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A FAST ALGORITHM FOR VISUAL MODELING  
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In order to rapidly construct a visual model of rice leaf cells, the authors employed modeling 
tools of computer aided geometric design (CAGD): curve and surface. Rice mesophyll cells are 
an object of the study. In virtue of the Bernstein basis function properties and convex combination 
optimization, this work reconstructs the computation graph of the de Casteljau algorithm to 
model rice leaf cells, and C++ programming language and OpenGL rendering library are used 
to establish the visual model of cells. The theoretical results indicate that the control variables 
of curve and surface shape can be increased by revising affine combination coefficient through 
the polynomial space of the Bernstein basis function expansion. In addition, the results suggest 
that the convex combination optimization approach reduces the calculated time complexity of 
cytoskeleton interpolation points from O(n2) to O(n). The experimental results show that the 
convex combination algorithm has a significant advantage in terms of computation speed over 
the de Casteljau algorithm for each 200 interpolation points of the cytoskeleton. In view of the 
characteristics of close arrangement, regular shape, and large quantity of plant cells, the method 
proposed in this study has the ability to provide a feasible technical route and a rapid expression 
for visual modeling of plant cells.
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БЫСТРЫЙ АЛГОРИТМ ВИЗУАЛЬНОГО 
МОДЕЛИРОВАНИЯ КЛЕТОК РИСОВЫХ ЛИСТЬЕВ

В. И, И. Чжао
Jiangxi Agricultural University,

Nanchang, China

Для быстрого построения визуальной модели клеток рисового листа используют-
ся инструменты компьютерного геометрического проектирования (Computer Aided 
Geometric Design, CAGD) – «кривые» и «поверхности». В качестве объекта исследова-
ния взяты клетки мезофилла риса. На основании свойств базисной функции Бернштей-
на и оптимизации выпуклых комбинаций создаётся вычислительный граф алгоритма 
де Кастельжо для моделирования клеток рисового листа, а для построения визуальной 
модели клеток используется язык программирования C++ с библиотекой рендеринга 
OpenGL. Теоретические результаты показывают, что управляющие переменные кривой 
и формы поверхности могут быть увеличены путем пересмотра коэффициента аффин-
ной комбинации через полиномиальное пространство разложения базисной функции 
Бернштейна. Кроме того, полученные результаты свидетельствуют о том, что подход оп-
тимизации выпуклой комбинации позволяет уменьшить время сложного расчета точек 
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интерполяции цитоскелета с O(n2) до O(n). Экспериментальные результаты демонстри-
руют, что алгоритм выпуклой комбинации имеет значительное преимущество с точки 
зрения скорости вычислений по сравнению с алгоритмом де Кастельжо для каждых 200 
точек интерполяции цитоскелета. Учитывая особенности близкого расположения, пра-
вильной формы и большого количества растительных клеток, предложенный в данном 
исследовании метод способен обеспечить технологическую схему и быстрое выражение 
для визуального моделирования растительных клеток.

Ключевые слова: клетки рисовых листьев, быстрый алгоритм, визуализация, CAGD, кри-
вая параметров.
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Introduction

The leaves are the main vegetative organs that perform crucial functions, such as photosynthesis and 
water transpiration, etc. Therefore, exploring the leaf morphology not only provides scientific guidance 
for improving the leaf’s external morphology and increasing the internal functioning efficiency, but also 
has important research significance for improving the rice yield and quality. The research community has 
studied the rice leaf morphology by using genetic breeding technique, and discovered the gene that affects 
the leaf width, angle of inclination, and degree of curling. However, these studies mainly focus on a single 
gene regulation. Currently, it is still unclear whether all the genes affecting the whole rice leaf morphology 
formation are discovered and if there are any interactions between gene regulation networks [1]. This 
forms the basis of obstacles in leaf morphology modeling based on the gene regulation network.

In addition, few studies show that the cell morphology and quantity are the major factors that influence 
the formation of plant leaves, and the effect of mechanical force on cells is the main cause of the morphology 
formation [2–6]. On the basis of this theory, in this paper, we attempt to take the cell as the smallest 
research unit and use visualization technology to perform computer modeling for leaf local cells. This is 
done to provide computer aided design (CAD) support for rice leaf 3D morphology formation research.

Relevant works

The CAD technology can simulate a biological test which is either expensive or not easy to realize on 
computer platforms. It is an effective quantitative biological research method [7–12]. The interior of a rice 
leaf is observed using an optical microscope. It has plenty of cells: epidermis, mesophyll and vascular. The 
epidermis cells are closely arranged in a long geometrical shape. A mesophyll cell is a regular polygon with 
a thin wall and large intercell spaces. The vascular cells are in a slender geometrical shape [13]. It is known 
that the geometrical shapes of plant leaf cells are simple, and rapidly reconstructing the visual model is the 
research key of the CAD technology. 

In computer aided geometric design (CAGD), the main research focus is to use the curve parameter 
equation to describe the object’s skeleton morphological information [14–16], which has two aspects. One 
is using simple and low-order curve to approximate smooth and graceful curve according to the object’s 
geometrical characteristics. The other is using numerical calculations and algorithm optimization to 
improve the rendering speed of the geometric model. The relevant studies in the first aspect are as follows. 
Some researchers adopted the Möbius transform to construct a quartic rational parabolic Pythagorean-
Hodograph (PH) curve to satisfy C2 continuous CAD design [17, 18]. In an attempt to satisfy a flexible 
design of curve inflection points, Lu et al. proposed indirect PH method to guarantee G1 continuous Hermite 
interpolation according to the geometrical characteristics of Bessel control polygon [19]. Khan et al. used 
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the convergent Lupaş Bernstein operators proved by Korovkin theorem to control the free deformation 
of the curve and the surfaces [20]. Kirmani et al. searched for the parameters that satisfy spline 3rd-order 
polynomial on the basis of Caputo fractional derivative factors, and thus fits the object’s geometrical shape 
[21]. Asghar and Mustafa proposed a general formula for tensor product surfaces subdivision of one and 
two variables in order to reconstruct high order continuity and realistic vision of the object’s geometrical 
model [22].

In recent years, the advancement in the applications of visualization technology imposes higher 
requirements for the calculation efficiency of geometric modeling. For example, Nuntawisuttiwong and 
Dejdumrong reduced the interpolation computing time by transforming Newton-Lagrange polynomials 
calculation into a linear algorithm [23]. Beccari and Casciola solved the curve that satisfied C1 continuity 
by using the integral recursion method. This algorithm is beneficial for improving the storage efficiency of 
the vector diagram [24]. As the robustness of the integral recursion method is not clear, in order to break 
through the calculation dependence, Toshiiwal et al. constructed a space curve crossing the entirety of 
multiple order splines. This method realizes multiple order basis function splines by using the existing 
B spline [25]. As for subdivision algorithm, Hussain et al. generated a 5 points approximate subdivision 
mode through variable parameters, and introduced a shape parameter to construct different geometric 
graphs [26]. In addition, few scholars executed a binary subdivision algorithm after estimating the depth of 
curve and surface using a data algorithm. The research presented by Shahzad et al. shows that this method 
provides a significant improvement [27]. Besides, some studies inherited the advantages of endpoints and 
convex combination of the Bernstein basis function. Woźny and Chudy presented a recursive algorithm to 
reduce the time complexity of curve solution to linearity [28]. In this work, the second aspect is regarded 
as foundation, and geometric modeling of rice mesophyll cells as an example. The authors studied rapid 
solution algorithm of cell’s geometric skeleton to improve the visual expression speed of leaf cells.

Materials and methods

The authors selected hybrid rice seed “Gangyou 6366”. First, the seed is soaked in water for 10 min. 
Secondly, 100 plump seeds are selected and placed evenly on the double absorbent paper in a sprouting 
box, and water is added until the absorbent paper is fully saturated. Finally, the sprouting box is placed in 
a manual climatic box (MGC-250Hp, Shanghai Yiheng) to accelerate germination. The environmental 
parameters are: 25 °C temperature, 50 % humidity, 16 hours of light per day. After five days of the 
experiment, a rice leaf is randomly selected to be transacted at the middle segment. Since leaf epidermis 
and mesophyll cells are thin and allow the transmission of light, the contours of cells are not clear. Hence, 
the leaf segment to be observed is placed into absolute ethyl alcohol and heated to 70 °C for 1 hour. Then, 
Motic BA210 Digital Microscope (100x objective lens, 3-million-pixel charge coupled device (CCD)) is 
used to shoot the mesophyll cells of this leaf material. Three mesophyll cells are taken as visual modeling 
objects, with the shapes as shown in Fig. 1. Each closed full line frame is a mesophyll cytoskeleton, and 
dotted points are prepared curve control points.

The morphological structural changes are difficult to observe to the naked eye from microcosmic 
perspective, therefore computer simulation technology is used to express cell evolution and group 
competition [29]. Rational Bézier curve and surface geometric modeling technology is widely applied 
in CAGD [30]. However, as compared to rigid body objects, the plant leaf cells are large in quantity. 
Moreover, the cells are deformed due to biophysical mechanical effects. The rapid reconstruction and 
correct expression of a geometric shape model for a plant cell are the key points of visual simulation. 
On this basis, three research steps are presented in this work. As shown in Fig. 2, first, rational Bézier 
geometric modeling computation graph and designing algorithms of de Casteljau recursion and convex 
combination optimization are proposed, respectively. Secondly, both classes are compared on the basis 
of computational efficiency, and the faster algorithm is selected to establish a shape mesh model of a rice 
mesophyll cell. Finally, C++ and OpenGL graphics rendering library are adopted to establish a cell’s 
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Fig. 1. Geometry of the discolored mesophyll cells

Fig. 2. Main methods and technical roadmap

visual model to estimate the algorithm time complexity. In the aforementioned steps, the rapid geometric 
modeling algorithm of cells is the main issue to be studied.

The CAGD object modeling is transformed to the evaluation of object geometric data points for control 
points set { p

i
 ∈    | i = 0, 1, .., n} and the corresponding weights set {ω

i
 ∈    | i = 0, 1, ..., n}. The rational 

Bézier curve calculation is presented in (1) and (2):
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Where (2) extends to the nth order rational function space βn = span{          | i = 0, 1, .., i}, and            
satisfies the following properties:

(i) Non-negativity: for arbitrary ω
i
 > 0 and t ∈ [0, 1], it has:            ≥ 0;

(ii) Unit decomposability:                            ; and

(iii) Endpoint property:                     ,                    , in which δ is Kronecker symbol.
Proof: As this space is based on classic Bernstein basis function           , according to the non-negativity 

of Bernstein basis function, when curve control vertex weight ω
i
 > 0, it is evident that            ≥ 0.

As the denominator i in (2) is irrelevant to the numerator, when the numerator adds the same sum 
operation, the cancellation of numerator with denominator is 1.

According to endpoint properties of           , it can test that when t = 0 and i = 0,       =1; and when t =  
= 1 and i = n,       =1, respectively.

To sum up, the rational basis function            satisfies the properties (i)-(iii).
Assuming that quartic rational Bézier curve’s control vertex and weights set { p

i
 ; ω

i
 | i = 0, 1, 2, 3} 

denote the local geometric information of the cytoskeleton, we obtain the curve’s polynomial according 
to (1)-(2):

where 

Assuming                             ,                                ,                                 , and                 

The above polynomial coefficient                    The aforementioned relation shows that 
when the given fixed point t ∈ (0, 1), the data point r3(t) on the quartic rational Bézier curve is obtained 
by the affine combination of control points set { p

i
 }. λ is the combination coefficient, and the data point 

is inside the polygon enclosed by the control points set. When t = 0 or 1,      satisfies the endpoint property 
r3(0) = p

0
, and r3(1) = p

3
.

According to (3), denominator ω expression uses the function of affine combination L(t) = an(1 – t) + bnt, 
that is, ω = l

1
(t) l

2
(t)… l

n 
(t), in which an and bn represent the adjacent combinations’ coefficients        and  

       , respectively. The aforementioned process can be expressed as the following computation graph, as 
shown in Fig. 3.

The computation graph displays the data point calculation process of the rational Bézier curve based 
on de Casteljau recursive algorithm. In a similar way, (3) is generalized to the nth order rational Bézie curve 
for solution. The recursive calculation is shown below:

where k = 1, 2, …, n; i = 0, 1, …, n–k. The recursive process of the cytoskeleton data point algorithm is 
presented in Listing 1.
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Fig. 3. Computation graph of rational curve modeling based on de Casteljau recursive algorithm

According to curve control vertex convex combinations of curves and surfaces, the research idea is re-
written [28]. The de Casteljau recursive computation graph of cytoskeleton evaluation can be rewritten as 
the optimized convex combination form as shown in Fig. 4.

Thus, the local geometric shape of cytoskeleton can be rewritten as another form sk, which satisfies the 
recursive convex combination of (5):

Listing 1. Calculate points of cytoskeleton based on de Casteljau recursive algorithm (Algorithm 1)
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Fig. 4. Computation graph of rational curve modeling based on convex combination optimization

Proof: According to (1), the k-order rational basis function expression can be obtained as follows:

When k = 0, dk = 1.
When k > 0, (6) can be written as

According to (1), (2), and basis function property (ii), (7) is substituted into the control vertex and 

summation formula to obtain: 
n = k and n = k–1 are substituted into (2), respectively. (8) and (9) are obtained as
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(9) is substituted into (8), and (10) is obtained as

When 0 < k ≤ n, Bernstein basis function is used to expand (10), and we get

Thus, (5) is proved.
The convex combination algorithm of cytoskeleton data point evaluation is expressed as presented  

in Listing 2.

Experimental results

In this work, the configuration parameters of computer hardware include Intel(R) Core(TM)i5-8400 
CPU @2.80GHz 2.80GHz, 8G memory, 64-bit Windows 10 Pro, and Intel(R)UHD Graphics 630 NVIDIA 
GeForce GTX 1050 GPU. The authors used C++ programming design language and OpenGL 2.2 graph-
ics rendering library. The geometric modeling involves processes of CPU and GPU calculations. In view of 
CPU operations, firstly C++ is adopted to realize the geometric shape mesh point evaluation of Algorithm 1 
and Algorithm 2. Then, these values are successively bound to Vertex Buffer Object (VBO), Element Buffer 
Object (EBO), and Vertex Array Object (VAO), and then imported to the OpenGL graphics rendering library 
for GPU operations. Finally, after the processing of vertex and fragment shaders, a visual model is displayed 
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Listing 2. Calculate points of cytoskeleton based on convex combination optimization (Algorithm 2)
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on the computer screen. In order to verify the modeling efficiency of Algorithm 1 and Algorithm 2 in CAGD, 
we perform modeling experiments on the curve and the surface in terms of the two algorithms. As presented 
in Table 1 and Table 2, the position vector of curve control vertices and the position matrix of surface control 
vertices are provided. 

Table  1
Control points of curve modeling, cm

p
0

p
1

p
2

p
3

[0.0, 3.0, 0.0] [2.0, 7.0, 0.0] [4.0, 7.0, 0.0] [6.0, 3.0, 0.0]

Table  2 
Control vertices of surface modeling, cm

p
ij

0 1 2 3

0 [0.0, 0.0, 2.0] [0.0, 1.0, 2.0] [0.0, 2.0, 2.0] [0.0, 3.0, 2.0]

1 [2.0, 0.0, 0.0] [2.0, 1.0, 0.0] [2.0, 2.0, 0.0] [2.0, 3.0, 0.0]

2 [4.0, 0.0, 0.0] [4.0, 1.0, 0.0] [4.0, 2.0, 0.0] [4.0, 3.0, 0.0]

3 [6.0, 0.0, 2.0] [6.0, 1.0, 2.0] [6.0, 2.0, 2.0] [6.0, 3.0, 2.0]

Without loss of generality, the value of interpolation points t is 40, and ω
i
 = 1. The geometric shape 

visual results of Algorithm 1 and Algorithm 2 are shown in Fig. 5. The control polygon of Algorithm 2 is 
obtained by the convex combination of Algorithm 1. The curves and surface shapes of the desired values 
are similar. However, the geometric curvature obtained by Algorithm 2 is larger than the geometric shape 
of Algorithm 1.

The theoretical time complexities of two aforementioned algorithms are O(n2) and O(n). As the num-
ber of interpolation points in geometric modeling tasks is small, the calculation of the modeling results is 
completed within 1 ms. In order to further test the calculation efficiencies of two algorithms in rice leaf 
cells modeling, the three adjacent mesophyll cells marked in Fig. 1 are selected in this study. For each cell, 

Fig. 5. Geometric modeling of the two algorithms: a – curves; b – surface

a) b)
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we adopt C0 continuous curve combination. In the process of this experiment, it sets 48,000 rendering 
points of cell contour. The achieved results are presented in Fig. 6.

Fig. 6 a, b presents visual images of three cells when all the given control vertexes’ weights ω
i
 =1. When 

the control vertexes adjacent to cells are assigned with different weights, the cells deform. The correspond-
ing results are shown in Fig. 6 c, d. The computational time comparison of two algorithms on the geometric 
modeling of three adjacent rice mesophyll cells indicates that Algorithm 2 is 8 ms faster than Algorithm 1.

Discussions

The study on cell morphology by quantitative method needs to be supported by high-precision and 
high-tech devices. The development and application of biological microscopy enable the researchers to 
collect the geometric information of the microscale objects. A cell is the smallest living system with rel-
atively “short” growth cycle. Traditional biological tests often use biochemistry and genetic methods to 
study some profiles of the cell living system to obtain the relevant information of cell growth. However, we 
are challenged with a comprehensive information integration problem, which is to study the operation of 
cell systems through the integration of multiple systems’ profile knowledge. The virtualization and visual-
ization technologies aim at establishing algorithms and models on computer platform to simulate and ob-
serve the real-world objects as well as to predict the evolution. In addition, it also helps researchers to build 
up the cell growth information models at the biochemical, physical and presentation layers. Moreover, it 
effectively integrates each layer’s cell growth information [2, 4].

CAGD usually uses polynomial to approximate the curve and the surface. The space formed by these 
polynomials is obtained by the affine combination l

n
 of the Bernstein basis function, i.e., l

n
 = a

n
(1 – t) + 

+ b
n
t. Therefore, in view of Bézier type curve and surface, the improved algorithms are classified into two 

types. The first type introduces new combination coefficient variables to increase the degree of shape con-
trol freedom. For example, the combination coefficient (a

n
 , b

n
) is replaced with (λ

n
a

n
 , λ

n
b

n
). The other 

type uses convex combination properties to change the combination ways of polynomials, thus reducing 
the computations [28]. The plant cell walls make the cells with the same type connect closely [31]. In 
this work, the rice mesophyll cells are taken as example, and the studies of two aspects are integrated. In 
addition, this work also discusses the visualization technology of plant call at presentation layer. Moreo-
ver, it studies a set of rapid expression methods in view of plant cell visual modeling. This method designs 
the affine combination algorithm of rational shape control factor λ, and emphatically analyses the time 
complexities of these two algorithms. The modeling calculation time of cell parameter curve and surface 
is shown in Fig. 7.

In the process of cell visualization based on curve modeling, as shown in Fig. 7 a, for every 200 inter-
polation points, the execution time of Algorithm 1 and that of Algorithm 2 are 6.551724 millisecond and 
2.711598746 millisecond, respectively. The execution speed of Algorithm 2 is more significant in terms 
of statistics than that of Algorithm 1. In addition, the p-value of the t-test result of the two groups of data 
is 2.5117e-06 (significantly smaller than 0.01). However, in the process of surface modeling, as shown in 
Fig. 7 b, for the same interpolation points, the execution speed of Algorithm 2 is faster than that of Al-

Fig. 6. Simulated results of cells: a – cytoskeleton; b – Filled color cells;  

c – cells deformation on weight changes; d – Filled color of cells deformation

a) b) c) d)
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gorithm 1, with p-value of 0.6879. Hence, the adoption of Algorithm 2 is an appropriate rapid modeling 
approach for cytoskeletal curve’s visual modeling.

Conclusion

The morphology of rice leaves is directly associated with the number and positional arrangement of 
cells. The rice cell living system belongs to the scope of micro-modeling. Generally, the modeling is di-
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