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DATA PROCESSING BY END DEVICES IN IoT SYSTEMS
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This paper presents a correlation method for processing data on end devices and reducing 
the amount of data transmitted over the network. Instead of expensive and complex network 
devices, developers can use cheap and proven low-speed Internet of Things (ZigBee, NB IoT, 
BLE) solutions for data transfer. The novelty lies in one of the features of this approach: the use 
of components for analysis, rather than a complete copy of the signals, as well as processing 
directly on the sensor. The advantage of this approach allows you to reduce the number of 
operations and complexity of implementation, in contrast to other methods focused on the 
cloud computing paradigm. We provide results for correlation values and the number of logical 
elements (LE) when implemented on the FPGA, depending on the number of elements in the 
correlator. This allows to maintain a balance between the required calculation accuracy and 
spent hardware resources, as well as to simplify the end device.
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ОБРАБОТКА ДАННЫХ КОНЕЧНЫМИ УСТРОЙСТВАМИ 
В СИСТЕМАХ ИНТЕРНЕТА ВЕЩЕЙ

А.Ю. Ануфриенко
Национальный исследовательский университет «Высшая школа экономики»,
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Представлен корреляционный метод для обработки данных на конечных устрой-
ствах и сокращения объема передаваемых по сети данных. Вместо дорогих и сложных 
сетевых устройств разработчики могут применять дешевые и проверенные низкоско-
ростные решения Интернета вещей (ZigBee, NB IoT, BLE) для передачи данных. Но-
визна состоит в одной из особенностей этого подхода – использовании для анализа 
не полной копии сигналов, а их компонентов, а также обработке непосредственно на 
сенсоре. Данный подход позволяет уменьшить количество операций и сложность ре-
ализации в отличие от иных методов, ориентированных на парадигму облачных вы-
числений. Приведены результаты для значений корреляции и количества логических 
элементов (LE) при реализации на ПЛИС в зависимости от количества элементов в 
корреляторе. Это позволяет соблюдать баланс между требуемой точностью расчета и 
затраченными аппаратными ресурсами, а также упростить конечное устройство.
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согласованный фильтр, автокорреляция.
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Introduction

Data are generating by End devices in Internet of Things systems: mainly group of sensors, social media, 
and applications. This massive data generation results in ‘‘big data’’, but not all kinds of data are valuable. 
Generally, the structure of IoT consists of five layers: Perception Layer, Network Layer, Middleware Layer, 
Application Layer, and Business Layer. Some of the Internet of Things architectures targeted to cloud com-
puting at the center and a model of end-to-end interaction among various stakeholders in a cloud-centric 
IoT approach [1]. Cloud computing frees the enterprise and the end user from the specification of many de-
tails. This feature becomes a problem for latency-sensitive (industrial) applications, which require minimized 
delay. Fog computing extends the cloud computing paradigm to the edge of the network. The Fog vision was 
conceived to address applications and services that do not fit the paradigm of the Cloud well [3]. 

Typical architecture and components of IoT systems are presented in [1–4]. The systems include mod-
ules consisting of sensors, actuators and modems – devices that generate and transmit data. A number 
of sensors read and report the status of monitored objects. Industrial equipment may have thousands of 
points for data generation. The module may also have actuators for affecting the logical state of the tool. 
Modems transmit data to the next level – gate. The gate is usually a hardware component that interacts 
with a number of modules. The gate also interacts with a platform where the data are saved, processed and 
provided to end users. The platform (web-based platform) has a number of core components like storage 
systems, databases, AI and BI tools and an app engine support. So, one of specific devices in the system is 
the module because the quality of the final results and big data are depending on this device. Typical case 
for IoT system is transmitting data from modules to an IoT platform (cloud) as is, and deep processing 
with BI and AI tools.

The volume of generated data is often large, so its transfer to the cloud is limited by the network band-
width. In industrial IoT applications 100 % of data should be analyzed, but not 100 % of the data should be 
saved. In addition, there are a lot of other applications (connected cars, smart city, assessments) when sev-
eral groups of sensors are used in the tests or operations. In aviation, an aircraft engine can have as many as 
250 sensors. A twin-engine aircraft on a 12-hour flight can produce up to 844 TB of data [5]. Widely used 
IoT wireless technologies have typical throughput of 10–250 kbps, and end devices may be autonomous 
(have an autonomous power supply) and low powered. In addition, there are not enough storage systems 
for terabytes and petabytes of raw data. This example demonstrates the complexity of using cloud-oriented 
approaches to analyze high-speed data streams.

The purpose of this paper is to review the existing data processing methods (cloud-edge) and research 
required computing resources and correlation efficiency depending on the complexity of data processing 
when processing on devices.

Сlouds and endpoint architectures 

One of the most commonly used approaches for IoT systems is the sampling rate adaptation [6–9]. 
A sampling rate is a rate at which a new sample is taken from a continuous signal provided by the sensor 
board. This rate can be adapted according to the input acquired from the monitoring area. If no significant 
change is noticed for a certain period of time, the sampling rate could be reduced for the upcoming period, 
and in contrast, if an event is detected, the sampling rate is increased. This sampling rate adaptation is 
based on event detection [7]. Data reduction approaches focus solely on reducing the number of trans-
missions while maintaining a fixed sampling rate [9]. The most popular of them all is the dual prediction 
scheme [10]. A prediction model capable of forecasting future values is trained and shared between the 
source and the destination, thus enabling the source sensor node to transmit only the samples that do not 
match the predicted value. 
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Another variation is a spatial-temporal correlation based approach for sampling and transmission rate 
adaptation in cluster-based sensor networks [11]. The correlation between sensor nodes and the new sam-
pling rates of each sensor is calculated. This approach does not require any algorithm to be implemented 
on the sensor level, the only task performed by the sensors consists exclusively in sampling and transmis-
sion. All the work is done on the Cluster-Head (CH) level, where at the end of each round (duration pre-
defined by the user) the CH runs an algorithm that finds the spatial correlation among the data reported 
by the sensors belonging to the same cluster. Then, it transmits to one of them its new sampling rate for the 
next round according to its level of correlation with other neighboring sensors in the cluster. The sampling 
rate scheduling follows a strict protocol that keeps the sampling rate of the sensors showing high correla-
tion with a large number of nodes at an optimal maximum level [11].

In paper [12], the authors propose to capture such sensor data correlation changes to improve the 
performance of IoT (Internet of Things) equipment for anomaly detection. In a feature selection method, 
first cluster correlated sensors together to recognize the duplicated deployed sensors according to sensor 
data correlations, and monitor the data correlation changes in real time to select the sensors with corre-
lation changes as the representative features for anomaly detection. Curve alignment and dynamic time 
warping (DTW) [13] are methods used for measuring similarity between two time series (data sequences). 
However, DTW methods do not assume a consistent time lag, and calculate an optimal matching between 
two given time series with certain restrictions to maximize a measure of their similarity [12]. But these 
methods involve working with big data at the cloud side.

There are two key issues:
1)  Limited IoT network throughput and large amount of data. 
2)  Limited calculation resources near the sensors.
The general task for an IoT system is a reliable transmission of the data from the sensors to the platform 

for further analysis and visualization as Fig. 1a shows. As already mentioned, not all data should be trans-
ferred and stored for subsequent processing. For deep and precision analyzing, critical modes possess the 
utmost importance, especially at the assessment stage.

Fig. 1. Typical architecture of IoT systems (a) and simplified block diagram  

for a matched filter in a module and low rate data transmission to a cloud (b)
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Design and results

To achieve the required results, we could use correlation methods. For many years, correlation meth-
ods have been applied in radar and sonar systems for range and position finding in which transmitted 
and reflected waveforms are compared. In robotic vision, they are used for remote sensing by satellite 
in which data from different images are compared. One of the applications of correlation is correlation 
detection implemented by the matched filter, which maximizes S/N ratio at its output. And output result 
of the matched filter is the autocorrelation at lag zero of input signal and its locally saved copy. But in IoT 
systems, we operate only with random signals, opposite to radar applications. The cross-correlation [14] 
between two digital sequences, each containing N data and normalized to the number of samples might 
be written as:
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where S is normalized energy of signal. 
The cross-correlation values computed according to the above equations depend on the absolute values 

of the data. But it is often necessary to measure cross-correlations in a fixed range [–1; +1]. This can be 
achieved by normalizing the values by an amount depending on the energy content of the data. And the 
normalized expression for r

12
 becomes: 

where “+1” means complete coincidence (100 % correlation). Despite the fact that the result in the range 
[–1; +1] is convenient for understanding and analysis, the computational complexity of the denominator 
(3) is high and requires relatively large computational resources, especially the division operation.

In this paper, we analyze required computing resources and correlation efficiency depending on the 
complexity of the filter. Matched filters are detecting signals by comparing (determining the correlation) a 
known signal or pattern with a received signal. So, the number of samples of a known signal (saved copy) 
defines the number of taps of the matched filter. On-sensor processing concept means a combination of 
sensor and processor functions in a single device (System-on-chip). The module consists of a sensor, an 
analog-to-digital converter (ADC) and a fast processor. There are several types of devices suitable for the 
prototyping tasks – microcontrollers (MCU), digital signal processors (DSP) and field programmable gate 
arrays (FPGA). Most microcontrollers have a built-in sensors and ADC, but the operation frequency of 
the MCU is limited. In parallel processing, when a matched filter stores a set of local signals, implemen-
tation on the DSP is not the optimal solution. FPGA devices are more optimal for fast parallel processing 
in case of a matched filter. Cyclone IV FPGA family [16] was used as a base for system prototyping. The 
models were implemented with MATLAB. FPGA implementation used Verilog HDL. As it was said ear-
lier, Signal-to-Noise ratio at filter’s output depends on the quality of a stored copy of a signal. In a digital 
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system, it means a number of samples of one signal. And the number of samples defines the number of taps 
in the filter. We used triangular waveforms described by 4, 8, 12, 16, 20, 24, 28 and 32 samples in the exper-
iment. Thus, eight 14-bit matched filters were implemented in the FPGA in accordance with the models 
made in MATLAB. The use of FPGA resources is analyzed only for multipliers and integrators, shown in 
Fig. 1b. The amount of logical resources required for the division and square root operations is constant. 
The results of modeling and implementation are shown in Fig. 2.

199 LEs, 63 registers are required for the 4-tap filter, and a correlation value of 0.91 is reached. And 
2646 LEs, 477 registers are required for the 32-tap filter, and a correlation value of 0.948 is reached. In 
case we need to analyze 100 types of signals in a data stream, 19 900 LEs will be necessary in the first case 
and 264 600 LEs in the second. Of course, operation frequency will be lower in the second case. Fmax for 
Cyclone IV is equal to 133 MHz, and the presented method gives a delay of 2 clocks, which is unattainable 
for MCUs and DSPs, and with parallel processing on the FPGA the performance gain will be more signif-
icant. The cost of an FPGA device suitable for implementing 100 32-tap filters can be 10 times higher than 
that of a simple FPGA device. For ASIC implementation, the number of gates is also crucial.

Conclusion

The key results presented in the article are summarizing fast data processing based on correlation with 
orientation to FPGA/ASIC. Correlation processing allows to reduce the amount of data transmitting from a 
sensor to the cloud and to simplify the IoT network architecture. Sensor-based data processing has more ad-
vantages than the cloud computing approach, where less than 100 % of the data is required for transmission, 
storage, and analysis. The applications are especially important in industrial systems (industrial IoT). Due to 
the large number of multiplications and divisions, correlators require a large amount of hardware resources.

Simulation results show the effectiveness of event detection. The dependence of the required hardware 
resources of the FPGA on the correlation value increases non-linearly. As the number of taps increases, 
the performance of the system (Fmax) decreases, so it is important to maintain a balance between accu-
racy and resource consumption. However, instead of expensive and complex network devices (Fog, Edge, 
Cloud computing), engineers can use cheaper IoT solutions. In future designs, it is more promising to use 
SoC solutions that include sensors, ADCS, microcontrollers and logic cores.

Fig. 2. Correlation values and number of logic elements (LE)  

depending on the number of taps in the correlator 

(△) – correlation; (♦) – N of LE
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