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This paper describes the method, which is developed by the authors to automated correction
of software errors, which is based on the analysis of successful project fixes for the ABAP
programming language available in open repositories. The method generates the candidates of
patches based on predefined templates and ranks the results by the probability of successful
application, which is determined by a probabilistic model using machine learning methods.
The probabilistic model is formed by training on features, which are extracted from data from
successful and unsuccessful patches of ABAP programs in open repositories. The developed
method is tested on synthetic examples and real projects with errors in the ABAP language. As a
result of the experiments, the method successfully generated some patches, which showed their
efficiency. The results in accuracy and efficiency are comparable or superior to the results of
experiments in similar works by other authors.
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ABTOMATUYECKOE ®OPMUPOBAHUE UCMPABJIEHUN
OWNBOK NMPOrPAMMHOIO KOAA HA OCHOBE
AHAJIU3A NMPOTPAMMHDLIX PENMO3UTOPUEB

A. benvckuu, B.M. MubikcoH

CaHKT-lMeTepbyprckmii NoAUTEXHUYECKUI yHMBEpcUTeT MeTpa Beankoro,
CaHKT-lMeTepbypr, Poccuitickan Penepaums

OmnucaH pa3pabOTaHHBIN MOAXOA K aBTOMAaTU3MPOBAHHOMY UCIPABICHUIO ITPOTPaMMHBIX
OIIMOOK Ha OCHOBE aHajM3a YCIEIIHbIX MCITPaBIEHUN TMPOEKTOB AJs S3bIKa MpOTpaMMU-
poBaHusa ABAP, umeromuxcst B OTKpBITHIX peno3utopusx. [loaxon ocHoBaH Ha reHepaluu
KaHAWAATOB Ha MCHpaBaeHUs (MMaTyeil) rmo 3apaHee onpeacJeHHbIM 1adJloHaM U paHXUpPY-
eT MOoJyYeHHbIe pe3yJbTaThl MO BEPOSITHOCTU YCIIELIHOTO MPUMEHEHUs, onpeaeaseMoii Ha
OCHOBAaHUH BEPOSITHOCTHOM MOIEJIH, TTOJIYICHHOM C TTOMOIIBIO METOIOB MAaIIMHHOTO 00yYe-
Husa. BeposgtHocTHAsg Momesb GOPMUPYETCS 3a CUET OOyYeHUS Ha CBOMCTBAX, M3BJIeKaeMBbIX
U3 JaHHBIX YCIEIIHBIX WM HeycIelHbiX natyeit ABAP-miporpaMm, TOCTYIMHBIX B OTKPBITBIX
peno3uTtopusix. PazpaboTaHHbBIN MOAXOI MPOTECTUPOBAH KaK Ha UCKYCCTBEHHBIX TIpUMepax,
TaK U Ha peaJibHbIX MpoekTax Ha s3bike ABAP ¢ ommbkamu. B pesynbrate npoBeaeHHBIX
9KCIIEPUMEHTOB YCIleTHO C(hOPMUPOBAH PsIJ MaTuyeil, KOTOpble MOKa3aJu CBOIO paboOTOCIO-
COOHOCTh. Pe3ynbTarel 1Mo TOYHOCTU M 3G (HEKTUBHOCTH COITOCTABMMBI MJIM IIPEBOCXOIST
pe3yJabTaThl 9KCIIEPUMEHTOB B aHAJIOTUUHBIX paboTax APYyTUX aBTOPOB.
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Introduction

In recent years the size of software has been constantly growing and the development cycle is shorten-
ing, which usually leads to a total decrease in the quality of software products. This is unacceptable in areas
such as embedded systems in medicine, energy, engineering, the financial sector, and others, or even it can
lead to significant material losses or danger to human life and health.

To overcome these problems, developers use various methods to improve the quality of software, like
testing, verification, or the static analysis of software. However, all common methods of improving the
quality of software have certain limitations and they cannot fully guarantee the quality of programs. For
example, testing may detect errors in software, but it cannot guarantee that there are no errors in the tested
software. In addition, there are entire classes of programs, such as parallel systems, whose behavior may
be non-deterministic and whose testing is inefficient. Formal methods, such as deductive verification and
static analysis, are still limited by the size of the analyzed programs and can only be applied to a narrow
area of software projects.

Recently, software engineering has actively been conducting research in the field of analysis and ap-
plication of the accumulated experience of millions of programmers in writing hundreds of thousands of
software projects. This experience is recorded in software repositories (Version control systems, VCS) as a
history of changes to projects and comments to commits, as well as in task and error management systems
(issue tracking and bag tracking) as a history of changes to tasks and errors. There are a large number of
methods that analyze the accumulated information and extract it from the knowledge, which is used in
solving various problems of software engineering. These methods have proven themselves well in various
areas of software engineering. Recently, these approaches have been applied in the field of detecting and
correcting software errors, using not only the artifacts of analyzed software projects, but also the previously
untapped potential of information, which is stored in hundreds of thousands of software repositories and
allowing to reuse and generalize the experience of millions of developers.

This paper describes the results of the research in the field of automated error correction of software
code based on the experience of analyzing successful fixes (patches) of many projects for the ABAP pro-
gramming language [1], which is widely used in SAP software products.

The article is organized as follows: The first section contains a description of the task and a brief over-
view of the subject area. The second section illustrates the scheme and verbal description of the method,
which is developed by the authors. The third section is devoted to the detailed description of the developed
method and includes algorithms, a mathematical model, and the technologies and used methods. The
fourth section shows the results of testing of the developed method and the analysis of the results. In con-
clusion, the results are summarized, the results are evaluated and plans for further research are formulated.

Related work

Nowadays, there are various technologies that allow for the automatic generation of bug fixes in pro-
grams (patches). The following methods can be the most representative of these technologies.

GenProg [2], relifix [3], Astor [4], and history-based program repair [5] methods, which are based on
genetic programming technology. This class of methods is a method of stochastic problem solving, which
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is based on the ideas of evolutionary genetics, which include the genotype (the genetic material of an indi-
vidual) stored in memory, differential reproduction of these genotypes, and variations, which are created
by processes, which are similar to the biological processes of mutation and crossover [6].

Methods SemFix [7], JFIX [8], CRSearcher [9], Qlose [10], Semantic program repair using a refer-
ence implementation [11], Static automated program repair for heap properties [12], Automated program
repair with canonical constraints [13], which are based on the semantic approach. The main idea of these
methods is to define a set of restrictions for an expression with an error by applying methods of symbolic
program execution [ 14] and solving these restrictions by using various SMT solvers [15].

Methods R2Fix [16], Prophet [17], ELIXIR [18], Data-Guided Repair of Selection Statements [19],
which are based on a class of machine learning methods [20]. The main idea of these methods is to build
machine learning models [21], which is based on the source code of programs with errors and their correc-
tions, as well as comments and other data from source code repositories such as GitHub and others. Then the
trained model is used for classification tasks, for example, to solve problems of detecting errors in the source
code of the program or determining suitable patches that are classified on the same parameters as the error.

The main disadvantage of methods, which are based on genetic programming technology, is the ran-
dom selection of all possible patch variants without analyzing both the source code context with an error
and similar patches. Also, methods, which are based on the semantic approach, already widely analyze the
source code context with an error, but do not use the experience of similar patches to strengthen the algo-
rithm for automatic patch generation. At the same time, methods, which are based on the class of machine
learning methods, are the closest in implementation to the given task for the authors, since they analyze
both the source code context with an error and similar patches.

Thus, the goal of this research is to develop a method to automatically generate bug fixes for software
code based on the previously accumulated experience of creating patches. The method has to have an al-
gorithm, which is based on machine learning methods and allows for the automatic generation of patches
for various types of errors of the program code without using specifications and other means of automated
code generation.

Overview

The main idea of the proposed method is to automatically generate patches for errors in ABAP
programs by generating candidate patches based on predefined templates and ranking the results by
the probability of successful application, which is determined based on a probabilistic model, which
is obtained by using machine learning methods. In turn, the probabilistic model is formed by learning
from the data of successful and unsuccessful patches of ABAP programs. The main idea of the method
is presented in Fig. 1.

The method contains two main contours — "Machine learning model training" and "Patch generation
and ranking", which contain the following seven functional blocks.

Block 1 "Forming an abstract syntax tree". The abstract syntax tree (AST) [22] is based on the source
code with an error and a patch. Two independent AST are formed by applying the recursive descent meth-
od [23] based on the text of the source code of the ABAP program containing the error and the correction
of this error (patch). Further work on the analysis of the source code of the ABAP program is performed
on the AST, which gives a more accurate data of the types of elements of the ABAP program (variables,
constants, operators, etc.) and their relationships.

Block 2 "Determination of the features of a successful patch". The features of successful patches were
formulated to train the probabilistic model, which are determined by analyzing the AST of the source code
with an error and the AST of the source code of the patch, which is obtained in block 1. For example, if the
program correction was formed by adding a check for an empty variable value before executing the division
operator, this feature can be used as a feature of the successful patch and used for training the probabilistic
model.
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Fig. 1. Scheme of the proposed method

Block 3 "Model training". In this block, the machine learning model is trained based on the features of
successful patches, which are obtained in block 2. As a result, the trained model can be used to predict the
success rate of any ABAP patch.

Block 4 "Forming an abstract syntax tree from source code with an error”. The source code of the ABAP
program that needs to be automatically generated for a patch is used to generate the AST, similar to block 1.

Block 5 "Generating candidate patches based on templates”. Data of all variables and constants based
on the AST is extracted from the program with an error. Furthermore, the array of possible conditions is
generated from the data of all variables and constants. Finally, patches are generated using templates based
on the received array of variables/constants and the array of possible conditions.

Block 6 "Defining features of generated patches”. The features of generated patches in block 5 are de-
termined in the same way as successful patches in block 2 are.

Block 7 "Ranking of the generated patches based on the features of the trained model". The probability
of a successful patch is determined for each generated patch based on the trained model, which is obtained
in block 3 and the features of the generated patches, which are obtained in block 6. The resulting list of
generated patches is sorted in descending order of the probability of a successful patch. Generated patches
with the highest probability of successful patches are considered target patches.

Our approach

Let's look more detailed at the stages of the method and the nuances of implementing the methods and
models, which are shown in Fig. 1.

Generating AST from source code

The program must be translated into a formalized view to perform the analysis that is suitable for fur-
ther processing. In this paper, we use an abstract syntax tree. Since there is no official grammar for parser
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generators (for example, for ANTLR) for the ABAP language, the authors developed a lightweight parser
based on the recursive descent method. The actual formation of the AST from the source code is per-
formed in blocks 1 and 4, which are shown in Fig. 1. The goal of it is to more accurately determine the
types of objects and their relationships for further analysis of ABAP programs. The simplified algorithm for
parsing ABAP programs is presented as pseudocode in Listing 1.

In line 1 of the algorithm, the input data is the array of st € S, which is the source code lines of the
ABAP program. In lines 2-8, the array of lexemes L is generated for each string of s#r in the source code.
In lines 9-13, the array of tokens 7 € T'is formed by defining the following data for each lexem / from the
array of lexemes L:

— the token type 7, (header, operator, brackets, number, variable, type), which is defined by assigning
each token to a programming language object class;

— the error flag of the error token b, is determined by fulfilling the condition: if the source code line str
contained an error, then all tokens 7, which were related to tokens L, will have the value true.

— In lines 14-20, the array of nodes AST P is formed from the token array 7. Each node p € P is the
following:

(p,ll1t|b) € P,

where p,—a reference to the parent node p € P; [ — alexeme; ¢ — a node type, which is determined from
the token type #; b — the error flag of the node is determined from the error flag of the error token b..

The array of nodes AST P is formed using the recursive descent method, which consists of recursively
traversing the entire array of tokens 7 € T and building their relationships through references p, according
to the grammatical rules of the programming language ABAP, which is shown in Fig. 2.

1 Input: S
2 for s in S do {
3 for element in str do {

4 L) = element

N
——

6}

T for /in L do {

8 =1

9 it = defClass(l)
10 1(by) = defBug(sir)
11}
12 for <I. t. b=in T do {
13 P(pp) = defParent(P)
14 P(H)=1
15 P(t)=t
16 P(b)=b:

17}

Listing 1. AST generation algorithm
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Defining patch features

Patch features are defined in blocks 2 and 6, which is shown in Fig. 1. The authors of the method
formulated 15 patch features based on the results of many years of experience working with the ABAP
programming language on real projects and creating thousands of bug fixes, as well as on the results of
analyzing patches to ABAP programs from open source repositories, which are shown in Table 1. These
features are extracted from the source code of ABAP programs with an error and a patch. Previously, to
determine the features the method defines the differences between Pbug AST source code with an error
and Ppmh AST source code with a patch in the form of node indexes of the beginning of the difference
idx, (P ) and the end of the difference idx d(Ppmh). Also, a list of all patch variables v € V(Pp ) is

start™\" patch
defined within idx_ (P ) andidx, AP,

start\" patch

Model training

Model training is performed in block 3 in Fig. 1. There are a number of models with their own advan-
tages and disadvantages to solve classification problems with a teacher in machine learning. The authors
of the method chose the logistic regression model [24], because with a small number of properties, this
model shows better performance with similar accuracy than other machine learning methods, such as neu-
ral networks or the support vector machine. Moreover, the logistic regression model is more convenient to
implement and adapt [25], and is also widely used in similar works by other authors.

The following matrix m x 15 is used to train the model:

atch

atch) :

11 F]Z F13 F14 F]5 F16 F[7 F18 Fl9 F110 FI][ F1]2 F[13 F114 F115

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215

F | F F F F F F F

ml m2 m3 m4 ms mé m7 ms Fm9 ml0 lei Fm12 mli3 le4 Fm15

where m — number of examples in the form of features Pb”g and Pp (see the section Defining patch fea-

tures).

atch

40



A. Belskii, V.M. Ttsykson, DOI: 10.18721/JCSTCS.13204>

Tablel
Patch features

Feature name

Algorithm for determining

Type of error F,

Determined manually, possible options:
1 — division by 0.

2 — using an empty pointer.

3 — error in the conditional operator.

4 — error in the loop condition

Type of modification

1. Adding a check. If the nodes in the tree P, ., Within zde(P ) and
idx,, AP e)» Where l=if,To F,= 1.
2. The change of the if condrtron If the nodes in the tree P e Within

idx, (P

start\" patch

themarep € P

) and idx,, (P ), where v/ # if, but the tree nodes associated with

where 3/ =if, then F, = 2.

patch’®
the patch £, 3. The ch’énge ef the loop condition. If the nodes in the tree P e Within
zdxm,(P wep) and idx, (P ), where V[ # loop, but the tree nodes associated with
them are p,€ P mch, where 3/=1loop, then F, = 3.
4. Otherwise PI)
The tree nodes with error P, o are defined by defining idx_ ( bug) and idx, ( bug)
of the tree nodes Pbug, where 9b = true.
Further, the place where the patch modification occurs is determined by the
Location of the patch following rule based on the location data zdxm,(P o) and idx, AP ) of the tree

modification F,

nodes Ppatch and the location data 1dxstart(Pbug) and 1dxend(Pbug) of the tree
nodes Pbug:

1. Ifidx (P g) >=idx, (P ) and idx, (P, ) >=idx,, (P,...), then F, = 0.
2. If ldxmm(P P <idx, (P mh) and idx, (P, ) = idx, (P mch), then F, = 1.
3. Nnave F, = )

If operator is present
at the error location
F

4

If the tree nodes Pbug, where 3b = true and 3/=if, then F, = 1 else 0

Loop operator is
present at the error
location F

If the tree nodes Pbug, where 3b = true and 3/ = loop, then F; =1 else 0

/,*,+,- operators are
present at the error
location F6

If the tree nodes Pbug, where 3b = true and 3/= /,*,+,-, then F, = 1 else 0

Call operator is
present at the error
location F,

If the tree nodes Pbug, where 36 = true and 3/==>, then F, = 1 else 0

Variable is present at
the if operator at the
patch F,

Defining the tree nodes P , Within idx (P

o) and idx
Further, if in the defined nodes 3/ =v, then ;7 =1lelse 0

end

(P._ ), where 3/ = if,

patch

Variable is present at

the loob operator at Defining the tree nodes P , within idm”(P ) and idx, d(P on)» Where
p op 3/ = loop. Further, if in the defined nodes 3/=v, then F,=1else0
the patch F,
Variable is present at _
Defining the tree nodes P, within idx mﬂ(P o) and ldxen d(P o) Where 1=/,

the /,*,+,- operators
at the patch F)

* +,-. Further, if in the deﬁned nodes /=, then F,=1 else 0
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Variable is present at
the call operator at

Defining the tree nodes Pp within idx (P ) and idx

Further, if in the defined nodes A=y, Stuﬁten ;7” = 1 elseefl)d

(P ),where3/==

patch

the patch F|
Varlabl.e IS present Defining the tree nodes P, , where 3b = true, and 3/ = if. Further, if in the
at the if operator the Fs
. defined nodes 3/=v, then F'_ =1 else 0
error location F,

Variable is present at
the loop operator the
error location F|

Defining the tree nodes P, , where 3b = true, and 3/ = loop. Further, if in the

defined nodes 3/ = v, thenbﬁ" =1lelse0

Variable is present at
the /,*,+,- operators
the error location F,

Defining the tree nodes P, , where 36 = true, and 3/=/,*,+,-. Further, if in the
defined nodes 3/ =v, then F =1lelse 0

Variable is present at
the call operator the
error location F||

Defining the tree nodes P, , where 3b = true, and 3/ =

=>. Further, if in the
defined nodes 3/ = v, then 1*& =lelse0

The training is performed for the logistic regression model:

prediction = o7

The main idea of training a logistic regression model is to determine coefficients 0 for features F
successful patches (see the section Defining patch features), which can then be used to build a forecast
prediction for any generated patches ABAP programs based on their features. The coefficients 0 are
determined using the gradient descent method [26], according to which the following calculations are
performed simultaneously:

0,=6, —axi(prediction -),
m

0,=6, —0L><i(prediction—y)><F1 +&><61,
m m

1 A
0,5 =0, —ax—( prediction—y)x F;; +—x6,5,
m m

where y — the result of successful application Ppa o 1O Pbug (it is set manually, 0 — unsuccessful patch, 1 —
successful patch); o — the coefficient of speed of learning (it is set manually and is used to regulate the
accuracy and speed of the determination process 0); A — the regularization coefficient (it is set manually
and used to reduce the likelihood of model overfitting).

When calculating the coefficients 0 the cost function J is also calculated, which should tend to zero at
each iteration of the calculation and reflects the progress and correctness of the gradient descent method:

1 m
mx;( ;X og(pre zctlon) ( y,)x og( pre zctton))+ o
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1 Input: Ppx
2 vy = defVarible(Pry)
3 for vaur in Pax do {

4 forym:in Va do {

5 CNDsxfcndp) = v = v
6 CNDy(endpx) = Vs <vix2
7 CNDglendp) = Vi1 =viin2
8 CNDgxlendp) = vaxrFvm:
9 }

10 CNDp( criday) = vaxr is initial

H CNDsx(cnidax) =vax1 is not initial
12}

13 for cndpx in CNDpx do {

14 GeneratePatchAddIf (endps:)

15 GeneratePatchEditlf (ends:)

16 GeneratePatchEditCycle (cndyy)
17}

Listing 2. Algorithm for generating candidate patches based on templates

Generating candidate patches based on templates

The generation of patch candidates by templates is performed in block 5 in the method diagram in Fig. 1.
The generation of patch candidates by predefined templates is performed from the source code objects of
the ABAP program with an error. This algorithm is presented in Listing 2.

Line 2 defines the array of variables Vﬁx of the tree nodes Pﬁx, which was obtained by forming AST (see
the section Generating AST from source code) from the text of the program to automatically generate the
patch for. The array of variables Vﬁx is determined from / of the tree nodes Py € Pﬁx, where 3b = true and
3¢ = Variable. In lines 3-14, the array of conditions CNDﬁX is generated by executing the Cartesian product
of the array of variables Vﬁx and the array of degrees of comparison (>, <, =, #, is initial, is not initial). In
lines 15-17, patch candidates Pﬁxpm are generated by adding a check (if statement) with the condition cnd L
from the array of conditions CNDﬁx before the error location. In lines 15-18, patch candidates Pﬁxpa o AT
generated by replacing a condition in the check statement (if) with cndﬁx from the array of conditions CNDﬁX
in the error location. In lines 15-19, patch candidates Pﬁxpm are generated by changing the condition in the
loop operator to cndﬁx from the array of conditions CNDﬁx in the error location.

Further, the features for the generated patch candidates Pﬁxpmh are defined (see the section Defining
patch features) and the application success rate is determined (see the section Ranking generated patches
based on features and the trained logistic regression model).

Ranking generated patches based on features and the trained logistic regression model

The ranking of generated patches based on features and the trained logistic regression model is performed
in block 7 in Fig. 1. The success rate predictionﬁxpm is determined for each generated patch candidate
Pﬁxpmh (see the section Generating candidate patches based on templates) by applying the trained logistic
regression model:
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1

prediction; ..., = ey

where 0 obtained in the process of training the logistic regression model (see the section Model training);
Fﬁx obtained in the process of defining patch features for patch candidates P (see the section
cpatch Sfixpatch
Defining patch features).
Further, Pﬁxpmh with the maximum value of prediction i eparch is selected, which means that the candidate
patches with the highest probability of application success are selected based on the analysis of existing

patches.
Evaluation

The method was tested on 10 projects in the ABAP language with errors. Some of the examples were
prepared by the authors in accordance with the required types of errors for evaluating the method's
performance, while the other part — real projects. The test results are shown in table 2.

Table?2
The results of the test method
Number | Number of The patch
Name of the source of lines candidate | Execution was
Type of error .
code example of source patches time, sec | successfully
code generated generated
ABAPEXxception.abap' Division by 0 34 300 66 Yes
mycalculator.abap? Division by 0 25 100 14 Yes
SubRoutines.abap® Division by 0 59 1200 836 Yes
. Calling a function
{:‘J’;QRCP ~usingclassHana. using an empty 27 800 371 No
P pointer
Calling a function
zma_dp_strategy.prog.abap’ | using an empty 33 700 285 Yes
pointer
Calling a function
zcl _pi_static.clas.abap® using an empty 46 100 12 Yes
pointer
TestCodeWithIfBug.abap’ Error in the if 17 200 37 No
operator
TestCodeWithIfBug2.abapt | ETOr in the if} 50 9 Ila
operator
TestCodeWithCycleBug. | Error in the loop 13 20 8 |
9
abap operator

! https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/efc47953337bb8fbacee506ee9a3c701bfadf498/ ABAPException.abap
2 https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/master/mycalculator.abap
* https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/master/SubRoutines.abap

* https://github.com/naveenkumarbaskaran/SAP_ABAP19Jan/blob/master/AbapRep_usingclassHana.abap

5 https://github.com/Huargh/OO-Design-Patterns-in-ABAP/blob/master/src/zma_dp_strategy.prog.abap
¢ https://github.com/ivangurin/abapPI/blob/5f30db0cc7a408a759ad833fe14f6e803b1b46bf/sre/zcl pi_static.clas.abap
7 https://github.com/AlekseiBelskii/AlexB/blob/master/TestCode WithIfBug.abap

8 https://github.com/AlekseiBelskii/AlexB/blob/master/TestCode WithIfBug2.abap

? https://github.com/AlekseiBelskii/AlexB/blob/master/TestCodeWithCycleBug.abap
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TestCodeWithCycleBug?2. | Error in the loop

abap' operator 13 >0 12 0

276 3520 1650 6/10

The first column shows the project name with an error and a link to Github source code repository.
The second column shows the type of error that patches were generated for. The third column shows the
number of lines of source code with an error. The fourth column contains the number of error correction
candidate patches generated for each project. The number of candidate patches was formed in an amount,
which was enough to get the expected result. The fifth column shows the time it took to generate candidate
patches for each project with an error. The last column shows whether patches were successfully generated
for each project with an error or not. Patch is considered successfully generated if the desired patch is
found among all the generated patch candidates with the highest probability of success prediction  paich”

The method was tested on a stand with the following characteristics: Intel Core i3-7100U 2.40 Ghz,
4.00 Gb RAM, Windows 10. As a result of the experiments, 6 patches were successfully found for 10
programs with an error of 1650 seconds, which indicates the reality of using machine learning methods
for automatic patch generation, but at the same time, the obtained accuracy and the speed indicate the
necessity for additional tests, better training of the logistic regression model, increasing the power of the
test stand, as well as other improvements to the method. These improvements are expected to be developed
and implemented in future works.

Conclusion

During the research, the method was developed to automatically generate bug fixes for ABAP programs
based on the analysis of existing patches, which generates candidate patches for ABAP programs and
ranks the results using machine learning methods. The obtained preliminary test results suggest that using
machine learning methods to solve problems of automatic error correction in programs is a promising
direction for software engineering. Directions for further development of the work:

» conducting deeper testing of the method on a wider set of real projects;

« extending the method to support new programming languages;

+ extending the set of the extracted features and the list of error types to fix;

+ use more complex machine learning models to improve the performance of the method.
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