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This paper describes the method, which is developed by the authors to automated correction 
of software errors, which is based on the analysis of successful project fixes for the ABAP 
programming language available in open repositories. The method generates the candidates of 
patches based on predefined templates and ranks the results by the probability of successful 
application, which is determined by a probabilistic model using machine learning methods. 
The probabilistic model is formed by training on features, which are extracted from data from 
successful and unsuccessful patches of ABAP programs in open repositories. The developed 
method is tested on synthetic examples and real projects with errors in the ABAP language. As a 
result of the experiments, the method successfully generated some patches, which showed their 
efficiency. The results in accuracy and efficiency are comparable or superior to the results of 
experiments in similar works by other authors.
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АВТОМАТИЧЕСКОЕ ФОРМИРОВАНИЕ ИСПРАВЛЕНИЙ 
ОШИБОК ПРОГРАММНОГО КОДА НА ОСНОВЕ 

АНАЛИЗА ПРОГРАММНЫХ РЕПОЗИТОРИЕВ
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Санкт-Петербург, Российская Федерация

Описан разработанный подход к автоматизированному исправлению программных 
ошибок на основе анализа успешных исправлений проектов для языка программи-
рования ABAP, имеющихся в открытых репозиториях. Подход основан на генерации 
кандидатов на исправления (патчей) по заранее определенным шаблонам и ранжиру-
ет полученные результаты по вероятности успешного применения, определяемой на 
основании вероятностной модели, полученной с помощью методов машинного обуче-
ния. Вероятностная модель формируется за счет обучения на свойствах, извлекаемых 
из данных успешных и неуспешных патчей ABAP-программ, доступных в открытых 
репозиториях. Разработанный подход протестирован как на искусственных примерах, 
так и на реальных проектах на языке ABAP с ошибками. В результате проведенных 
экспериментов успешно сформирован ряд патчей, которые показали свою работоспо-
собность. Результаты по точности и эффективности сопоставимы или превосходят 
результаты экспериментов в аналогичных работах других авторов.
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Introduction

In recent years the size of software has been constantly growing and the development cycle is shorten-
ing, which usually leads to a total decrease in the quality of software products. This is unacceptable in areas 
such as embedded systems in medicine, energy, engineering, the financial sector, and others, or even it can 
lead to significant material losses or danger to human life and health.

To overcome these problems, developers use various methods to improve the quality of software, like 
testing, verification, or the static analysis of software. However, all common methods of improving the 
quality of software have certain limitations and they cannot fully guarantee the quality of programs. For 
example, testing may detect errors in software, but it cannot guarantee that there are no errors in the tested 
software. In addition, there are entire classes of programs, such as parallel systems, whose behavior may 
be non-deterministic and whose testing is inefficient. Formal methods, such as deductive verification and 
static analysis, are still limited by the size of the analyzed programs and can only be applied to a narrow 
area of software projects.

Recently, software engineering has actively been conducting research in the field of analysis and ap-
plication of the accumulated experience of millions of programmers in writing hundreds of thousands of 
software projects. This experience is recorded in software repositories (Version control systems, VCS) as a 
history of changes to projects and comments to commits, as well as in task and error management systems 
(issue tracking and bag tracking) as a history of changes to tasks and errors. There are a large number of 
methods that analyze the accumulated information and extract it from the knowledge, which is used in 
solving various problems of software engineering. These methods have proven themselves well in various 
areas of software engineering. Recently, these approaches have been applied in the field of detecting and 
correcting software errors, using not only the artifacts of analyzed software projects, but also the previously 
untapped potential of information, which is stored in hundreds of thousands of software repositories and 
allowing to reuse and generalize the experience of millions of developers.

This paper describes the results of the research in the field of automated error correction of software 
code based on the experience of analyzing successful fixes (patches) of many projects for the ABAP pro-
gramming language [1], which is widely used in SAP software products.

The article is organized as follows: The first section contains a description of the task and a brief over-
view of the subject area. The second section illustrates the scheme and verbal description of the method, 
which is developed by the authors. The third section is devoted to the detailed description of the developed 
method and includes algorithms, a mathematical model, and the technologies and used methods. The 
fourth section shows the results of testing of the developed method and the analysis of the results. In con-
clusion, the results are summarized, the results are evaluated and plans for further research are formulated.

Related work

Nowadays, there are various technologies that allow for the automatic generation of bug fixes in pro-
grams (patches). The following methods can be the most representative of these technologies.

GenProg [2], relifix [3], Astor [4], and history-based program repair [5] methods, which are based on 
genetic programming technology. This class of methods is a method of stochastic problem solving, which 
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is based on the ideas of evolutionary genetics, which include the genotype (the genetic material of an indi-
vidual) stored in memory, differential reproduction of these genotypes, and variations, which are created 
by processes, which are similar to the biological processes of mutation and crossover [6].

Methods SemFix [7], JFIX [8], CRSearcher [9], Qlose [10], Semantic program repair using a refer-
ence implementation [11], Static automated program repair for heap properties [12], Automated program 
repair with canonical constraints [13], which are based on the semantic approach. The main idea of these 
methods is to define a set of restrictions for an expression with an error by applying methods of symbolic 
program execution [14] and solving these restrictions by using various SMT solvers [15].

Methods R2Fix [16], Prophet [17], ELIXIR [18], Data-Guided Repair of Selection Statements [19], 
which are based on a class of machine learning methods [20]. The main idea of these methods is to build 
machine learning models [21], which is based on the source code of programs with errors and their correc-
tions, as well as comments and other data from source code repositories such as GitHub and others. Then the 
trained model is used for classification tasks, for example, to solve problems of detecting errors in the source 
code of the program or determining suitable patches that are classified on the same parameters as the error.

The main disadvantage of methods, which are based on genetic programming technology, is the ran-
dom selection of all possible patch variants without analyzing both the source code context with an error 
and similar patches. Also, methods, which are based on the semantic approach, already widely analyze the 
source code context with an error, but do not use the experience of similar patches to strengthen the algo-
rithm for automatic patch generation. At the same time, methods, which are based on the class of machine 
learning methods, are the closest in implementation to the given task for the authors, since they analyze 
both the source code context with an error and similar patches.

Thus, the goal of this research is to develop a method to automatically generate bug fixes for software 
code based on the previously accumulated experience of creating patches. The method has to have an al-
gorithm, which is based on machine learning methods and allows for the automatic generation of patches 
for various types of errors of the program code without using specifications and other means of automated 
code generation.

Overview

The main idea of the proposed method is to automatically generate patches for errors in ABAP 
programs by generating candidate patches based on predefined templates and ranking the results by 
the probability of successful application, which is determined based on a probabilistic model, which 
is obtained by using machine learning methods. In turn, the probabilistic model is formed by learning 
from the data of successful and unsuccessful patches of ABAP programs. The main idea of the method 
is presented in Fig. 1.

The method contains two main contours – "Machine learning model training" and "Patch generation 
and ranking", which contain the following seven functional blocks.

Block 1 "Forming an abstract syntax tree". The abstract syntax tree (AST) [22] is based on the source 
code with an error and a patch. Two independent AST are formed by applying the recursive descent meth-
od [23] based on the text of the source code of the ABAP program containing the error and the correction 
of this error (patch). Further work on the analysis of the source code of the ABAP program is performed 
on the AST, which gives a more accurate data of the types of elements of the ABAP program (variables, 
constants, operators, etc.) and their relationships.

Block 2 "Determination of the features of a successful patch". The features of successful patches were 
formulated to train the probabilistic model, which are determined by analyzing the AST of the source code 
with an error and the AST of the source code of the patch, which is obtained in block 1. For example, if the 
program correction was formed by adding a check for an empty variable value before executing the division 
operator, this feature can be used as a feature of the successful patch and used for training the probabilistic 
model.
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Fig. 1. Scheme of the proposed method

Block 3 "Model training". In this block, the machine learning model is trained based on the features of 
successful patches, which are obtained in block 2. As a result, the trained model can be used to predict the 
success rate of any ABAP patch.

Block 4 "Forming an abstract syntax tree from source code with an error". The source code of the ABAP 
program that needs to be automatically generated for a patch is used to generate the AST, similar to block 1.

Block 5 "Generating candidate patches based on templates". Data of all variables and constants based 
on the AST is extracted from the program with an error. Furthermore, the array of possible conditions is 
generated from the data of all variables and constants. Finally, patches are generated using templates based 
on the received array of variables/constants and the array of possible conditions.

Block 6 "Defining features of generated patches". The features of generated patches in block 5 are de-
termined in the same way as successful patches in block 2 are.

Block 7 "Ranking of the generated patches based on the features of the trained model". The probability 
of a successful patch is determined for each generated patch based on the trained model, which is obtained 
in block 3 and the features of the generated patches, which are obtained in block 6. The resulting list of 
generated patches is sorted in descending order of the probability of a successful patch. Generated patches 
with the highest probability of successful patches are considered target patches.

Our approach

Let's look more detailed at the stages of the method and the nuances of implementing the methods and 
models, which are shown in Fig. 1.

Generating AST from source code
The program must be translated into a formalized view to perform the analysis that is suitable for fur-

ther processing. In this paper, we use an abstract syntax tree. Since there is no official grammar for parser 
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Listing 1. AST generation algorithm

generators (for example, for ANTLR) for the ABAP language, the authors developed a lightweight parser 
based on the recursive descent method. The actual formation of the AST from the source code is per-
formed in blocks 1 and 4, which are shown in Fig. 1. The goal of it is to more accurately determine the 
types of objects and their relationships for further analysis of ABAP programs. The simplified algorithm for 
parsing ABAP programs is presented as pseudocode in Listing 1.

In line 1 of the algorithm, the input data is the array of str ∈ S, which is the source code lines of the 
ABAP program. In lines 2-8, the array of lexemes L is generated for each string of str in the source code. 
In lines 9-13, the array of tokens t ∈ T is formed by defining the following data for each lexem l from the 
array of lexemes L:

– the token type t
t
 (header, operator, brackets, number, variable, type), which is defined by assigning 

each token to a programming language object class;
– the error flag of the error token b

t
, is determined by fulfilling the condition: if the source code line str 

contained an error, then all tokens t, which were related to tokens L, will have the value true.
– In lines 14-20, the array of nodes AST P is formed from the token array T. Each node p ∈ P is the 

following:

⟨pp|l|tn|b⟩ ∈ P,

where p
p
 – a reference to the parent node p ∈ P; l – a lexeme; t

n
 – a node type, which is determined from 

the token type t
t
; b – the error flag of the node is determined from the error flag of the error token b

t
.

The array of nodes AST P is formed using the recursive descent method, which consists of recursively 
traversing the entire array of tokens t ∈ T and building their relationships through references p

p
 according 

to the grammatical rules of the programming language ABAP, which is shown in Fig. 2.
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Defining patch features
Patch features are defined in blocks 2 and 6, which is shown in Fig. 1. The authors of the method 

formulated 15 patch features based on the results of many years of experience working with the ABAP 
programming language on real projects and creating thousands of bug fixes, as well as on the results of 
analyzing patches to ABAP programs from open source repositories, which are shown in Table 1. These 
features are extracted from the source code of ABAP programs with an error and a patch. Previously, to 
determine the features the method defines the differences between P

bug
 AST source code with an error 

and P
patch

 AST source code with a patch in the form of node indexes of the beginning of the difference 
idx

start
(P

patch
) and the end of the difference idx

end
(P

patch
). Also, a list of all patch variables ν ∈ V(P

patch
) is 

defined within idx
start

(P
patch

) and idx
end

(P
patch

).

Model training
Model training is performed in block 3 in Fig. 1. There are a number of models with their own advan-

tages and disadvantages to solve classification problems with a teacher in machine learning. The authors 
of the method chose the logistic regression model [24], because with a small number of properties, this 
model shows better performance with similar accuracy than other machine learning methods, such as neu-
ral networks or the support vector machine. Moreover, the logistic regression model is more convenient to 
implement and adapt [25], and is also widely used in similar works by other authors.

The following matrix m × 15 is used to train the model:
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where m – number of examples in the form of features P
bug

 and P
patch

 (see the section Defining patch fea-
tures).

Fig. 2. Grammatical rules of the programming language ABAP
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T a b l e 1
Patch features

Feature name Algorithm for determining

Type of error F
1

Determined manually, possible options:
1 – division by 0.
2 – using an empty pointer.
3 – error in the conditional operator.
4 – error in the loop condition

Type of modification 
the patch F

2

1. Adding a check. If the nodes in the tree P
patch 

within idx
start

(P
patch

) and  
idx

end
(P

patch
), where ∃l = if, то F

2
 = 1.

2. The change of the if condition. If the nodes in the tree P
patch

 within  
idx

start
(P

patch
) and idx

end
(P

patch
), where ∀l ≠ if, but the tree nodes associated with 

them are p
p
 ∈ P

patch
, where ∃l = if, then F

2
 = 2.

3. The change of the loop condition. If the nodes in the tree P
patch

 within  
idx

start
(P

patch
) and idx

end
(P

patch
), where ∀l ≠ loop, but the tree nodes associated with 

them are p
p
 ∈ P

patch
, where ∃l = loop, then F

2
 = 3.

4. Otherwise F
2
 = 4

Location of the patch 
modification F

3

The tree nodes with error P
bug

 are defined by defining idx
start

(P
bug

) and idx
end

(P
bug

) 
of the tree nodes P

bug
, where ∃b = true.

Further, the place where the patch modification occurs is determined by the 
following rule based on the location data idx

start
(P

patch
) and idx

end
(P

patch
) of the tree 

nodes Ppatch and the location data idxstart(Pbug) and idxend(Pbug) of the tree 
nodes Pbug:
1. If idx

start
(P

bug
) >= idx

start
(P

patch
) and idx

end
(P

bug
) >= idx

end
(P

patch
), then F

3
 = 0.

2. If idx
start

(P
bug

) < idx
start

(P
patch

) and idx
end

(P
bug

) >= idx
end

(P
patch

), then F
3
 = 1.

3. Иначе F
3
 = 2

If operator is present 
at the error location 
F

4

If the tree nodes P
bug

, where ∃b = true and ∃l = if, then F
4
 = 1 else 0

Loop operator is 
present at the error 
location F

5

If the tree nodes P
bug

, where ∃b = true and ∃l = loop, then F
5
 = 1 else 0

/,*,+,- operators are 
present at the error 
location F

6

If the tree nodes P
bug

, where ∃b = true and ∃l = /,*,+,-, then F
6
 = 1 else 0

Call operator is 
present at the error 
location F

7

If the tree nodes P
bug

, where ∃b = true and ∃l = =>, then F
7
 = 1 else 0

Variable is present at 
the if operator at the 
patch F

8

Defining the tree nodes P
patch

 within idx
start

(P
patch

) and idx
end

(P
patch

), where ∃l = if. 
Further, if in the defined nodes ∃l = ν, then F

8
 = 1 else 0

Variable is present at 
the loop operator at 
the patch F

9

Defining the tree nodes P
patch

 within id
xstart

(P
patch

) and idx
end

(P
patch

), where  
∃l = loop. Further, if in the defined nodes ∃l = ν, then F

9
 = 1 else 0

Variable is present at 
the /,*,+,- operators 
at the patch F

10

Defining the tree nodes P
patch

 within idx
start

(P
patch

) and idx
end

(P
patch

), where ∃l = /, 
*,+,-. Further, if in the defined nodes ∃l = ν, then F

10
 = 1 else 0
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Variable is present at 
the call operator at 
the patch F

11

Defining the tree nodes P
patch

 within idx
start

(P
patch

) and idx
end

(P
patch

), where ∃l = =>. 
Further, if in the defined nodes ∃l = ν, then F

11
 = 1 else 0

Variable is present 
at the if operator the 
error location F

12

Defining the tree nodes P
bug

, where ∃b = true, and ∃l = if. Further, if in the 
defined nodes ∃l = ν, then F

12
 = 1 else 0

Variable is present at 
the loop operator the 
error location F

9

Defining the tree nodes P
bug

, where ∃b = true, and ∃l = loop. Further, if in the 
defined nodes ∃l = ν, then F

13
 = 1 else 0

Variable is present at 
the /,*,+,- operators 
the error location F

10

Defining the tree nodes P
bug

, where ∃b = true, and ∃l = /,*,+,-. Further, if in the 
defined nodes ∃l = ν, then F

14
 = 1 else 0

Variable is present at 
the call operator the 
error location F

11

Defining the tree nodes P
bug

, where ∃b = true, and ∃l = =>. Further, if in the 
defined nodes ∃l = ν, then F

15
 = 1 else 0

The training is performed for the logistic regression model:

The main idea of training a logistic regression model is to determine coefficients θ for features F 
successful patches (see the section Defining patch features), which can then be used to build a forecast 
prediction for any generated patches ABAP programs based on their features. The coefficients θ are 
determined using the gradient descent method [26], according to which the following calculations are 
performed simultaneously:

where y – the result of successful application P
patch

 to P
bug

 (it is set manually, 0 – unsuccessful patch, 1 – 
successful patch); α – the coefficient of speed of learning (it is set manually and is used to regulate the 
accuracy and speed of the determination process θ); λ – the regularization coefficient (it is set manually 
and used to reduce the likelihood of model overfitting).

When calculating the coefficients θ the cost function J is also calculated, which should tend to zero at 
each iteration of the calculation and reflects the progress and correctness of the gradient descent method:

1 .
1 −θ×=
+ Fprediction

e

( )

( )

( )

0 0

1 1 1 1

15 15 15 15

1 ,

1 ,

...
1 ,

θ = θ −α× −

λ
θ = θ −α× − × + ×θ

λ
θ = θ −α× − × + ×θ

prediction y
m

prediction y F
m m

prediction y F
m m

( ) ( ) ( )( )
15

2

1 2

1 log 1 log 1 .
2

m

i i j
i j

J y prediction y prediction
m m= =

λ
= × − × − − × − + × θ

×∑ ∑



A. Belskii, V.M. Itsykson, DOI: 10.18721/JCSTCS.13204

43

Generating candidate patches based on templates
The generation of patch candidates by templates is performed in block 5 in the method diagram in Fig. 1.  

The generation of patch candidates by predefined templates is performed from the source code objects of 
the ABAP program with an error. This algorithm is presented in Listing 2.

Line 2 defines the array of variables V
fix

 of the tree nodes P
fix

, which was obtained by forming AST (see 
the section Generating AST from source code) from the text of the program to automatically generate the 
patch for. The array of variables V

fix
 is determined from l of the tree nodes p

fix
 ∈ P

fix
, where ∃b = true and  

∃t
n
 = Variable. In lines 3-14, the array of conditions CND

fix
 is generated by executing the Cartesian product 

of the array of variables V
fix

 and the array of degrees of comparison (>, <, =, ≠, is initial, is not initial). In 
lines 15-17, patch candidates P

fixpatch
 are generated by adding a check (if statement) with the condition cnd

fix
 

from the array of conditions CND
fix

 before the error location. In lines 15-18, patch candidates P
fixpatch

 are 
generated by replacing a condition in the check statement (if) with cnd

fix
 from the array of conditions CND

fix
 

in the error location. In lines 15-19, patch candidates P
fixpatch

 are generated by changing the condition in the 
loop operator to cnd

fix
 from the array of conditions CND

fix
 in the error location.

Further, the features for the generated patch candidates P
fixpatch

 are defined (see the section Defining 
patch features) and the application success rate is determined (see the section Ranking generated patches 
based on features and the trained logistic regression model).

Ranking generated patches based on features and the trained logistic regression model
The ranking of generated patches based on features and the trained logistic regression model is performed 

in block 7 in Fig. 1. The success rate prediction
fixpatch

 is determined for each generated patch candidate 
P

fixpatch
 (see the section Generating candidate patches based on templates) by applying the trained logistic 

regression model:

Listing 2. Algorithm for generating candidate patches based on templates
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where θ obtained in the process of training the logistic regression model (see the section Model training); 
F

fixpatch
 obtained in the process of defining patch features for patch candidates P

fixpatch
 (see the section 

Defining patch features).
Further, P

fixpatch
 with the maximum value of prediction

fixpatch
 is selected, which means that the candidate 

patches with the highest probability of application success are selected based on the analysis of existing 
patches.

Evaluation

The method was tested on 10 projects in the ABAP language with errors. Some of the examples were 
prepared by the authors in accordance with the required types of errors for evaluating the method's 
performance, while the other part – real projects. The test results are shown in table 2.

T a b l e 2
The results of the test method

Name of the source 
code example

Type of error

Number 
of lines 

of source 
code

Number of 
candidate 
patches 

generated

Execution 
time, sec

The patch 
was 

successfully 
generated

ABAPException.abap1 Division by 0 34 300 66 Yes

mycalculator.abap2 Division by 0 25 100 14 Yes

SubRoutines.abap3 Division by 0 59 1200 836 Yes

AbapRep_usingclassHana.
abap4 

Calling a function 
using an empty 
pointer

27 800 371 No

zma_dp_strategy.prog.abap5 
Calling a function 
using an empty 
pointer

33 700 285 Yes

zcl_pi_static.clas.abap6 
Calling a function 
using an empty 
pointer

46 100 12 Yes

TestСodeWithIfBug.abap7 
Error in the if 
operator

17 200 37 No

TestСodeWithIfBug2.abap8 
Error in the if 
operator

11 50 9 Да

TestСodeWithCycleBug.
abap9 

Error in the loop 
operator

13 20 8 1

1 https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/efc47953337bb8fbaeee506ee9a3c701bfa4f498/ABAPException.abap
2 https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/master/mycalculator.abap
3 https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/master/SubRoutines.abap
4 https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/master/AbapRep_usingclassHana.abap
5 https://github.com/Huargh/OO-Design-Patterns-in-ABAP/blob/master/src/zma_dp_strategy.prog.abap
6 https://github.com/ivangurin/abapPI/blob/5f30db0cc7a408a759ad833fe14f6e803b1b46bf/src/zcl_pi_static.clas.abap
7 https://github.com/AlekseiBelskii/AlexB/blob/master/TestСodeWithIfBug.abap
8 https://github.com/AlekseiBelskii/AlexB/blob/master/TestСodeWithIfBug2.abap
9 https://github.com/AlekseiBelskii/AlexB/blob/master/TestСodeWithCycleBug.abap

1 ,
1 fixpatchfixpatch Fprediction

e−θ×=
+
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TestСodeWithCycleBug2.
abap1 

Error in the loop 
operator

13 50 12 0

276 3520 1650 6/10

The first column shows the project name with an error and a link to Github source code repository. 
The second column shows the type of error that patches were generated for. The third column shows the 
number of lines of source code with an error. The fourth column contains the number of error correction 
candidate patches generated for each project. The number of candidate patches was formed in an amount, 
which was enough to get the expected result. The fifth column shows the time it took to generate candidate 
patches for each project with an error. The last column shows whether patches were successfully generated 
for each project with an error or not. Patch is considered successfully generated if the desired patch is 
found among all the generated patch candidates with the highest probability of success prediction

fixpatch
.

The method was tested on a stand with the following characteristics: Intel Core i3-7100U 2.40 Ghz, 
4.00 Gb RAM, Windows 10. As a result of the experiments, 6 patches were successfully found for 10 
programs with an error of 1650 seconds, which indicates the reality of using machine learning methods 
for automatic patch generation, but at the same time, the obtained accuracy and the speed indicate the 
necessity for additional tests, better training of the logistic regression model, increasing the power of the 
test stand, as well as other improvements to the method. These improvements are expected to be developed 
and implemented in future works.

Conclusion

During the research, the method was developed to automatically generate bug fixes for ABAP programs 
based on the analysis of existing patches, which generates candidate patches for ABAP programs and 
ranks the results using machine learning methods. The obtained preliminary test results suggest that using 
machine learning methods to solve problems of automatic error correction in programs is a promising 
direction for software engineering. Directions for further development of the work:

• conducting deeper testing of the method on a wider set of real projects;
• extending the method to support new programming languages;
• extending the set of the extracted features and the list of error types to fix;
• use more complex machine learning models to improve the performance of the method.
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