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One of the main research directions in global navigational satellite systems is increasing
the intentional interferences resistance of modern navigation receiving equipment. The
most effective method is supposed to be the use of spatial filtering techniques on the basis of
adaptive antenna arrays (AAA). However, antenna array can bring about additional errors in
the navigation and make it impossible to use it for applications requiring accurate positioning
and time synchronization. We experimentally compared navigation solutions obtained based on
signals from a single antenna and from the output of AAA. The results showed that the use of
AAA as the part of navigation receiver might delay 1 pps (pulse per second) signal arrival on the
value proportional to the summarized group delay in the digital signal processing block of AAA.
Experimental results also showed that AAA could bring error to positioning of the receiver. A few
methods were outlined to decrease the influence of AAA on navigation solution.
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B/IMAHUE NPOCTPAHCTBEHHOW OBPABOTKU CUTHAJIOB
rHCC HA HABUTALUUOHHO-BPEMEHHDIE ONMPEAENNEHUA

M.A. KydpaweBa, A.C. [JaBvideHKo

CaHkT-NeTepbyprcknii nonnTeXHUYECKUn yHUBepcuTeT MNeTpa Benunkoro,
CaHkT-MeTepbypr, Poccuiickas Peagepaumn

IToBhIIeHME TTOMEXO3alINIIEHHOCTH — BaXkHasl 3ajgada, TpeOyolass pelieHus B COBpe-
MEHHOM NPUEMHOM allliapaType CUTHAJIOB TJI00AJTbHBIX HABUTAIIMOHHBIX CITYTHUKOBBIX CH-
creM. OmHUM n3 Hanmbojee 3(PGEeKTUBHBIX METOIOB SBJISIECTCS MPOCTPAaHCTBEHHAsA (PUIBTpa-
LIMsI HA OCHOBE aJallTUBHBIX aHTEHHbIX pelieToK (AAP). OnHako aHTeHHas! pellleTKa MOXET
MPUBOIUTDH K MOSIBJCHUIO AOIMOJHUTEIbHBIX OIIMOOK B pelleHUM HaBUTAllMOHHOM 3amadu,
YTO JIeJIaeT HEBO3MOXHBIM MCHOJb30BaHue AAP mis1 mpuiiokxeHUil, TpeOYIOIIUX TOYHOTO
MO3UIIMOHUPOBAHUS M TOYHOW BpeMeHHON cMHXpoHMU3auuu. [IpoBeeHO 3KCIIepUMEHTaJb-
HOE€ CpaBHCHWE HAaBUTAIIMOHHEBIX pEIICHN, MOJTYIEeHHBIX HA OCHOBE CUTHAJIOB C OMMHOYHOMU
AHTEHHBI ¥ Ha OCHOBE CUTHaJIa Ha BeIxome AAP. Pe3ynbTaThl Imokasaiau, 4TO MCIIOJIb30Ba-
Hue AAP B coctaBe MpUEMHON HAaBUTaLIMOHHOM ammapaTypbl MOXET IIPUBECTU K 3alepPXKKe
BbIIAauM CUTHaja 1 pps Ha BeJUYMHY, IIPOMOPLUMOHAIbLHYIO BpeMEHM 3adepKKKM CUTHala B
uugponoii yactu AAP. Pe3ynbraTel aKcriepuMeHTa Takke nmokasanau, 4yTo AAP MoxkeT npuBe-
CTH K TOSIBJIEHUIO OIIMOKU B MTO3UIIMOHUPOBAHUM NpruéMHMKA. [IpeayioxKeHbl BapUaHThI 10
YMEHBIICHUIO BIUSTHUS AAP Ha pelleHre HaBUTAIIMOHHOM 3a1adu.
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Introduction

Nowadays global navigation satellite systems (GNSS) find a wide range of applications in various fields
of science and technology. GNSS allows determining position and speed of objects with high accuracy, to
determine angular orientation and provide time synchronization of GNSS consumer equipment.

The main vulnerability of GNSS is caused by GNSS equipment susceptibility to intentional interfer-
ence (jamming signals). One of the main research directions in GNSS is increasing the intentional inter-
ferences resistance of GNSS consumer equipment.

Reliable operation of GNSS receivers in the presence of jamming signals can be maintained by inter-
ference filtration techniques (time-frequency, polarization, spatial filtration), but the most effective and
universal one is supposed to be spatial filtration on adaptive antenna arrays [1-5]. Spatial filtration tech-
nique is based on processing signals received on spaced antenna elements.

An adaptive antenna array (AAA) is a set of antenna elements whose channels gain can be controlled
in amplitude and phase, that feature allows to shape desired radiation pattern of the AAA. To suppress
interference, it is necessary to generate zeros of the radiation pattern at the interference arrival directions.

AAA research usually evaluates interference suppression performance and little attention is given to
the impact of AAA on signals of interest, particularly on GNSS signals. In practice, the use of weighting
processing, non-identical frequency characteristics of receiving channels, the use of antenna elements
with non-identical radiation patterns can lead to the formation of additional amplitude-phase shift at the
AAA output signal [6-8], the shift can introduce additional error in the solution of the navigation problem.
Due to this additional error, the range of AAA applications as a part of navigation equipment (that requires
high-precision positioning and/or accurate timing synchronization) can be reduced.

In papers [8—12] the influence of AAA on the operation of a GNSS receiver is shown by estimation
of intermediate parameters of GNSS signal processing: pseudo-ranges and code or carrier phase biases.
These papers do not describe how pseudo-ranges or phase biases could affect positioning or time synchro-
nization pulse generating. In addition, the final result depends on the type of AAA algorithm used. In [13]
the measured time delay is achieved in a few decimeters. In [14] after estimating the offset, the receiver
offset errors could be compensated either in the navigation processor or in the tracking loop of the GNSS
receiver. The simulation demonstrated centimeter-level bias correction accuracy.

The navigation solution can be produced on the basis of code or phase measurements [8—12], but in this
work, we pay attention to code measurements.

The purpose of this research is to identify the impact of AAA on the navigation solution by comparing
the accuracy of the navigation solution with and without using AAA. As the measure of AAA impact on
navigation solution we used the deviation of coordinates in rectangular coordinate system relative to ref-
erence point and average time delay of synchronizing 1 pps pulses using AAA instead of a single antenna
element for measurements.

Adaptive antenna array

Interference filtration by AAA is based on the principle of spatial selectivity. The main characteristic
of AAA is the radiation pattern (RP) — dependence of the AAA gain on signal arrival direction. In order
to suppress interference, it is necessary to shape the RP’s zeros in the direction of the interference arrival.
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Fig. 1 shows the structural diagram of AAA with N antenna elements. Interferences and signals of
interest from satellites are received by antenna elements. Signals from each antenna element pass to the
radionavigation receiving device, then analog-to-digital conversion (ADC) of the signals occurs, and the
further processing is performed with digitized signals.

ADC-block forms X (k) = [x1 (k) x,(k)...x (k)]Tsamples of input signals for all AE, digitized input
signals are further multiplied by complex-conjugated W =[w,,w,, ...,w, ] weight coefficients and the
obtained products are summed up. The sample of AAA output signal for the £ moment of time is calcu-
lated as follows:

V(o) =X () = 3w, (6),

the superscript H denotes Hermitian transpose, asterisk * denotes the complex conjugation.

Further, AAA weight coefficients are calculated on the basis of X(k) and Y(k) samples, AAA weights
enable generating the AAA RP for interference suppression. There is a great variety of AAA algorithms
based on following criteria: minimum mean square error, minimum output power, maximum SNR at the
AAA output, etc. If navigation chips are used as GNSS consumer equipment, the AAA output signal is
converted to analog form (DAC) (Fig. 1). The output signal of AAA is free of interference signals and used
for calculation of navigation solution at the receiver.

Experimental setup

The purpose of the experiment is to determine AAA impact on navigation solution, evaluate the ac-
curacy of the consumer’s position and the accuracy of the moment 1 pps signal arrives from navigation
receiver. The structural scheme used for measurements is shown in Fig. 2.

The list of the equipment:

navigation reception antenna L1 GPS/GLONASS Tallysman 33-7972-00-1500 (1 piece);

navigation receivers: u-blox LEA-MS8T (2 pieces) (accuracy of positioning — 2.5 m, accuracy of 1
pps-signals delivery < 20 ns);

a sample of a 4-element AAA for GNSS signals;

a two-channel device for recording moments of 1 pps signals arrival from navigation receivers;

PC with installed software for operation with navigation receivers and software to form1 pps-signals
records.

A mixture of real satellite signals with AWGN is received on two antenna modules. A single antenna
represents the first antenna module and the second is the sample of AAA. AAA is capable of operating in

AAA processor
Wi
X2 ™ Y
RF2 |—» ADC ——— N DAC
Wa
l RFN |—] Abc —
Wn Navigation
AAA Algorithm receiver

Fig. 1. Structural diagram of AAA with N antenna elements
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Single Navigational
—> ) ——— NMEA messages ——————— PC
antenna receiver 1
| 1pps A— 2
Navigational
AAA —> NMEA messages

receiver 2

l

1pps

1pps-recording device
(2 channels)

Fig. 2. Block diagram of the measuring equipment

the L1 frequency range of GNSS GPS and GLONASS. Signals from antenna modules are transmitted
to inputs of corresponding navigation receivers, where the complete cycle of satellite signals processing is
performed, as a result of which the solution of navigation task is evaluated, i.e. position and 1 pps-signal.

Both navigation receivers send NMEA messages to the PC via a serial port once per second and the PC
writes them to a text file. Geographical coordinates (latitude, longitude, height) and their corresponding
time are extracted from NMEA messages (GGA — Global positioning system fix data) and transformed
into rectangular coordinates (x, y, z). Receivers also output a 1 pps signal at 1 Hz. The time of arrival of
1 pps signals is recorded by a two-channel 1 pps-recorder. The 1 pps-recorder contains a 240 MHz refer-
ence clock. There is also a counter incrementing every cycle of the reference clock. The second counter
fixes moments of 1 pps arrival from a navigation receiver. The second counter increments after 1 pps tag
is received and fixes the value until the next 1 pps tag is received. Obtained values of the second counter
are recorded into a separate text file with a rate of 2 kHz. Recording is performed simultaneously via two
channels from identical navigation receivers. As a result, two-channel record is formed containing arrival
moments of the 1 pps signal samples relatively reference 240 MHz clock. Thus, the 1 pps edge is measured
with 4 ns precision.

Experimental results

The purpose of the experiment is to compare navigation solution obtained based on signals received at
a single antenna element; the measuring device is in the stationary state during measurements.

Comparison of delay of 1 pps signals with AAA relative to 1 pps signals from single antenna is carried
out at generation of 1 pps signal on the basis of GPS satellites constellation. The experiment involves com-
paring the delay of 1 pps without an intentional interference and in the presence of one. However, in the
presence of the interference, the navigational receiver is not able to get solution. Therefore, the following
sets of records were made to make comparison of the operation navigation receivers with antenna and AAA
possible in the presence of interference:

1. All receivers are configured to receive GPS signals. Records are made without intentional interfer-
ence.

2. The receiver with the single antenna operates on GLONASS signals, the receiver with AAA operat-
ed on GPS signals. Records are made without intentional interference.

3. The receiver with the single antenna operates on GLONASS signals, the receiver with AAA operates
on GPS signals. Records are made in the presence of 1 MHz wideband interference in the GPS signal band.

Each record set contains: records of NMEA messages from each navigation receiver; a two-channel re-
cord 1 pps signals from receivers. Measurements are made under conditions of direct reception of satellite
signals during 20 minutes, the rate of navigation solution output — 1 Hz.
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All coordinates are measured relatively (X , Y ., Z ) — the reference point measured with centim-
eter-accuracy by the Trimble R7 GNSS Receiver. Based on the obtained records sets, we transformed
the geodesic coordinates to rectangular and constructed histograms of rectangular coordinates (x, y, z)
(Fig. 3—5). We also calculated sample mean and standard deviation of relative coordinates and tabulated

the results (Table 1).
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Fig. 3. Histograms of measured coordinates, both receivers operate on GPS, without interference
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Fig. 4. Histograms of measured coordinates, receiver with single antenna operates
on GLONASS, the other — on GPS, without interference
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Fig. 5. Histograms of measured coordinates, receiver with single antenna operates

on GLONASS, the other — on GPS, the presence of 1 MHz wideband interference for GPS

Tablel
Sample mean and standard deviations of measured coordinates
in relation to the reference point
No. of the l?nn(‘;zr&?:l Mean Mean Mean Std Std Std
records set . XX )m|(Y-Y )m|(Z—Z ), m|X—X ), m|[(Y-Y ), m|(Z—Z ), m
Of recelver ref’ ref’ ref’ ref’ ref’ ref’
Single 713 438 | —11.73 1.59 0.97 2.63
1 antenna
AAA —4.39 —3.34 —10.09 0.79 0.84 1.88
Single —6.83 444 | 1973 1.46 1.50 1.42
) antenna
AAA —7.38 —0.01 —12.36 0.88 0.76 1.62
Single 449 4.87 ~3.05 2.15 1.42 4.00
3 antenna
AAA -9.26 —3.56 —28.76 2.34 0.72 4.83

We have estimated the delay of the 1 pps signals introduced by the AAA in relation to 1 pps signals gen-
erated from the receiver with the single antenna on the basis of two-channel 1 pps signal records. Estimated
delays are summarized at Table 2 and are equivalent to the time delay introduced by the AAA.

Using the data from Table 2, we can estimate the delay Az,

GPS

introduced by the AAA generating a 1 pps

signal on GPS signals in the presence of interference based on the estimate of the 1 pps signal delay for the
third set of records (during the third recording, a single antenna receiver generates a 1 pps signal via the
constellation GLONASS):

§=At —At,
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Aty = At + 6,

where Atl,z’3 — estimates of 1 pps signal delay for the first, the second or the third set of records (from Ta-

ble 2) determined for AAA; J — difference of 1 pps signal delays caused by operation on different GNSS;
AtGPS — the estimate of the 1 pps delay introduced by AAA signal using GPS constellation in the presence
of intended interference. Table 3 contains AAA estimated delays for 1 pps signal without and with the in-
terference effect. Without interference, the AAA sample introduces a delay of 22.2 ps. In the presence of

wideband interference, the 1 pps signal is delayed by 22.145 ps.

Table?2
Estimated offset of the 1 pps signal when using AAA
in relation to the 1 pps signal from a single antenna
Set of Initial conditions Histogram Estimated
records with coordinates | AAA delay, us
All receivers are configured to receive GPS signals. .
1 Records are made without intentional interference Fig. 3 22.200
The receiver with the single antenna operates on
’ GLONASS signals, the receiver with AAA operates on Fie 3 22157
GPS signals. Records are made without intentional & )
interference
The receiver with the single antenna operates on
3 GLONASS signals, the receiver with AAA operates on Fie. 3 22,102
GPS signals. Records are made in the presence of 1 MHz & )
wideband interference in the GPS signal band

The delay introduced into the signal by AAA is supposed to be constant and can be attributed to the
structure of analog and digital parts of AAA, i.e. signals received at AAA antenna elements are delayed
within analog paths of RF-block. Fig. 6 shows a structure diagram of a digital signal processing block for
one of the AAA channels. The main contribution to the delay of AAA signals (Table 3) is made by the
group delays of digital filters used for signal resampling (down- and upsampling) and filters for correction
of phase frequency characteristics of AAA receiving channels; the delay can also be formed by the AAA
algorithm (the use of spatial-time processing additionally requires delay taps in each AAA channel).

Table3
Comparison of 1 pps delay for AAA using GPS constellation

Estimated AAA delay for GPS constellation, ps
no interference 22.200
1 MHz wideband interference 22.145

Conclusion

By comparing the accuracy of the evaluated navigation solution without and with the use of AAA, we
found that the AAA sample delays the output of the 1 pps signal by 22.2 ps in relation to the 1 pps signal
from a single antenna element.

The results of coordinate measurements (Table 1) show that without interference the sample mean and
standard deviation of the measured coordinates with the single antenna and the AAA slightly differ from
each other. In the presence of wideband interference (record set 3), the standard deviation of the vertical
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ADC DAC

Downsampling
filter

—= Bandpass filter — Corr:;::;lng —= AAA Algorithm —» Upsfailrtr:::hng —— Bandpass filter

DSP-block for one channel of AAA

Fig. 6. Structure diagram of a digital signal processing block for one of the AAA channels

coordinate component std(Z — Z ) increases by a factor of 2 compared with measurements without the
interference. Sample mean coordinate mean(Z — Z ) with the single antenna is — 3.05 m, and mean(Z —
— Z ) with AAA is — 28.76 m. In case of interference effect, the use of AAA made the displacement of
the measured Z coordinate, at the same time std(Z — Z ) with single antenna and with AAA did not differ.

The results showed that the use of AAA as a part of GNSS receiving equipment made an impact on
the navigation solution. The AAA influence on the time component can be compensated by the config-
uration of navigation receiver, the output 1 pps signal delays according to the measured delay value from
Table 3. Influence of AAA on navigation parameters, such as, coordinates and speed, can be reduced only
by reduction of AAA group delay or by taking into account AAA characteristics for navigation solution
calculation.
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