in [19], an approach is described that allows 
the construction of regression models based on decision trees, in combination with convolutional neural 
networks, applied to the problem of determining the age from a photo. Its key disadvantage is the use of 
training the entire model using error back propagation, which greatly distinguishes this approach from 
Deep Forest, which has the advantages described above, in comparison with neural networks. Also, the 
approach proposed in [20], although it combines decision trees with neural networks, does not rely on a 
cascade structure, the construction of which can be performed iteratively without an error back propaga-
tion algorithm.

This paper discusses the problems of adapting Deep Forest to the regression problem, including the 
need to determine the method of combining predictions to obtain a new set of features, as well as the com-
plexity of constructing functions, the set of values of which is quite large. Next, we propose a new approach 
based on the ideas of gradient boosting, as well as a method for generating a set of informative features. It 
allows you to build models using representation learning, without relying on an algorithm for back propa-
gation of the error, obtaining arbitrarily accurate approximations of the original dependencies. To reduce 
the number of calculations and retraining, a mechanism for early elimination of points for which the pre-
dictions are already sufficiently accurate is also proposed.

Deep Forest

The main idea of a Deep Forest for the classification problem is to iteratively construct a set of layers, 
where each layer relies both on the original set of features and on an intermediate representation obtained 
from the previous layer. This approach allows you to increase the accuracy of the model simultaneously 
with the generalizing ability, while maintaining a low level of retraining. Let us imagine a deep forest as a 
composition of L layers Si:

Each layer can consist of arbitrary models that can be used to estimate the probabilities of classes. 
Namely, instead of predicting the class number, such models should be able to estimate the probability 
distribution of classes, such as, for example, compositions of decision trees: decision trees, random 
forests and extremely randomized trees. Indeed, the leaves of decision trees contain vectors consisting 
of the class frequencies of all elements of the training sample that fell into the corresponding leaf, and 
the compositions of decision trees allow us to estimate the probability distribution by averaging the 
class frequency vectors over all decision trees. The predicted frequency vectors of classes of different  
       compositions included in one layer of width W are concatenated into one vector, along with the 
original set of features:

( ) ( )( )1 1... .L L LgcForest x S S S x−=   

i
jM
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Each new layer either allows you to improve the representation of features from the previous layer, 
or has comparable performance. In the first case, the next layer is built in such a way that the target var-
iable, that is, the class, is predicted from the set of features from the previous layer. In the second case, 
the composition is stopped. At the same time, a validation set is used to determine the quality of the 
representation of features.

Applicability of Deep Forest to the regression problem

This approach works well for classification, since the estimates of the probability distribution of classes 
contain significantly more information than the numbers of the predicted classes. And even the probability 
distribution, with the help of which it is impossible to make a correct prediction of the class, can be an 
informative set of features for constructing the next layer. Accordingly, this approach cannot be applied 
directly to the regression problem, for the following reasons. First, the complexity of generating a more 
suitable feature space for solving the problem, since it is impossible to directly calculate an analog of the 
class frequency vector for the regression problem, as in the case of the classification problem. Secondly, 
in addition to the representation of features suitable for solving the problem, in the case of regression, the 
ability to predict a large number of different values is also required, that is, the resolution, which for the 
entire Deep Forest will be limited by the resolution of the last layer. Thus, a Deep Forest in which classifi-
cation trees are replaced with regression trees does not allow you to get better results than a random forest. 
Also, reducing the regression problem to classification will not allow achieving a higher quality of the 
model using Deep Forest, since such a reduction similarly reduces the resolution.

Gradient boosting based on Deep Forest

To solve the described problems, two significant changes are made to the Deep Forest model. First, 
each layer should consist of strong regression models, that is, models that allow you to approximate 
arbitrary functions with a given accuracy. For this purpose, random forests have been replaced with gra-
dient boosting models of decision trees (hereinafter referred to as MGB). Secondly, the process of con-
structing a Deep Forest, as well as the process of deriving predictions, should be changed so that each 
next layer clarifies the general prediction of the model, and does not build it anew. The general model is 
built according to the principle of gradient boosting, that is, so that each next layer predicts additional 
terms, which add up to the estimate of the target variable. Let us imagine a new model of Deep gradient 
boosting from L layers, as:

where Mi – model of the i layer; γ – learning rate; Fi – algorithm for generating features in layer i. The 
scheme of the Deep gradient boosting model is shown in Fig. 2.

Let the loss functional l be given and a Deep gradient boosting model with an (L – 1) layer is already 
constructed. To minimize the loss functional, the next layer is constructed in such a way as to approximate 
the residual terms for each point of the training set:

As an input, similar to a deep forest, the next layer uses a set of features from the previous layers ob-
tained using a feature generation algorithm:
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MGB ML is trained to predict the residual terms from the generated features.
Thus, the general algorithm for constructing a Deep boosting model consists of the following steps:
1.  Building a zero layer, like an MGB composition, namely training several different MGB.
2.  Calculation of the residual terms of ri – partial derivatives of the error function.
3.  Generating a set of features based on predictions.
4.  Formation of a new feature space: concatenation of the generated feature vectors with the feature 

vectors of the previous layers.
5.  Construction of a new layer approximating the residual terms using the resulting feature space.
6.  If the stop condition is not met, go to step 2.
This algorithm is general and leaves it possible to determine the algorithm for generating features and 

the stop condition. So, if you omit the feature generation procedure (that is, set a feature generation algo-
rithm that matches zero-length vectors to predictions), and choose a decision tree construction algorithm 
as the algorithm for constructing a new layer, you can get a traditional gradient boosting algorithm for 
decision trees. The stop condition can be set as a condition for the number of layers M to exceed a certain 
constant. You can also set a threshold for the value of the empirical risk functional, after which the algo-
rithm is stopped, or use a plateau detection criterion: during a certain number of iterations, the fluctuation 
of the empirical risk functional (the difference between the maximum and minimum values) should not 
exceed the constants. Both of the latter criteria can also be applied with a validation sample – a separate 
data set used for quality assessment that does not overlap with the training set.

The predictions of the MGB layer are used as the generated features, while the cumulative prediction of 
the entire composition is not taken into account. The features generated by layer i are defined as:

Fig. 2. Deep gradient boosting model scheme

Q

( ) ( )( )0 1, , ..., .M i i M iI x F x F x−=

( ) ( ) ( )( ) ( ) ( )( ) T1
0 1 0 1, , ..., , ..., , , ..., .K

i i i i iF x M x F x F x M x F x F x− − =  
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By analogy with a deep forest, each layer uses not one MGB, but a composition of independent models  
          in order to obtain a more informative feature space. The layer prediction is calculated by averaging 
the predictions of the composition models. In this case, the method of generating features is based on the 
predictions of a set of composition models. The layer prediction is calculated as:

Potentially, the disadvantage of such formation of new features is the inability to build a decisive rule 
that splits a set of data according to the criterion of consistency of model predictions in a layer, as well as 
a high correlation of features. To eliminate these shortcomings, it is possible to transform the obtained 
features into an analog of the class frequency vector. For the convenience of the presentation, without 
detracting from the generality, we will assume that the value of each feature lies in the interval [0, 1], 
and both boundaries of the interval are reached. If this is not the case, the values of all features should be 
pre-normalized, independently of each other at the model construction stage, and at the prediction stage, 
the same constants should be used for normalization as during training. The interval is divided into C 
disjoint half-intervals of equal length. Each prediction of the layer model is associated with a vector of C 
components:

The vectors corresponding to each layer model are combined by averaging:

A normalized exponential function (SoftMax) with temperature θ is applied to the resulting vector, 
calculated as:

Thus, the obtained analog of the probability vector of classes:

The sum of all the elements of the vector              will be equal to 1, and the value of each element will  
lie in the interval [0, 1]. If the predictions of the layer models are equal, the element of the vector               
corresponding to the predictions has the maximum value. By varying the temperature θ, it is possible to 
reduce or increase the influence of the predictions of individual models of the layer: the higher the tempe- 

rature, the closer the elements of the vector are to         The lower the temperature, the closer the value of  

one of the elements of the vector is to 1. The obtained representation of the features allows us to build de-
cisive rules based on both the predicted values and the consistency of the layer models.
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Let’s pay attention to the physical meaning of the functions that are approximated by each layer: partial 
derivatives of the loss function. If the loss function is convex, then if its partial derivative at point x is zero, 
then the minimum of the loss function is reached at x. This means that no further iterations are required 
for the set of all such points Q. Each next layer of the model will need to predict values close to zero for Q 
points. If the predictions are different from zero, the difference will need to be compensated by the next 
layer after it. Thus, firstly, extra work will be performed for a certain set of points, and, secondly, the optimal 
prediction obtained at a certain iteration can be further worsened by adding small terms with an error. To 
eliminate these shortcomings, we will filter out data instances based on the absolute value of predictions. 
Let’s consider two ways to filter out data instances: by a fixed threshold value d, and by the quantile of the 
empirical distribution of the absolute values of the predictions of the layer. For the first method, on each 
layer, we will determine the set of points for dropping out layer i, depending on the input features Ij, as:

The difficulty of using this approach is that it is impossible to determine the number of points to be 
eliminated in advance, and also with a fixed value of d, the result strongly depends on the scale of the data. 
However, the threshold value can be selected automatically and individually for the layer. To do this, we 
introduce the parameter p – the proportion of points that need to be filtered out on each layer and find the 
quantile of the empirical distribution of the absolute values of the predictions:

The set of points for dropping out, that is those that will not be used for further construction of the 
model, is located similarly. This approach will allow you to leave a known amount of data for training 
at each step in advance. Too large, close to one, p values can lead to a situation in which the size of the 
training set will be insufficient to build an accurate model, and / or an increase in the value of the risk 
functional, due to too early sifted points.

In order to avoid situations in which points are eliminated too early, that is, inflated di values, it is pos-
sible to adjust the threshold values based on the known values of the residuals. To do this, we will introduce  
an additional threshold value        but we will calculate the quantile of the empirical distribution of the 
absolute values of the residuals, instead of predictions:

The adjusted threshold value will be calculated as:

Thus, it remains possible to control the upper bound of the number of points that need to be eliminated 
on each layer, but if the model’s prediction at a certain point is small due to an error, such a point will not 
affect the value of     

The choice of parameters of the basic models when constructing the composition has an extremely 
strong influence on the accuracy of the aggregate model. For example, if the approximate function depends 
on four features, and the maximum depth of the decision trees used in MGB is two, then it will be impos-
sible to build an exact approximation using such an MGB. If the depth of the trees is too large, there may 
be a negative effect of retraining. This means that it is necessary to select the most suitable parameters of 
the model. Since each layer solves its own separate machine-learning task (both the approximate function 
and the set of features are different for each layer), the most suitable parameters should be selected for each 
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layer separately. To do this, we use a search of parameter values with cross-validation: a grid of parameters 
is set, including the maximum depth of the tree, the number of MGB iterations and the learning rate, and 
a combination of parameters is selected that gives the smallest error of cross-validation (cross-validation). 
All the basic models in the layer are trained using the locally obtained optimal parameters. Note that a sim-
ilar improvement can also be applied to the classical gradient boosting algorithm for decision trees, but it 
is more justified in the case of the proposed deep gradient boosting, since it changes not only the objective 
function, but also the set of features at each iteration.

Experiments

For comparison with existing MGB and random forests, implementations from the “Scikit-Learn” 
package were used. To assess the quality of predictions in each experiment, the data were divided into two 
groups randomly: the training set (75 % of the original sample) and the test set (25 % of the original sam-
ple). Next, training was performed on the training set and quality assessment was performed on the test 
set. For each method, the experiment was repeated 100 times. Since MGB and random forest require the 
selection of parameters, such as the depth of trees, a procedure for automatically selecting the most suita-
ble parameters with cross-checking was used. To do this, the training set was divided into 5 parts and such 
parameters were selected for which the average accuracy during cross-checking was maximum. After that, 
the model was built anew with the selected parameters using the entire training set. For a random forest, 
the maximum depth of the decision tree was chosen – an integer value from 2 to 7, or an unlimited depth 
of the tree, as well as the number of decision trees: 100 or 1000. For MGB, the parameters were selected 
in the same way, with the addition of the learning rate: 0.1, or 0.01. For deep boosting, the optimal values 
were not selected using cross-checking in advance.

To compare the methods on regression problems, the following data sets were used (Table 1):
•  from the “StatLib” repositories and the “R”package: “ML housing data set”, “California housing 

data set”, “Diabetes”, “Longley’s Economic Regression Data”;
•  from the Kaggle online data analysis competition platform: “House Prices: Advanced Regression 

Techniques”, based on the “Ames Housing data set”, with a large number of categorical features;
•  simulated (artificially generated) data sets: “Friedman 1”, “Friedman 2”, “Friedman 3”, described 

in detail in [5]. And also “Regression” and “Sparse uncorrelated” from the “Scikit-Learn” package.
In Table 1, m denotes the number of features, and n is the number of observations.
On regression problems, the algorithms were compared: random forest, MGB, and the proposed Deep 

gradient boosting (with MGB on random decision trees). The standard error was used as the risk functional 
for all methods. Table 2 shows the values of standard errors (less – better) averaged over 100 experiments 
for data sets from repositories, and Table 3 – for artificial data sets, for:

•  a random forest with the above-described method for selecting optimal hyperparameters (in the 
Table – the RF);

•  extremely randomized trees with the above-described method of selecting optimal hyperparameters 
(in the Table – ERT);

•  the classical model of gradient boosting with the above-described method of selecting optimal hy-
perparameters (in the Table – MGB);

•  CatBoost gradient boosting models (in the Table – CatBoost);
•  models of extreme gradient boosting XGBoost with the above-described method of selecting optimal 

hyperparameters (in the Table – XGBoost);
•  the proposed Deep gradient boosting based on RMGB (in the Table – Deep RMGB);
•  the proposed Deep gradient boosting based on extremely randomized trees (in the Table – Deep ERT).
As can be seen, the proposed algorithms allow us to build models with comparable or smaller root-

mean-square errors than classical methods, as well as advanced widely used improvements to gradient 
boosting algorithms, such as CatBoost and XGBoost. The proposed deep gradient boosting RMGB in 
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more than half of the cases (on the considered data sets) allows us to get better results than other algo-
rithms. The lower accuracy of Deep gradient boosting ERT, compared to Deep gradient boosting RMGB, 

Table  1
Description of regression data sets

Title Abbreviated designation m n

California housing data set California 8 20640

House Prices: Advanced Regression Techniques HouseART 79 1460

ML housing data set Boston 13 506

Diabetes Diabetes 10 442

Longley’s Economic Regression Data Longley 7 16

Friedman 1 Friedman 1 10 100

Friedman 2 Friedman 2 4 100

Friedman 3 Friedman 3 4 100

Scikit-Learn Regression Regression 100 100

Scikit-Learn Sparse uncorrelated Sparse 10 100

Table  2
Standard error on regression problems

Method California HouseART Boston Diabetes Longley

RF 2.559×10–1 9.796×108 1.215×101 3.367×103 1.055×100

ERT 2.493×10–1 9.645×108 1.136×101 3.235×103 9.666×10–1

МГБ 2.083×10–1 9.533×108 1.052×101 3.292×103 8.660×10–1

CatBoost 2.197×10–1 9.148×108 1.066×101 3.547×103 1.273×100

XGBoost 2.057×10–1 9.835×108 1.124×101 3.276×103 1.020×100

Deep RMGB 1.986×10–1 9.157×108 1.119×101 3.343×103 8.145×10–1

Deep ERT 2.472×10–1 9.220×108 1.082×101 3.315×103 9.045×10–1

Table  3
Standard error on artificial regression problems

Method Friedman 1 Friedman 2 Friedman 3 Regression Sparse

RF 1.062×101 5.839×103 2.075×10–2 1.254×104 2.794×100

ERT 8.869×100 1.475×103 1.575×10–2 1.162×104 2.203×100

MGB 7.233×100 5.240×103 1.877×10–2 9.929×103 1.952×100

CatBoost 8.485×100 1.008×104 2.871×10–2 1.238×104 2.641×100

XGBoost 7.066×100 5.340×103 1.927×10–2 9.797×103 2.050×100

Deep RMGB 4.039×100 1.234×103 8.370×10–3 1.009×104 1.238×100

Deep ERT 7.916×100 1.490×103 1.326×10–2 1.141×104 1.779×100
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is consistent with the assumptions about the need to use MGB in deep boosting layers, instead of a random 
forest or ERT.

Conclusion

The algorithm of Deep gradient boosting is proposed, which allows to build deep models without using 
the algorithm of back propagation of the error for solving regression problems. It combines elements of 
representation learning characteristic of neural networks, due to which more accurate models are built in 
comparison with traditional gradient boosting and random forest, while maintaining the advantages of de-
cision tree compositions, such as the ability to build models on small training sets and the ability to process 
categorical features. The described approach to generating features allows you to create more informative 
representations of input data improving the quality of the model. Experiments conducted on known re-
gression problems and artificial data show the advantages of the proposed algorithm in comparison with 
existing algorithms.
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