\

60

System Analysis and Control

DOI: 10.18721/ICSTCS.14106
YK 004

REINFORCEMENT LEARNING
FOR INDUSTRIAL MANUFACTURING CONTROL SYSTEM

M.Ya. Hanafi, V.P. Shkodyrev

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

The problem posed is a very general case of optimal control of a dynamic, potentially
stochastic, and partially observable system for which a model is not necessarily available. We
analyze the disadvantages of classical approaches of the control theory and present a new
modified numerical reinforcement learning rule of machine learning algorithm. Control theory
is a field that has been studied for a very long time and which deals with the behavior of dynamic
systems and how to influence it. Among the best-known examples are LQG (Linear Quadratic
Gaussian) or PID (Proportional Integral Derivative) controllers. Most of the existing approaches
presuppose (analytical) knowledge of the dynamic system, and one of the constraints is the need
to be able to free oneself from a priori models. We focus on modified reinforcement learning
approach to adaptive control policy as perspective area of control of complex dynamical system
under uncertainty.

Keywords: reinforcement learning, multi agent system, oil manufacturing, Bellman equations,
dynamic programming.

Citation: Hanafi M.Ya., Shkodyrev V.P. Reinforcement learning for industrial manufacturing
control system. Computing, Telecommunications and Control, 2021, Vol. 14, No. 1, Pp. 60—69.
DOI: 10.18721/JCSTCS.14106

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/
licenses/by-nc/4.0/).

YCUNTIEHUE OBYYEHUA ANA CUCTEMbI YINTPABJIEHUA
MPOMDILWJIEHHbBIM NMPOU3BOACTBOM

A.M. XaHagpu, B.T1. LLikodvipeB

CaHkT-NeTepbyprcknii nonnTeXHUYECKUn yHUBepcuTeT MNeTpa Benunkoro,
CaHkT-MeTepbypr, Poccuiickas Peagepaumn

ITocraBneHHas 3amaya npeacTaBsieT OOLIU Cydailt ONTUMAaTbHOIO YIIpaBAeHUsI IMHAMUYe-
CKOM, TOTEHUMAJbHO CTOXaCTUUECKON M YaCTUUHO HaOJII0JaeMOi CUCTeMOM, IJIs KOTOPOil MO-
JleJib He 00s13aTe/IbHO T0CTYMHA. B cTaThe npeacTaBiieH aHaIU3 HEJOCTATKOB KJIaCCUYECKUX MO -
XOJI0B TEOPUM yIIpaBJAEHHUS U TIpeaiaraeTcss HOBbIii MOAM(MULIMPOBAHHBIN aITOPUTM MALLIMHHOTO
00yJYeHUs ¢ TToAKperieHneM. Teopust yrpaBieHUs — 00J1aCTh, KOTOpasi M3yJaaach OUeHb I0JIT0e
BpeMsI 1 KOTOpasi KacaeTcs MTOBeASHMSI IMHAMUYECKUX CUCTEM 1 TOT0, KaK Ha Hee BausTh. Cpenu
Haubosee u3BecTHoIX puMepoB — LQG (JIuHeiiHO-KBaapaTUYHOE rayCCOBCKOE YIpaBeHUE)
wnu TTU]I-koHTposuiepbl. BOJbIIMHCTBO CYLIECTBYIOIIUX MOAXOA0B MpeAroaraloT (aHaJIUTHU-
yeckoe) 3HaHWe JUHAMUYECKOW CUCTEMbI, U OMHUM U3 OTPaHUYEHUN SBJSIETCSI HEOOXOAUMMOCTh
MMETh BO3MOXHOCTh OCBOOOINTHLCS OT allpUOPHBIX Mozeieil. Mbl KOHIICHTpHPYeM BHUMaHUE
Ha TPEeUMYIIEeCTBaX MCIIOJb30BaHUS MOJENIeil MAaIIMHHOTO OOy4eHUS ¢ MOAKPEIUICHUEM Kak
MEePCIEKTUBHOM CTpaTeruy YIpaBICHUS CIOXHBIMU AUHAMUYECKUMU CHUCTEMaMU B YCIOBUSIX
HEOMpeaeIeHHOCTH.

Kiouessie cioBa: ycrieHne oOydeHUsT, MyJIbTUAareHTHAsl CUCTeMa, HedTernepepadboTKa, ypaBHE-
Hus beimaHa, TMHaMUYECKOe IMporpaMMUpPOBaHME.

4 M.Ya. Hanafi, V.P. Shkodyrev, DOI: 10.18721/JCSTCS.14106>

Ccpiika mpn mutupoBanmmn: Hanafi M.Ya., Shkodyrev V.P. Reinforcement learning for indus-
trial manufacturing control system // Computing, Telecommunications and Control. 2021.
Vol. 14. No. 1. Pp. 60—69. DOI: 10.18721/JCSTCS.14106

CraTbhs OTKPBITOTO HOCTYyIIA, pactipocTtpansemas mmo muiieH3un CC BY-NC 4.0 (https://creative-
commons.org/licenses/by-nc/4.0/).

Introduction

Reinforcement learning is the digital learning environment’s solution to the problem of optimal con-
trol. In this paradigm, IT agents learn to control an environment by interacting with it [1, 2]. They regu-
larly receive local information about the quality of the control carried out in the form of a digital reward (or
reinforcement signal), and their objective is to maximize a cumulative function of these rewards over the
long term, generally modelled by a so-called value “reward function”. The choice of actions applied to the
environment according to its configuration is called a policy, and the value function therefore quantifies
the quality of that policy [3]. Generally speaking, the agent does not have a model (neither physical nor
statistical for example) of its environment, nor of the reward function that defines the optimality of the
control [4, 5]. However, a common assumption we make is that the environment is Markovian, i.e., the
effect of the application of an action depends only on the current configuration of the environment, not on
the path taken to reach it [6]. This standard is very general and makes it possible to focus on a large number
of applications. However, its practical application can be difficult. First of all, when the description of the
environment to be controlled is too large, an accurate representation of the value (or policy) function is
not possible [7]. In this case, the problem of generalization arises (or function approximation): on the one
hand, it is necessary to design algorithms whose algorithmic complexity is not too great, and on the other
hand they should be capable of inferring the behavior to be followed for an unknown environment config-
uration when similar situations have already been experienced. Another problem lies in the fact that, in the
most general case, the agent learns to control the environment while at the same time controlling it [8].
This often results in successive phases of quality assessment of a policy and its improvement. From a learn-
ing perspective, this induces non-stationarity (we evaluate the quality of a policy that is constantly mod-
ified), a problem rarely addressed in the literature as such. This interweaving of learning and control also
causes a problem known as the dilemma between exploration and exploitation. For each action it chooses,
the agent must decide between an action it considers optimal in relation to his imperfect knowledge of the
world and another action, considered sub-optimal, aimed at improving this knowledge. To deal with this
problem effectively, it should be possible to estimate confidence that the agents have in their estimates. If
these different difficulties are known, the methods of the literature generally treat them separately. Thus, a
thought-out method for dealing with the dilemma between exploration and exploitation will not necessar-
ily adapt to the problem of generalization, and vice versa.

Background

There are several approaches to deal with the reinforcement learning paradigm. However, an important
part of the literature is based on dynamic programming and it is with this view that we approach it.

Dynamic programming. Dynamic programming can be defined in a very general way as a set of algorith-
mic techniques whose principle is to determine the optimal solution of a problem from an optimal solution
of a sub-problem. In our context, these are all the methods that allow the exact (or approximate) solution
of the Bellman equation, without any learning component [9].

Bellman equations. The objective of dynamic programming is to discover one of the policies whose val-
ue function is maximal for the set of states [10]. Noting (S -]R) c]R‘S‘ where |S | is the cardinal of the
state space, or in other words that the value function can be seen as a vector with as many components as
there are states, it is possible to equip the value functions with a partial order relation [11]:

61

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021

V<V, & VseS,V(s)<V,(s). (1)
A partial order can be defined based on the policies, via the associated value functions:
m<m, V<V, (2)
The objective is therefore to determine the optimal policy ©* defined by:
n =argmax V" 3)

i

However, it is possible to define the value function recursively:

{ZVR(S m(,+1)|S }’
=E, ea(s) [((s ,s)+yV”()] “4)
=2 p(slsm(9))(R(s.m(s).5") #1757

s'eS

The value of a state is therefore the average (according to the transition probabilities) of the sum of the
reward obtained following the application of the action specified by the policy we wish to evaluate and the
value of the state towards which the system transits, weighted by the discount factor [12]. This equation,
called the Bellman evaluation equation, defines a linear system of |S | equations with |S | unknowns to
determine the value function of a given policy and thus quantify its quality [13].

Another equation, this one being non-linear, allows us to directly determine the function of optimal
value V" VTr Given the state s, assume the optimal value function known in the states s’ to which the
system can transit. The optimal value function in state s’ maximizes (weighted by the transition probabil-
ities) the immediate reward plus the optimal value in state s’ to which the system transits, weighted by the
discount factor. This is the Bellman optimality equation [11, 13]:

nal&x;p()((s,a,s')+yV*(s')). (5)

This defines a non-linear system with |S | equations and |S | unknowns. If the optimal value function
is known, it is easy to deduce the optimal policy, which is greedy with respect to the latter, i.e., it verifies:

T (s) = argmax Z p(s' s

acd s'eS

a)(R(s.a.s")+vV"(s")) (6)

We summarize these important equations for the following, defining in passing the corresponding op-
erators 7" and T".
Bellman’s evaluation equation is used to determine the value function of a given policy 7:

VseS, V(s Zp()((s,a,s')+yV*(s'))<:> Vr=T"V". (7)

s'e S

62

4 M.Ya. Hanafi, V.P. Shkodyrev, DOI: 10.18721/JCSTCS.14106>

The Bellman optimality equation is used to determine the optimal value function V"

‘v’seSV maXZp(

aci

)((s,a,s')+yV* (s')) SV =TTV (8)

Moreover, the Bellman operators 7" and 7" are infinite norm contractions.
Method Notation

We focus on two methods whose ideas are used extensively in reinforcement learning, namely the policy
iteration and value iteration algorithms.

Policy Iteration. The first approach we present is policy iteration. The algorithm (see Listing 1) is ini-
tialized with any policy. Its principle is to evaluate the value function of the current policy (which we call
policy evaluation), and then improve this policy by considering the greedy policy with respect to the pre-
viously calculated value function. In other words, in a given state, the action chosen is the one that leads
(on average) to the greatest accumulation of rewards. It is important to note that this is not necessarily the
action chosen by the policy, unless the policy is optimal [10—12, 14]. More formally, if at iteration i the
policy T, is evaluated, the improved policy T, is defined by:

VseS,m,, (s)=argmax) p(s'|s

acA s'esS

a)(R(S,a,s')+yV”" (s')). 9)

With this improvement scheme, it can be shown that there is policy improvement, i.e. > 7. If one
has equality, then Bellman’s optimality equation is verified, and the algorithm has converged. Moreover,
since the number of policies is finite, this algorithm converges in a finite number of iterations (this num-
ber of iterations being empirically much smaller than the cardinal of the policy space). It should be noted
that the evaluation of the policy is equivalent to solving a linear system, the complexity of this evaluation
is therefore in 0(|S |3) The existence of a solution to this system is guaranteed by the Banach fixed point
theorem (V is the fixed point of the contraction 7). The computation of the associated greedy policy
is in 0(|S | |A|) The complexity of this algorithm is therefore in O(|S | |A| |S |) per iteration. The
ideas of this algorithm, i.e., evaluation of a policy followed by improvement, are widely used in the ideas of
this algorithm, i.e., policy evaluation followed by improvement, are widely used in reinforcement learning
algorithms [14, 15].

Value Iteration. The second approach we present, based on Bellman’s optimality equation, aims at di-
rectly determining the optimal value function V. Since the Bellman operator 7 is a contraction and V™ is
its unique fixed point, the Algorithm 02 has a finite number of iterations, which is why a stopping criterion

Listing 1. Algorithm 1: Policy Iteration

Algorithm 1: Policy Iteration

Initialization

Policy m;

i=0

While 7;+; 1= m;do
Evaluation of the policy;
Solve V; = T"V;
Improvement of the policy
For ALL se§

T, (s)=argmax Y p(s'ls.

agd =g

a)(R(s, a,s')+yv™ (s'))

i++

63

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021

Listing 2. Algorithm 2: Value Iteration

Algorithm 2: Value Iteration
Initialization
Value function 7y
i=0
While 7, 7], >¢ do
[terating the value;
Vier = T* Vi
i+

is introduced. This allows the error to be limited. Indeed, it can be shown that if the stopping criterion is
verified at iteration i, then ”Vl -V ” < lzTya. However, this bound does not guarantee the quality of the
associated greedy policy (see Listing 2).

Case studies and experimental results

Our case studies are based on real oil manufacturing production data. Oil manufacturing production is
a complex process that has a hierarchy structure and many complex sub-systems.

Every manufacturing is based on a sequence of processes, each of those processes has its inputs and
outputs. Depending on its structure, each process can have one or more outputs, which in turn become
the inputs of the next process or the final products. Each process can be controlled by a set of factors, that
can interfere with the outputs. Each of those processes can be composed by a sub-process so at the end of
the structure of the factories we will have a hierarchy structure the base of this structure is the key to opti-
mal control of the manufacturing system. We describe objective control of a complex technical system as
a network of interest in a manufacturing subsystem. Every manufacture aims for high profit from its prod-

Desalinated oil

Crude Unstabilized gasoline Stabilized gasoline

Qil

D

—>» 70-100

300-350
240 -300
140 - 240

Second
Distillation

Atmospheric
Distillation

E)ﬂrll:lﬂd
Salt

———> 100 -180

Fig. 1. Technological process of oil manufacturing

C-101 I S

Crude E-101 ED-101 E-111
oil O I ED-102 Ea [o
Salted wate
. . E-115
V-113 E-132 Chimical Solution E-116
Salted water
V=112 H-101

Fig. 2. Technological process of a desalination unit in oil manufacturing

64

4 M.Ya. Hanafi, V.P. Shkodyrev, DOI: 10.18721/JCSTCS.14106>
I

ucts, and the oil manufacturing is not different. It is critical for oil manufacturing to have good quality of
their production and that will be the top objective of the manufacturing alongside with the quantity of the
production which is the second objective of the manufacturing to highly benefits from the production. The
quality and the productivity are mostly the top objective on every manufacturing alongside other objective
depends on the type of the manufacturing. So generally, there are always two or more objectives which
makes us categorize this problem as a multi objective problem [16, 17].

Multi Objective Optimization: is an area of multiple criteria decisions making, that is concerned with
mathematical optimization problems involving more than one objective function to be optimized simul-
taneously.

max
fulx) m=12, . M;
g()20 j=L2..J;
1
B ()20 k=12, ..K: (10
(<x < () i=1,2,.

(L))

The vector x is a vector of 7 decision variables x = (x1 B P)T X; 7 and Xx; is the lower and up-
per bounds of variable X, respectively. These variables define decision space or research space D. General-
ly, an element of the research space is called a possible or potential solution. The terms g (x)and h , (X) are
the constrained functions. Inequality constraints are treated as “superior or equal” type constraints since
“inferior or equal” type constraints can be treated as duality. A solution x that does not satisfy all (J + K)
constraints is said to be an unfeasible solution. The set of feasible solutions constitutes a feasible region.
The vector f(x) = (F(%)s fo (%) seees S (x)) is the objective vector. Each of the M objective functions
is either maximizing or minimizing which depends on the problem addressed. Using the principle of dual-
ity, a problem of maximization can be reduced to a problem of minimization by multiplying the objective
function by —1 [18, 19].

Multi agent parallelization system. The oil manufacturing environment has a distributed and complex
hierarchy. For that, we need to use a multi agent parallelization system as it deals with a large control pro-
cess that controls multiple components.

As the Approximate Policy iterates with Value and Policy Networks, the standards scheme for approx-
imation space value E involves using a cost function approximation J ofJ (the optimal cost function). At
a given state x that will minimize (or maximize) the approximation £, which forms as an expected value
involved in the cost of the first stage g(x, u, w) and the future costs which sufficiently reduced, in that we
can note this as the approximate Q factor corresponding to a pair (x, u), that minimizing the Q factors
overall and that gives you a control that it used in state X [20].

Atx:urenUi(r)lc)E{g(x,u,w)+O(J(f(x,u,w))}, (11)
where E is the approximation, g(x, u, w) is the first stage, o (f (x,u, W)) is the optimal cost approxi-
mation (future stage).

One of the issues emerging is how to approximate the policies. The solution of that is to introduce a
family of policies p(x, 7), a parametric family that depends on a parameter 7 [21].

Figures 3 and 4 show that each sub-system is a system environment having its own agent that controls
it depending on the state of the environment itself. By applying the reinforcement learning to our system,
we can describe its characteristics as:

» Environment: the process itself is the environment of the agent, which has every value that the agents
need to take actions.

65

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021

Uncertainty

Control

U = ufxr) Current Stat x

System Environment

Controller
u(x,r)

Fig. 3 Optimization and training over parametric family of policies

Reward r
Agent
state Take action a Environment
s
parameter 8

Observe state s

Fig. 4. Reinforcement Learning Loop

« State: is it the actual situation for the agent, which it retains if the result is satisfactory and there are
no problems, or there are no changes in the environment or task from other agents.

* Reward: the agent’s reward depends on the output goals, in the start of the learning the reward can
be a failure, but over time, it learns the best configuration that can be used.

» Discount Factor: as the process advances, the agents put new goals to follow (increasing the produc-
tivity and the quality).

» Policy: our agents use dynamic policy to achieve the optimal goals, after a certain time of learning
the agents stick to a certain policy that gives the best results.

» Value: as those processes have limitation, an agent calculates a future value (best value to obtain)
and tries to achieve it; if it achieves it over time, the agent determines a new value for future achievement.

* (Q-Value: the agents take extra action in case of unknown configuration, in case a configuration ex-
ceeds a limit, or a hazard is detected.

* Action: depending on all the above parameters, the agents act by changing the control values of the
process.

Figure 5 presents the sequence of an agent process control by updating its own value and policy leading
to optimal control.

As the agent has an objective to maximize quality and productivity, Fig. 5 (1—6) shows that each time it
developed a new policy and determined a new value to reach the objective depending on the environment.

66

M.Ya. Hanafi, V.P. Shkodyrev, DOI: 10.18721/JCSTCS.14106>

Agent Process Control

Agent Process Control

Agent Process Control

@ Control

6600

6550

@ Control

6600 ® Control

6550

.
6500 65001 o 6500 ;. Ae
= B] = D W
£ easo{ @ 3 6450 o 5 6450 3
3 S o .
& .] »
64001 © 6400 LY 6400 L
[Ty} °
6350 6350 L] 6350
.
6300 6300 6300
°
.
26 28 30 32 1 36 38 40 2 26 28 EY 32 * % E 0 a2 26 28 30 32 34 36 38 0 a2
Productivity Productivity Productivity
Agent Process Control Agent Process Control Agent Process Control
—8— Pareto
6600 . . ® Control 6600 O . @ Control 6600 e Control
. . .
(d
6550 . . Y 6550 [° 6550
15 e S -*
) . .
6500 A - ‘. N 6500 . 6500
o,
. ﬁ peg’e o % .
£ sas0 ° e & 6450 Q- . £ sas0
E o 3 o 3 w 3¢ 3
& R el &
% Set &
6400 o . . 6400 6400
% .
6350 6350 6350
6300 6300 6300
26 28 30 36 38 40 42 26 28 30 2 34 36 38 40 42 26 28 30 36 38 40 a2

The red line represents the agent’s optimal value that it reaches (Pareto values), and the green line is the

Productivity

new value that the agent is trying to reach (The Pareto Front).

The field of reinforcement learning has exploded in recent years. Ever since the impressive breakthrough
on the ImageNet classification challenge in 2012, the successes of supervised deep learning have continued
to pile up and people from many different backgrounds have started using deep neural networks to solve
a wide range of new tasks including the ways of learning intelligent behavior in complex dynamic envi-
ronments. In this article, we took the advantage of the reinforcement learning, which consists in the fact
that the agent can adapt to its environment by updating the policy it is using and the value it determines to
reach an optimal control. The results obtained in this article not only show an optimal configuration, but
can also prevent an error leading to enormous risks and losses as the agent can understand the limitation
of the environment, take an extra action depending on an unknown configuration, and prevent the human

errors in the manufacturing.

1. Singh S., Lewis R., Barto A., Sorg J. Intrinsically motivated reinforcement learning: An evolutionary
perspective. Autonomous Mental Development, IEEE Transactions on, 2010, Vol. 2, Pp. 70—82. DOI: 10.1109/

TAMD.2010.2051031

Conclusion

REFERENCES

32 £
Productivity

Fig. 5. Agent’s policy and value updating results

2. Sundas A., Bhatia A., Saggi M., Ashta J. Reinforcement Learning, 2020, P. 281.

3. Matignon L., Laurent G.J., Le Fort-Piat N. Reward function and initial values: Better choices for acceler-
ated goal-directed reinforcement learning. Artificial Neural Networks — ICANN 2006, Berlin, Heidelberg, 2006,

Pp. 840—849. DOI: 10.1007/11840817_87

4. Macal C.M., North M.J. Tutorial on agent-based modelling and simulation. Journal Simulation, 2010,

Vol. 4, No. 3, Pp. 151-162. DOI: 10.1057/jos.2010.3

67

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021

5. van Gog T., Rummel N. Example-based learning: Integrating cognitive and social-cognitive research per-
spectives. Educ Psychol Rev., 2010, Vol. 22, No. 2, Pp. 155—174. DOI: 10.1007/s10648-010-9134-7

6. Hadoux E. Markovian sequential decision-making in non-stationary environments: application to argumen-
tative debates, Nov. 2015, P. 117.

7. Arulkumaran K., Deisenroth M.P., BrundageM., Bharath A.A. A brief survey of deep reinforcement
learning. /EEE Signal Process. Mag., 2017, Vol. 34, No. 6, Pp. 26—38. DOI: 10.1109/MSP.2017.2743240

8. Lillicrap T.P., et al. Continuous control with deep reinforcement learning. arXiv:1509.02971 [cs. LG],
Sept. 2015. Available: http.//arxiv.org/abs/1509.02971 (Accessed: 27.03.2021).

9. Helman P. The principle of optimality in the design of efficient algorithms. Journal of Mathematical Anal-
ysis and Applications, 1986, Vol. 119, No. 1-2, Pp. 97—127. DOI: 10.1016/0022-247X(86)90147-2

10. Puterman M.L., Patrick J. Dynamic programming. Encyclopedia of Machine Learning. Boston, MA:
Springer US, 2010, Pp. 298—308.

11. Feng Y., Li L., Liu Q. A Kernel Loss for Solving the Bellman Equation. arXiv:1905.10506v3 [cs. LG], 8
Jan. 2020. Available: http://arxiv.org/abs/1905.10506 (Accessed: 27.03.2021).

12. Geist M., Pietquin O. Kalman temporal differences. Journal of Artificial Intelligence Research (JAIR),
2010, Vol. 39, Pp. 483—532. DOI: 10.1613/jair.3077

13. Aguilar C.O., Krener A.J. Numerical solutions to the Bellman equation of optimal control. J. Optim
Theory Appl, 2014, Vol. 160, No. 2, Pp. 527—552. DOI: 10.1007/s10957-013-0403-8

14. Otterlo M., Wiering M. Reinforcement learning and Markov decision processes. Reinforcement Learn-
ing: State of the Art, 2012, Pp. 3—42. DOI: 10.1007/978-3-642-27645-3 1

15. Beitelspacher J., Fager J., Henriques G., Mcgovern A. Policy Gradient vs. Value Function Approximation:
A Reinforcement Learning Shootout, March 2006.

16. Yassine H.M., Shkodyrev V.P. Optimal production manufacturing based on intelligent control system.
Technological Transformation: A New Role for Human, Machines and Management, Cham, 2021, Pp. 210—220.
DOI: 10.1007/978-3-030-64430-7 18

17. Yassine H.M., Shkodyrev V.P. The intelligent control system of optimal oil manufacturing production.
The 3 International Conference on Computational Intelligence and Intelligent Systems, New York, NY, USA,
Nov. 2020, Pp. 131—135. DOI: 10.1145/3440840.3440848

18. Gunantara N. A review of multi-objective optimization: Methods and its applications. Cogent Engineer-
ing, 2018, Vol. 5. DOI: 10.1080/23311916.2018.1502242

19. Deb K. Multi-objective optimization. Search Methodologies. Berlin: Springer, 2014, Pp. 403—449.

20. Nissim R., Brafman R. Multi-agent A* for parallel and distributed systems. 2012, P. 1266.

21. Rousset A., Herrmann B., Lang C., Philippe L. A survey on parallel and distributed multi-agent systems
for high performance computing simulations. Computer Science Review, 2016, Vol. 22. DOI: 10.1016/j.cos-
rev.2016.08.001

Received 07.03.2021.

CINMUCOK JIUTEPATYPbI

1. Singh S., Lewis R., Barto A., Sorg J. Intrinsically motivated reinforcement learning: An evolutionary per-
spective // Autonomous Mental Development, IEEE Transactions on. 2010. Vol. 2. Pp. 70—82. DOI: 10.1109/
TAMD.2010.2051031

2. Sundas A., Bhatia A., Saggi M., Ashta J. Reinforcement Learning. 2020. P. 281.

3. Matignon L., Laurent G.J., Le Fort-Piat N. Reward function and initial values: Better choices for accel-
erated goal-directed reinforcement learning // Artificial Neural Networks — ICANN 2006. Berlin: Heidelberg,
2006. Pp. 840—849. DOI: 10.1007/11840817_87

4. Macal C.M., North M.J. Tutorial on agent-based modelling and simulation // J. Simulation. 2010.
Vol. 4. No. 3. Pp. 151-162. DOI: 10.1057/j0s.2010.3

68

4 M.Ya. Hanafi, V.P. Shkodyrev, DOI: 10.18721/JCSTCS.14106>

5. van Gog T., Rummel N. Example-based learning: Integrating cognitive and social-cognitive research per-
spectives // Educ Psychol Rev. 2010. Vol. 22. No. 2. Pp. 155—174. DOI: 10.1007/s10648-010-9134-7

6. Hadoux E. Markovian sequential decision-making in non-stationary environments: Application to argu-
mentative debates. Nov. 2015. P. 117.

7. Arulkumaran K., Deisenroth M.P., BrundageM., Bharath A.A. A brief survey of deep reinforcement learn-
ing // IEEE Signal Process. Mag. 2017. Vol. 34. No. 6. Pp. 26—38. DOI: 10.1109/MSP.2017.2743240

8. Lillicrap T.P., et al. Continuous control with deep reinforcement learning // arXiv:1509.02971 [cs. LG],
Sept. 2015 // URL: http://arxiv.org/abs/1509.02971 (dara oopamienus: 27.03.2021).

9. Helman P. The principle of optimality in the design of efficient algorithms // J. of Mathematical Analysis
and Applications. 1986. Vol. 119. No. 1-2. Pp. 97—127. DOI: 10.1016/0022-247X(86)90147-2

10. Puterman M.L., Patrick J. Dynamic programming // Encyclopedia of Machine Learning. Boston, MA:
Springer US, 2010, Pp. 298—308.

11. Feng Y., Li L., Liu Q. A Kernel Loss for solving the Bellman equation // arXiv:1905.10506v3 [cs. LG], 8
Jan. 2020 // URL: http://arxiv.org/abs/1905.10506 (JaTa oopamenus: 27.03.2021).

12. Geist M., Pietquin O. Kalman temporal differences // J. of Artificial Intelligence Research (JAIR).
2010. Vol. 39. Pp. 483—532. DOI: 10.1613/jair.3077

13. Aguilar C.O., Krener A.J. Numerical solutions to the Bellman equation of optimal control // J. Optim
Theory Appl. 2014. Vol. 160. No. 2. Pp. 527—552. DOI: 10.1007/s10957-013-0403-8

14. Otterlo M., Wiering M. Reinforcement learning and Markov decision processes // Reinforcement
Learning: State of the Art. 2012. Pp. 3—42. DOI: 10.1007/978-3-642-27645-3 1

15. Beitelspacher J., Fager J., Henriques G., Mcgovern A. Policy Gradient vs. Value Function Approxima-
tion: A Reinforcement Learning Shootout. March 2006.

16. Yassine H.M., Shkodyrev V.P. Optimal production manufacturing based on intelligent control system //
Technological Transformation: A New Role for Human, Machines and Management. Cham, 2021. Pp. 210—220.
DOI: 10.1007/978-3-030-64430-7 18

17. Yassine H.M., Shkodyrev V.P. The intelligent control system of optimal oil manufacturing produc-
tion // The 3™ Internat. Conf. on Computational Intelligence and Intelligent Systems. NY, USA, Nov. 2020.
Pp. 131-135. DOI: 10.1145/3440840.3440848

18. Gunantara N. A review of multi-objective optimization: Methods and its applications // Cogent Engi-
neering. 2018. Vol. 5. DOI: 10.1080/23311916.2018.1502242

19. Deb K. Multi-objective optimization // Search Methodologies. Berlin: Springer, 2014. Pp. 403—449.

20. Nissim R., Brafman R. Multi-agent A* for parallel and distributed systems. 2012. P. 1266.

21. Rousset A., Herrmann B., Lang C., Philippe L. A survey on parallel and distributed multi-agent systems
for high performance computing simulations // Computer Science Review. 2016. Vol. 22. DOI: 10.1016/j.cos-
rev.2016.08.001

Cmamows nocmynuaa 6 pedaxyuio 07.03.2021.
THE AUTHORS / CBEAEHUA Ob ABTOPAX

Xanadu Accun Moxamen
Hanafi Mohamed Yassine
E-mail: hanafi.med.yassine@gmail.com

IIkoawipeB Bauyecnas [leTposuy
Shkodyrev Viacheslav P.
E-mail: shkodyrev@spbstu.ru

© CaHkT-MNeTepbyprckuii NoNUTEXHUYECKUI yHMBEpcuTET MeTpa Benukoro, 2021

69

