\

Software of Computer, Telecommunications and
Control Systems

DOI: 10.18721/ICSTCS.14105
YK 004.72

50

ON PROGRAMMING AN APPLICATION TO MITIGATE
DOS ATTACK USING OPENDAYLIGHT CONTROLLER
IN SOFTWARE-DEFINED NETWORKING

C.D. Cajas Guijarro, D.O. Budanov

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

Denial of Service (DoS) attacks try to deplete system resources by consuming bandwidth. In
this paper the application using Software-Defined Networking (SDN) principles for DoS attack
mitigation based on traffic monitoring in a network is proposed. The most important details
about the programming aspects of the application using OpenDaylight (ODL) are explained. The
application generates both proactive and reactive rules that should be installed in the network
devices. Therefore, it is possible to have statistics of the flows and track possible anomalies such
as an unexpected increase of the throughput in one or more of the flows. This allows to detect a
DoS attack and mitigate it, installing the appropriate rules. Simulation results obtained with the
application when using virtual switches in a network with a linear topology are presented.

Keywords: DoS attack, software-defined networking, OpenDaylight, controller, proactive rules,
reactive rules, throughput.

Citation: Cajas Guijarro C.D., Budanov D.O. On programming an application to mitigate
DoS attack using OpenDaylight controller in software-defined networking. Computing,
Telecommunications and Control, 2021, Vol. 14, No. 1, Pp. 50-59. DOI: 10.18721/JCST-
CS.14105

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/
licenses/by-nc/4.0/).

NMPOrPAMMUPOBAHMUE NPUNOXEHUA ANA CHUXEHUA
BJINAHUA ATAKU TUINA OTKA3 B OBC/NTY)XXUBAHUU
C UCNOJIb3OBAHUEM KOHTPOJIJIEPA OPENDAYLIGHT
B MPOrPAMMHO-ONPEAENTAEMbBIX CETAX

K./l. Kaxac luxappo, [].0. bydaHoB

CaHKT-MeTepbyprckuii NoAMTEXHMYECKMI YHUBEPCUTET MeTpa Benunkoro,
CaHKT-MNeTepbypr, Poccuiickaa Pepepaumn

Ataku Tuma «otka3 B obciayxuBaHun» (Denial of Service, DoS) HateneHbl Ha UCTOIIEHUE
CHCTEMHBIX PECYpPCOB 3a CUeT IreHepallny OOJIBIIOro KOJMYEeCTBA 3alpocoB. B maHHOIT paboTe
MPEICTaBICHO TPWIOXKEHNWE, MCIOIb3YIOIIee MPUHIIUIIBI ITPOTPaMMHO-OMpPEAEIsIeMbIX ceTel
IJIS1 CHIDKEHMS BIMSTHUSL DoS-aTtaku, ocHOBaHHOEe Ha MOHUTOpUHTe Tpaduka B ceTu. [Ipusene-
HO 00BsICHEHME HanboJjiee BasKHBIX aCTIEKTOB MTPOrPaMMUPOBAHUST TPUIOKEHMST C MCITOJIb30Ba-
HueM miatgopmel OpenDaylight. I1penyiaraeMoe B paboTe MpUIoKeHNWE CO31aeT KaK MPOaKTUB-
HBIC, TaK W PEAKTUBHBIC IIPaBIIa, KOTOPBIE MOTYT OBITH YCTAHOBIICHEI B CETEBBIX YCTPOICTBAX.
DTO MO3BOJISIET PeaaTn30BaTh COOP CTATUCTUKM O MOTOKAaX B CETH M OTCIICKMBaHME aHOMAJIUA,
TaKuX, HallpuMep, KakK HeOXUIaHHOE yBeIWdeHUe Tpaduka B OMHOM MU HECKOJBKHUX TOTO-
Kax. Takum o0pa3oM, CTAaHOBUTCSI BO3MOXHBIM 00HapykuTh DoS-aTaky U CHU3UTH €€ BIUSTHUE
Ha (PYHKIIMOHUPOBAHKME CETH, YCTAHOBUB COOTBETCTBYIOIIME TTpaBuia. Pe3yabraThl MOIEINPO-

>

4 C.D. Cajas Guijarro, D.O. Budanov, DOI: 10.18721/JCSTCS.14105>

BaHUs pa3pabOTAaHHOTIO MPUJIOXEHUS MPU UCIOJIb30BAaHUM BUPTYaJIbHBIX KOMMYTAaTOPOB TIpe/-
CTaBJICHBI IJ1S1 CETU C JTMHEMHOM TOIOJIOTUEIA.

KmoueBsie cioBa: DoS artaka, nporpammMmHo-onpenensembie cetu, OpenDaylight, koHTposuiep,
MIPOAaKTHUBHEIE IIPaBUJIa, PpEaKTUBHBIE IIpaBUJja, IIPOIYCKHAS CIIOCOOHOCTD.

Ccpuika npu murupoBanun: Cajas Guijarro C.D., Budanov D.O. On programming an applica-
tion to mitigate DoS attack using OpenDaylight controller in software-defined networking //
Computing, Telecommunications and Control. 2021. Vol. 14. No. 1. Pp. 50—-59. DOI: 10.18721/
JCSTCS.14105

CraThsl OTKPBITOIO A0CTYIIA, pacnipocTpaHsemas no JuueH3uu CC BY-NC 4.0 (https://creative-
commons.org/licenses/by-nc/4.0/).

Introduction

Software-Defined Networking (SDN) is a recent networking paradigm that has modified the way to
work and study networks [1]. SDN implementsthe decoupling of the data and control planes. The for-
warding decisions are taken by a centralized controller instead of the switches in traditional networks. Due
to the switches do not perform the intelligence of the network, they can be cheaper and on the side of the
controller this centralization allows to make better network decisions [2].

Despite the main SDNs advantages, there are still security attacks in this kind of network. One of the
most popular kinds of such attacks is Denial of Service (DoS) [3]. This paper presents the steps of pro-
gramming an application that can detect and mitigate DoS attack exploiting ICMP drop using the Open-
Daylight controller.

There are several ideas developed below to mitigate DoS attacks in SDN. In the paper [3] B.H. Lawal
and A.T. Nuray proposed an SDN application that collects information using sFlow software system, so
that the controller handles the network decisions according to this software. In the case of adaptability,
the controller must not depend on other network software to make decisions (or at least has minimal de-
pendence), an exception to the OpenFlow switches. So, the idea is that the own controller can estimate
the throughput of the traffic flows of the network. Another implementation is presented in [4] by R. Kan-
doi and M. Antikainen. They proposed a configuration and tuning of parameters of the rules such as the
timeout value. This idea will help to defend against the DoS attack. But if the attack can vary or be carried
out from different sources, the bandwidth can still be compromised and overwhelmed. Also, this solution
may require to repeatedly request rules for previously known flows adding overflow in the communication
between the controller and the switches.

We propose a solution based only on the use of controller capabilities. The basic idea is to track flows
in the SDN network and estimate the throughput of each flow, installing rules that help make such estima-
tion. If a flow is higher than a threshold, the application detects that and mitigates this possible DoS attack.
The basic notions of the application and tests of its functionality are described in [5]. This paper focuses on
the key aspects of programming the application and tests the refreshing time that it takes to estimate the
throughputs of the flows and detect a possible DoS attack.

Software-Defined Networking

As mentioned before, SDN is a networking architecture that makes the split of the control and switch-
ing planes [1]. The switches and routers must be extremely efficient at switching and must reduce their
intelligence to a minimum. The management of the control plane is done in a device called controller
(Fig. 1).

The controller executes software modules and bundles that establish the network’s functionality and
assemble the rules that must be installed on them. The controller uses protocols (e.g. OpenFlow) to com-
municate with the switches.

51

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021

Application Plane

Network applications

NorthBound NorthBound

Control Plane

£

Controller

Soutriound Souf« Igund

Allls

Data Plane

Switch/Router Switch/Router

Switch/Router

Fig. 1. SDN architecture

OpenDaylight

OpenDaylight (ODL) is a modular open-source platform that customizes and automates networks of
any size and scale [6]. One of the most common uses of ODL is software-defined networking. The main
layers of the OpenDaylight architecture are the Controller Platform Layer and the Service Abstraction
Layer (SAL) that are shown in Fig. 2. As shown in Fig. 2, southbound (SB) plugins communicate with
network devices and northbound (NB) plugins allow communication with applications that use the con-
troller.

Controller Platform Layer contains the modules that provide essential functionalities. The modules of
this layer define the operation of a network according to which of they are selected by the controller. Our
application to mitigate the DoS attack resides in this layer.

Model Driven Service Abstraction Layer (MD-SAL) uses the idea of data providers and data consumers
in the modules. MD-SAL connects consumers to providers and supports data adaptation between them.
This allows modules to communicate with each other without minding which protocols are being used by
the controller and network devices [7]. OpenDaylight uses OGSI system architecture which uses the MD-
SAL [8]. MD-SAL is a shared layer for the northbound and the southbound APIs and the data structures
used in different modules and components of an SDN controller. MD-SAL achieves the communication
between different plugins from different modules regardless of the layer (NB or SB) due to a common layer
[9]. The data structures and the creation of plugins implemented in applications are modeled using Yang
language [10]. The generation of the module API is carried out after the compilation of the Yang models.
MD-SAL ensures the framework to support:

» Subscriptions to publish and listen notifications. Service that is generated in providers when data in
the data store is changed.

52

4 C.D. Cajas Guijarro, D.O. Budanov, DOI: 10.18721/JCSTCS.14105>

Network service | | Application to L Controller
Functions | mitigate Dos | : | Platform Layer

| Model Driven Service Abstraction Layer | MD-SAL
OpenFlOW ;olner standard protocolsé U o el
Switch/Router Switch/Router Switch/Router Data plane

Fig. 2. OpenDaylight architecture

» Datastore. The providers and consumers use the data store of the MD-SAL to store data. This stor-
ing enables the exchange of data between providers and consumers. This data store can be split into clusters
[11].

» Remote Procedure Call (RPC). It is a procedure that is used when a consumer receives notifications
to get data from providers.

The proposed application to mitigate the DoS uses the DataBrokerService, so a simple Yang model
was developed to interact with the data store using reading and writing transactions, and the following
notification services:

» PacketProcessingService: used to process arriving packets at the controller.

» Ipv4PacketListener: used to process and decode the arriving IP packets at the controller.

* OpenDaylightInventoryListener: used to get related information about the OpenFlow switches.

Programming the application

The proposed application is deployed as an ODL plugin that sends a set of rules to the OpenFlow
switches [12] so that they forward every IP packet to the controller and the destination port. The installa-
tion of both proactive and reactive rules is carried out to monitoring the flows that are in the network. A
rule in SDN is a primitive that establishes how a packet that ingress to the switch is handled. A rule has a
key that is used as an identifier. Besides, the rule saves information about how many packets (or bytes) have
matched the rule. So, with the information of the key and the number of bytes, it is possible to estimate the
throughput of each flow at a certain time. The proactive rules are generated when the controller populates
them in the flow table before any packets arrived. These rules are usually installed when the notification
about the connection between the controller and the switches is established. The switches do not know the
location of the hosts at the beginning of the communication. So it is necessary to install these proactive
rules at the beginning to avoid the loss of the first packets. These proactive rules will make flooding consid-
ering the functionality of a switch. On the other hand, the reactive rules are installed when the first packets
arrive to the switch. The firsts packets in the controller allow knowing the location of the hosts with their
respective IP address and input port. Therefore, it is possible to install a reactive rule to make forwarding
of data without generating flood and sending data only to the respective output port.

The following classes from the SDN Hub Project [13] were reused while implementing the application:

53

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021

» InventoryUltils: This class possesses methods to decode the headers of the packets received at the
controller. Also, this class allows getting values relative to the information of the packets such as Datapath
ID, input ports and output ports.

* GenericTransactionUtils: This class has methods to interact with the data store using reading and
writing transactions.

There were additional files added to the base project [13]. After that Maven was used [14]. To add
services such as RPC, access to the datastore and subscription to notifications several pom.xml files were
modified. Files added to the project:

» PacketParsingUtils.java: This file contains the classes with methods for extracting information from
the packet headers such as the value of source or destination IP addresses.

 rules.java: In this file, the actions corresponding to establish the proactive and reactive rules are
implemented.

» application.java: In this file, the proposed application to detect and mitigate DoS is deployed, be-
sides, the rules to drop flows that are attacking the network.

Key ideas to generate reactive and proactive rules. Both proactive and reactive rules are generated ac-
cording to [6]. The basis is to use the same ideas that both rules allow the forwarding of the data in the
network considering the functionalities of the two-layer switch. Once the application starts, it registers
itself to receive notifications. The OnNode Updated notification is invoked when every switch registers to
the controller. This notification has information about the switch that is registered to the controller, e.g.
ID of the switch, ports, etc. With the information of this notification, the install _proactive rules method is
invoked. The idea is to make flooding for, as discussed previously, hosts’ identification in a network. The
matching conditions of the proactive rules are established considering only input forwarding ports and the
IP protocol. In the output actions the method install _proactive rules takes each forwarding port as input
and the other forwarding ports as output for every port of the switches in every switch, e.g. if the switch has
five forwarding ports, the method install _proactive rules will install five proactive rules.

The idea of reactive rules is to track the flows of the network and reduce the overhead that flooding
implies. These rules are generated when the firsts IP packets arrive at the controller. The idea is to save the
input port and the source IP address in a map called /P_table. When other packets arrive at the controller,
the input port and the source 1P address are matched for every element of the /P_table. If there is no co-
incidence, these elements are saved in the IP_table. Considering the destination IP address of the packet,
this element is searched in the map IP_table. If the element is found, it is possible to know the output port
and the reactive rule can be created. The matching fields will be the IP protocol, input port, source IP ad-
dress, destination IP address. The output actions are to send the packet to the corresponding output port.
It is necessary to consider that the reactive rules will have higher priority than the proactive rules.

Key ideas to detect and mitigate DoS attacks. The idea to detect a DoS attack is considering the scenar-
io where both proactive and reactive rules are installed in every switch. Once the application is initialized,
an object time of the class Timer is created. The method schedule is configured in the object fime. This
method has the following prototype: public void schedule(TimerTask task, long delay, long period), where
the argument task is the process to detect and mitigate DoS attack, the delay will be set to 0 and the period
is initialized with the value of the variable refreshing _time. It means that this process will be executed every
refreshing time seconds. After, that object data is created. This object is an instance created by the meth-
od Runtime.getRunTime().exec(“sudo ovs-ofctl dump-flows -OOpenFlow 13 §1”) execution. The object data
allows writing the command sudo ovs-ofctl dump-flows -OOpenFlow 13 S1 in the controller. This command
allows getting all the rules installed in the switch S1. Where:

ovs-ofctl: Command line to monitor OpenFlow switches

dump-flows: Print of all rules of the switch

-O0penFlow13: Protocol OpenFlow 1.3

S1: Switch 1D S1

54

4 C.D. Cajas Guijarro, D.O. Budanov, DOI: 10.18721/JCSTCS.14105>

cookie=0x2c00000000000000, duration=1145.979s, table=0, n_packets=
477, n_bytes=709842, priority=5600,1ip,in_port=2,nw_src=10.0.0.4,nw_
dst=10.0.0.1 actions=output:1 |

Fig. 3. Example of a rule

An example of the results of the following command is presented in Fig. 3.

Where:

cookie: Identifier of the rule

duration: Time that the rule has been installed

table: Identifier of the table where the rules are saved

n_packets: Number of packets that were matched the rule

n_bytes: Number of bytes that were matched the rule

priority: Value that shows the urgency to apply a rule. Higher values imply more priority

ip: Match field —IP protocol

in_port. Match field — input port

nw_src: Match field — source 1P address

nw_dst. Match field — destination IP address

actions: Forwarding the packets to the output.

The idea is to save in every switch the values of the cookie to know if the rules belong to the devel-
oped application (reactive rules). The fields of in_port, nw_src, nw_dst are gotten from the object data
and saved in an object called identifier. This object is useful to know the kind of flow. Besides, the value
n_bytes can be gotten from the object data. This value is necessary to know the current number of bytes
that matching the packets. The values of identifier and n_bytes are saved as a tuple. This process is done
for every rule in the list of the application reactive rules in every switch. The n_bytes is updated accord-
ing the expression n_bytes = n_bytes — n_bytesi, where n_bytesi is the number of bytes of the previously
saved tuple.

Therefore, the value of n_bytes/refreshing time is the throughput of each flow. All these values are saved
in an array called rules_number bytes. Then every element of the array is compared to the value of the
variable threshold (value that can be set by the programmer). If the value is higher than the threshold, the
method install_drop_rules is invoked.

Key ideas to generate drop rules. The basis of these rules is to drop the packets that belong to flows
whose throughput is higher than the threshold. The matching fields of the drop rules are the input port, the
source IP address, destination IP address and the IP protocol. The output actions are to drop the packets.

The flow diagram of the whole application is shown in Fig. 4.

Experimental Results

The network shown in Fig. 5 was tested in Mininet emulator [15]. Functionality tests of the appli-
cation are presented in [5]. The results provided in this section are the performance of the application
while changing one of its critical value, the refreshing time. The bandwidth of each link is 1 Mbps and the
threshold was set to 500 Kbps. The idea is to change the refresh time in different scenarios to check perfor-
mance values such as throughput, time to establish an optimal threshold that can detect a DoS attack. The
attacker will be the host 00:00:00:00:04, and it will attack the host 00:00:00:00:03. The results of the values
were calculated in the switch openflow:3.

As can be seen from the Table 1, the maximum value of the threshold is close to the value of the refresh-
ing time. This is explained by the fact the application checks the value of the throughput of each flow at
each time interval, set by the value of refreshing time. So, the maximum time to detect a DoS attack will
be when the DoS attack begins as soon as the interval of refreshing time begins. The throughput during the

55

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021 >

Application

Install module in
OpenDaylight

Create object
time of class
Register to listen VLR
"MT':::;T te invokaton method to
stJitches install rules in
rules.java
l Excecute methaod
Listen notifications to Runtinre,getRunTime(). exec(*sudo
updated switches by ovs-ofct! dump-flows -OOpenFlow1? 517) application.java
onNodeupdated() to check rules installed in the switches
every & seconds (refreshing_time)
no
rules.java

Are switches
connected to
the controller?

Is the
qeactive rules by the Applicatio
already installed?

’ 1
Save information about the|
rules: Input por, source IP

Install mkﬁ;e rules address, destination |P
install_proactive_rules Process first packet: Fefresh number of byfes of the ad?:;:'nﬁﬁer n::dﬂr;ss,
ﬂr:;:.hqutl?e?e rule and estimate the number of number of bytes sent by
bytes per ssgﬁg:ﬂe:hat the rule the rule in n_bytes
ave information such as = = H_OYIes
source IP address,
threshold? [
'as destination
L—ye IP addresss Do nothing ————vu
Save ingress port and)
source IP address in e
IP_Table ﬁﬁﬂm&ﬂm
L block the flow between the tuple source
- Do nothing IP address-destination IP address by
Install reactive method
rule install_drop_rules
Fig. 4. Flow diagram of the whole application
Table 1
Performance changes owing to refreshing time variations
. Throughput during Average time of processing | Average time of processing
Refreshing time, s | o 1o attack, Kbps ICMP packets, ms ICMP packets, ms
1 900.6 405.5 1.8
2 910.5 276.1 2.4
5 925.4 268.4 4.8
8 940.3 211.1 7.8
15 967.5 181.1 14.7
30 980.4 130.0 29.6

DoS attack is quite uniform, there is not a high difference and it has sense because this value is the maxi-
mum capacity of each link of the network.

It is possible to see the difference in the average time of processing ICMP packets. This occurs
because with the small values of the refreshing time a complete saturation is achieved due to the DoS

56

4 C.D. Cajas Guijarro, D.O. Budanov, DOI: 10.18721/JCSTCS.14105>

host:00:00700:00:00:01

host:00:00:08:00:00:04

Wﬁl

openflow:3

host:00:00:00:00:00:02

host:00:00:00:00:00:03

Fig. 5. Network topology tested in mininet

attack. At higher values of refreshing time, due to some ICMP packets are discharged, the average time
is reduced.

Conclusion

In this article, the approach to program an application that can detect and mitigate the DoS flood
attack has been proposed. The application was emulated on the SDN network using the OpenDaylight
controller. The main ideas about the programming were to implement classes which describe and install
proactive and reactive rules. These rules give the application an ability to function as a two-layer switch,
track each flow and save statistics of each flow such as the number of bytes. This information will be used at
each time interval to estimate the throughput and compare it to a threshold value to decide if there is a DoS
attack. If an attack is detected the rules installation is performed to drop the flows whose throughputs are
higher than the threshold. Tests to collect information about the performance changes due to the variation
of refreshing time interval to detect a DoS attack were carried out.

REFERENCES

1. Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E., Azodolmolky S., Uhlig S. Software-Defined
Networking: A Comprehensive Survey. Proceedings of the IEEFE, 2015, Vol. 103, No. 1, Pp. 14-76.

2. Antikainen M., Aura T., Sarel M. Attacking an SDN with a Compromised OpenFlow Switch. Proceedings
of the 19" Conference on Secure IT Systems, 2014, Pp. 233—243

3. Lawal B.H., Nuray A.T. Real-time detection and mitigation of distributed denial of service (DDoS) at-
tacks in software defined networking (SDN). Proceedings of 26" Signal Processing and Communications Applica-
tions Conference, 2018, Pp. 1—4.

57

4Computing, Telecommunications and Control Vol. 14, No. 1, 2021

4. Kandoi R., Antikainen M. Denial-of-Service Attacks in OpenFlow SDN Networks. Proceedings of the
International Symposium on Integrated Network Management (INM), 2015, Pp. 1322—1326.

5. Cajas C., Budanov D. Mitigation of Denial of Services Attacks Using OpenDaylight Application in Soft-
ware-Defined Networking. Proceedings of the 2021 IEEFE Conference of Russian Young Researchers in Electrical
and Electronic Engineering (EIConRus 2021), 2021, Pp. 260—265.

6. Cajas C., Valdivieso C., Mejia D., Bernal I. On programming an MP-TCP analyzer plugin using Open-
DayLight Beryllium as the SDN controller. Proceedings of the 2017 IEEE Second Ecuador Technical Chapters
Meeting (ETCM), 2017, Vol. 2, Issue 19, Pp. 1—6.

7. Paliwal M., Shrimankar D., Tembhurne O. Controllers in SDN: A Review Report. /[EEFE Access, 2018,
Vol. 6, Pp. 36256—36270.

8. Khattak Z. K., Awais M., Igbal A. Performance evaluation of OpenDaylight SDN controller. Proceedings
of the 20" IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2014, Pp. 671—676.

9. Becerra F., Mejia D., Bernal I. Solving MP-TCP’s Shared Bottlenecks Using a SDN with OpenDayLight
as the Controller. Proceedings of the 2018 IEEE ANDESCON, 2018, Pp. 1—6.

10. Vilalta R., Via S., Mira F., Sanabria L., Martinez R., Casellas R., Munoz R., Alonso-Zarate J. Control
and management of a connected car using YANG/RESTCONF and cloud computing. Proceedings of the 8"
International Conference on the Network of the Future (NOF), 2017, Pp. 120—122.

11. Kim T., Myung J., Yoo S. Load Balancing of Distributed Datastore in OpenDaylight Controller Cluster.
The IEEFE Transactions on Network and Service Management, 2019, Vol. 16, Issue 1, Pp. 72—83.

12. Alsaeedi M., Mohamad M.M., Al-Roubaiey A.A. Toward Adaptive and Scalable OpenFlow-SDN Flow
Control. IEEFE Access, 2019, Vol. 7, Pp. 107346—107379.

13. Seetharaman S., Ramachandran A., Natarajan S. SDNHub Opendaylight Tutorial, 2014.

14. Xiong Z..-H., Yang Y.-Z. Automatic updating method based on Maven. Proceedings of the 9" International
Conference on Computer Science & Education, 2014, Pp. 1074—1077.

15. Mininet, Available: Attp.//mininet.org/ (Accessed: 07.05.2021).

Received 10.03.2021.

CINMUCOK JIUTEPATYPbI

1. Kreutz D., Ramos F.M.V., Verissimo P.E., Rothenberg C.E., Azodolmolky S., Uhlig S. Software-Defined
Networking: A Comprehensive Survey. Proceedings of the IEEE, 2015, Vol. 103, No. 1, Pp. 14-76.

2. Antikainen M., Aura T., Sarel M. Attacking an SDN with a Compromised OpenFlow Switch. Proceed-
ings of the 19th Conference on Secure IT Systems, 2014, Pp. 233—243

3. Lawal B.H., Nuray A.T. Real-time detection and mitigation of distributed denial of service (DDoS) at-
tacks in software defined networking (SDN). Proceedings of 26" Signal Processing and Communications Ap-
plications Conference, 2018, Pp. 1—4.

4. Kandoi R., Antikainen M. Denial-of-Service Attacks in OpenFlow SDN Networks. Proceedings of the
International Symposium on Integrated Network Management (INM), 2015, Pp. 1322—1326.

5. Cajas C., Budanov D. Mitigation of Denial of Services Attacks Using OpenDaylight Application in Soft-
ware-Defined Networking. Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Elec-
trical and Electronic Engineering (EIConRus 2021), 2021, Pp. 260—265.

6. Cajas C., Valdivieso C., Mejia D., Bernal I. On programming an MP-TCP analyzer plugin using Open-
DayLight Beryllium as the SDN controller. Proceedings of the 2017 IEEE Second Ecuador Technical Chapters
Meeting (ETCM), 2017, Vol. 2, Issue 19, Pp. 1—6.

7. Paliwal M., Shrimankar D., Tembhurne O. Controllers in SDN: A Review Report. IEEE Access, 2018,
Vol. 6, Pp. 36256—36270.

58

4 C.D. Cajas Guijarro, D.O. Budanov, DOI: 10.18721/JCSTCS.14105>

8. Khattak Z.K., Awais M., Igbal A. Performance evaluation of OpenDaylight SDN controller. Proceedings
of the 20" IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2014, Pp. 671—676.

9. Becerra F., Mejia D., Bernal 1. Solving MP-TCP’s Shared Bottlenecks Using a SDN with OpenDayLight
as the Controller. Proceedings of the 2018 IEEE ANDESCON, 2018, Pp. 1—6.

10. Vilalta R., Via S., Mira F., Sanabria L., Martinez R., Casellas R., Munoz R., Alonso-Zarate J. Control
and management of a connected car using YANG/RESTCONF and cloud computing. Proceedings of the 8t
International Conference on the Network of the Future (NOF), 2017, Pp. 120—122.

11. Kim T., Myung J., Yoo S. Load Balancing of Distributed Datastore in OpenDaylight Controller Cluster.
The IEEE Transactions on Network and Service Management, 2019, Vol. 16, Issue 1, Pp. 72—83.

12. Alsaeedi M., Mohamad M.M., Al-Roubaiey A.A. Toward Adaptive and Scalable OpenFlow-SDN Flow
Control. IEEE Access, 2019, Vol. 7, Pp. 107346—107379.

13. Seetharaman S., Ramachandran A., Natarajan S. SDNHub Opendaylight Tutorial, 2014.

14. Xiong Z.-H., Yang Y.-Z. Automatic updating method based on Maven. Proceedings of the 9" Interna-
tional Conference on Computer Science & Education, 2014, Pp. 1074—1077.

15. Mininet [anekTpoHHbIN pecypc] URL: http://mininet.org/ (nata ooparieHus: 07.05.2021).

Cmamuwst nocmynuaa 6 pedaxyuro 10.03.2021.

THE AUTHORS / CBEAEHUA Ob ABTOPAX

Kaxac I'uxappo Kapaoc /laBug
Cajas Guijarro C.D
E-mail: cajasgcarlos@hotmail.com

Bynanos /Imurpuii OseroBud
Budanov Dmitry O.
E-mail: budanov_do@spbstu.ru

© CaHkT-MNeTepbyprckuii MoNUTEXHUYECKUI YHUBepcuTeT MeTpa Benukoro, 2021

59

