Hardware of computer, Telecommunications
and Control Systems

DOI: 10.18721/JCSTCS.13103
YK 004

EFFICIENCY ANALYSIS OF HIGH-LEVEL SYNTHESIS TOOLS
FOR HARDWARE IMPLEMENTATION OF SORTING ALGORITHMS

A.P. Antonov, D.S. Besedin, A.S. Filippov

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

The article is devoted to the research of efficiency of Xilinx’s high-level synthesis tools,
the Vivado HLS package version 2019.2, for synthesis of a hardware implementation of
sorting algorithms. The relevance of creating hardware implementation of sorting algorithms
is determined by modern approaches to building high-performance heterogeneous computing
systems and modern criteria for the efficiency of such systems — the ratio of performance to
power consumption and the ratio of real performance to peak performance. The authors
carried out a comparative analysis of the implementation of the selected sorting algorithms on a
universal processor and on the basis of the VLSI Xilinx submarine research. The article discusses
approaches to optimize the description of algorithms and control the Vivado HLS package to
achieve optimal performance of the resulting hardware solutions. The article shows that the main
performance gain is provided by parallelizing of the source arrays processing, which is achieved
both by the settings of the design tool, the Vivado HLS package, the selected description style,
as well as the features of the sorting algorithm selected for hardware implementation.

Keywords: hardware acceleration, sorting algorithms, high-level synthesis, reconfigurable
hardware accelerator, FPGA.

Citation: Antonov A.P., Besedin D.S., Filippov A.S. Efficiency analysis of high-level synthesis
tools for hardware implementation of sorting algorithms. Computing, Telecommunications and
Control, 2020, Vol. 13, No. 1, Pp. 31-41. DOI: 10.18721/JCSTCS.13103

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/
licenses/by-nc/4.0/).

AHAJIN3 DOPDEKTUBHOCTU CPEACTB
BbICOKOYPOBHEBOIO CUHTE3A A1 ANNMAPATHOM
PEAJINUSALIUUN AITOPUTMOB COPTUPOBKMU

A.ll. AHmoHo8, [.C. beceduH, A.C. Pununnob

CaHKT-lNeTepbyprcknii nonnuTeXHUYECKUin yHnBepcuTeT MNetpa Benunkoro,
CaHkT-MeTepbypr, Poccuiickas Pepepaumn

CraThsd TIOCBsIIEHAa MCCAeAOBaHUIO dSO@MEKTUBHOCTU CPEACTB BLICOKOYPOBHEBOTO
cuHTe3a KoMmnaHuu Xilinx, makera Vivado HLS Bepcuu 2019.2, nnas co3naHus anmnapaTHoi
peann3anuy aJITOPUTMOB COPTHUPOBKM. AKTYaJbHOCTh CO3JaHUS aIllllapaTHOM pealm3ainiu
aITOPUTMOB COPTHPOBKH OIIPENEISICTCSI COBPEMEHHBIMHM ITOAXOAAMU K ITOCTPOCHUIO
BBICOKOITPOU3BOANTEIBHBIX TETEPOTCHHBIX BBIUYMCIMTEIBHBIX CHUCTEM M COBPEMCEHHBIMU
KputepusiMu 3(PGEeKTUBHOCTA TaKUX CHCTEM: OTHOIICHMUIO TPOM3BOIUTEIBHOCTU K
DHEPronoTpeOJeHNUI0 U OTHOIICHUIO peaJbHON MNPOM3BOAUTENBHOCTH K ITMKOBOM
npou3BoauTeIbHOCTU. [IpoBeaeH CpaBHUTEIBHBIM aHaAW3 pealn3allid BbIOPAHHBIX
aJITOPUTMOB COPTUPOBKMU Ha YHUBepcallbHOM Tporeccope u Ha 6aze CBbUC I1JI komnaHuu
Xilinx. PaccMoTpeHbl MOAXOAbI M CIIOCOOBI ONTUMM3ALlMM OMNMCAHUS aAJTOPUTMOB



4Computing, Telecommunications and Control Vol. 13, No. 1, 2020 >

u ympaBieHUs maketomM Vivado HLS m1g mocTwkeHHMs OINTHMMANbHBIX IOKa3aTeJei
3(pGEeKTUBHOCTU TIOJYUYEHHBIX ammapaTHbeIX pemeHuii. [lokazaHo, YTO OCHOBHOI
BBIMTPBIII B TMPOU3BOAMTEIBHOCTA JaeT BO3MOXKHOCTb YACTMYHOIrO pacrapasievuBaHusl
npouecca o00pabdOTKM HMCXOAHBIX MAaCCUMBOB, 4YTO JOCTUraeTcss KakK HacTpoiKaMu
cpeacTBa NMpoekTupoBaHus — naketa Vivado HLS, BbIOpaHHBIM cTUeM ONMCcaHUs, TaK U
0COOCHHOCTSIMU aJITOPUTMAa COPTUPOBKM, BRIOPAHHOTO IIJIST allllapaTHOM pealn3alnu.

KnoueBbie ciaoBa: amnmapaTHoe YCKOpPEHHE, aJTrOPUTMbl COPTUPOBKHU, BbICOKOYPOBHEBBINA
CUHTE3, peKOHMUTYpUpyeMBblii anmapaTHbIil Beruucauteab, CBC nporpaMMupyeMoii TOTUKY.

Ccpuika mpu nutupoBanuu: AntoHoB A.Il., Bbecenmn [.C., ®wmmnmnoB A.C. AHanu3
3¢ (HEeKTUBHOCTU CPEJICTB BHICOKOYPOBHEBOT'O CUHTE3a JJIS allllapaTHOM peaiu3aluu airoOpUTMOB
coptupoBkU // MUHbopmaTuka, TenekoMmyHuKaiuu u ynpasienue. 2020. T. 13. Ne 1. C. 31-41.
DOI: 10.18721/JCSTCS.13103

CraTbsl OTKPHITOTO mocTyna, pactpoctpansemas o aureH3nun CC BY-NC 4.0 (https://creative-
commons.org/licenses/by-nc/4.0/).

Introduction

A modern trend in the development of computing systems is the creation of heterogeneous
distributed hardware reconfigurable systems that provide a solution to the problem of hardware
adaptation and reconfiguration for the algorithm to solve the main problem [1]. Such approach to
the construction of computing systems allows us to create temporarily highly specialized hardware
devices using the computing resources available as part of the system, in accordance with the logic of
the problem to be solved. It provides a more efficient solution of computationally complex algorithms
than universal processors and devices with SIMD architecture [2]. The most important modern
performance criteria for high-performance computing systems are energy efficiency, i.e. performance-
to-power ratio, and computational efficiency — the ratio of real performance to peak performance [3, 4].

The traditional procedure for developing specialized hardware devices based on the use of hardware
description languages, for example, VHDL, Verilog HDL, System Verilog, is laborious and requires
significant time both at the stage of device development and at the stage of debugging [5].

A modern approach for developing specialized hardware devices is to use the capabilities of high-
level synthesis tools that are provided by leading VLSI manufacturers of programmable logic, such
as Xilinx [6] and Intel PSG [7], and companies engaged in the development of electronic device
development tools, for example, Mentor Graphics [8].

High-level synthesis tools allow both to synthesize hardware solutions to problems described in
high-level programming languages, such as C or C ++, and to verify the correct operation of the
algorithm and the synthesized device using a single test described in C or C ++.

The use of high-level synthesis tools to create computing systems is a new approach and there
are currently no reliable data on its effectiveness in the implementation of many data processing
algorithms with high computational complexity and significant memory requirements.

In order to analyze the efficiency of using high-level synthesis tools, it is necessary to carry out a
comparative analysis of the implementation of the same algorithm described in C or C ++ based on
a universal processor and its hardware implementation obtained as a result of high-level synthesis. A
comparative analysis can be performed according to such an efficiency criterion as performance, or
runtime, when solving a task of a given dimension, since the architecture of the universal processor
and reconfigurable hardware are different.

Object to research

Sorting algorithms were chosen as the object of this research paper due to their widespread use
for solving problems associated with processing large data, their computational complexity, memory
requirements and the relevance of the task of accelerating their execution for many applications
related to database processing.

32



4 A.P. Antonoy, D.S. Besedin, A.S. Filippov, DOI: 10.18721/JCSTCS.13103>

A simplified classification of sorting algorithms is shown in Fig. 1. Among the variety of sorting
algorithms [9], several typical algorithms were selected for this research: comb sorting, gnome sorting
and merge sorting.

' |

Sorting algorithms J

L

Y

4' Exchanging |

Insertion

» Bubble »| Heapsort Insertion Mergesort » Quicksort
» Cocktail » Selection > Cubesort
sort Timsort
> Comb »| Smoothsort > Shell
» Gnome —» Tournament »| Binary tree

Fig. 1. A simplified classification of sorting algorithms

These algorithms are typical representatives of the classes shown in Fig. 1, and that is the reason to
choose them for the research. Moreover, for choosing objects of research such as sorting algorithms, we
need to allow for the significant limitation of modern high-level synthesis tools due to the impossibility of
implementing recursive algorithms.

Comb sorting and gnome sorting belong to the class of exchange sorting algorithms, they are simple
to implement, are considered the slowest when implemented on universal processors, have high O (n?)
computational complexity and do not require additional memory costs, like all representatives of this class
(O(1)) [10, 11].

Merge sorting is an algorithm with sorting principle significantly different from exchange sorting
algorithms, but it is also simple to implement. This sorting algorithm is faster than exchange algorithms
when running on universal processors, since it has less computational complexity O (n log n), but
significantly higher memory costs O(n) [12].

Method and research methodology

The research method is simulation of solving sorting problems on computational structures with
different architectures and conducting a comparative analysis according to the selected criteria.

As a criterion for a comparative analysis, we selected performance parameters related to each other, that
is, the number of operations performed in a given unit of time, and speed, which is the time spent on the
task. The selection of these criteria for comparative analysis is justified by the fact that the goal of creating
hardware solutions is to increase speed and productivity in solving computationally complex problems
and, as a result, increase the computational efficiency of the entire high-performance system.

Here is a list of selected hardware and software tools used in this research, simulation and comparative
analysis:

» For the software implementation on a universal processor:

- IDE — JetBrains CLion;

- Hardware part — PC based on Intel Core i7-4710HQ 2.50 GHz, with 12 GB RAM, type DDR3.
» For the hardware implementation based on FPGA:

- IDE — Vivado HLS (High level synthesis) [6];

- Hardware part — FPGA family Virtex UltraScale by Xilinx [13]: XCVU 125-flvc2104-3-¢.

33



4Computing, Telecommunications and Control Vol. 13, No. 1, 2020 >

The JetBrains development environment CLion is a cross-platform C and C ++ development
environment developed by JetBrains. It allows you to easily compile and run any programs using popular
compilers (GCC, Clang, MinGW, Cygwin) and pre-installed libraries. It means the ability to work with
the same source code of the program with the addition of standard C libraries operators for calculating the
expended time.

For this purpose, the description of the sorting algorithms in the C language was made using the
functions of the library time.h, which allows us to estimate the time interval between two control points
during program execution, which, thus, when simulating a solution to a problem on a universal processor,
provides data on speed and performance for comparative analysis.

The Vivado HLS (High level synthesis) development environment synthesizes the description of
the device operation algorithm presented in C or C ++ into a hardware implementation; evaluates
the performance and speed of a synthesized device; displays the expected hardware “cost” for its
implementation on the basis of the selected element base — the selected FPGA part. This development
environment allows optimization of the created device during synthesis, setting up its implementation
to use various resources available in the target FPGA part; pipelining and parallelizing hardware
implementation according to user-defined criteria.

To assess the performance and speed of a synthesized device, Vivado HLS offers the calculation of the
minimum possible period of the clock frequency synchronizing the operation signal of the device, and
an estimate of the number of periods of the clock frequency for the complete execution of the algorithm,
in other words, the number of clock cycles through which the input of the device that implements
the synthesized algorithm can be fed new data. It is possible to calculate the time of one sorting, by
multiplying the estimate of the period of the clock frequency by the number of required clock cycles
based on these data.

The research methodology includes the following steps:

» The creation of a text code description of an algorithm suitable for both a software implementation
based on a universal processor and for the synthesis of a reconfigurable hardware solution. In the created
description, the means of controlling the runtime on the basis of a universal processor are used. The
description should allow to process arrays of input data of arbitrary size.

» The creation of a test text code description that will be used to verify both the correct operation of the
initial description of the algorithm in the C language and the model of the synthesized hardware solution.
In the created test description, it is necessary to launch the function of the tested algorithm several times,
since this allows you to simulate a continuous data stream characteristic of a hardware implementation.
The description should allow you to create arrays of source data of arbitrary size. The source arrays must
be initialized random, with a uniform distribution, integers.

» Simulation based on a universal processor:

- Test of the initial description of the algorithm based on a universal processor for a given set of array sizes;

- Software implementation of an algorithm based on a universal processor for a given set of input
array sizes. Obtaining a set of characteristics for the execution time of the algorithm.

» Simulation and optimization of hardware implementation of the algorithm:

- Test of the initial description of the algorithm in the framework of a high-level synthesis system on
a given set of array sizes;

- Iteratively conducting synthesis-optimization stages for a given set of array sizes and a selected set
of control directives for a high-level synthesis system. The goal is to achieve maximum performance for
each set of array sizes if there is a limit — the logical capacity selected of the selected FPGA part;

- Hardware and software testing, based on a common test for hardware and software implementations,
of each optimal hardware implementation of the algorithm for each set of array sizes.

» Comparative analysis of software and hardware implementations of the same algorithm.

34



4 A.P. Antonoy, D.S. Besedin, A.S. Filippov, DOI: 10.18721/JCSTCS.13103>

Conducting research

The following sets of array sizes were selected for the research: 128; 1024; 16384; 32768; 65536; 131072.
All numbers were of type Integer (signed integer 32 bits).

The description in C language of the merge sorting algorithm used for simulation, both for a software
implementation based on a universal processor and for synthesizing a hardware implementation
of an algorithm, is shown in Fig. 2. In this code, for clarity, the directives for optimizing hardware
implementation and design are omitted, providing an assessment of productivity and performance in
software implementation.

rge_arrays(int in[SIZE], int width, int out[SIZE]) {
E 1 2

Et 2 width;

il 7 width;

o width;

SIZE) i2 = SIZE;

SIZE) i3 = SIZE;

merge_arrays: for (int i ; 1 < SIZE; i++) {

ant &l = dn] F1 ]y

int t2 (f2 i3) in[f2];
if(f2 i3 (f1 < i2 t1 t2)) {
out[i] 1%
168 J
else{
out[i] 25
f2++;}
if(f1 i2 f2 i3){
f1 13
i2 )*width;
i3 width;

if(i2 SIZE) i2 = SIZE;

if(i3 SIZE) i3 = SIZE;

f2 = i2;}}}
id merge_sort_parallel(int A[SIZE], int B[SIZE]) {
int temp[STAGES TESTZE];

int width 5

merge_arrays(A, width, temp[@]);

width 2

int stage;

for (stage ; stage (STAGES - 1); stage++) {
merge_arrays(temp[stage 1, width, temp[stage]);
width S

merge_arrays(temp[STAGES 2], width, B); }

Fig. 2. Description of merge sort algorithm in C language

During the iterative stages of synthesis optimization, for each given set of array sizes, the following sets
of control directives of the Vivado HLS high-level synthesis system were selected:
» Directives for choosing an interface architecture for implementing reading raw data and writing
sorted data:
- This allows the synthesizer with certain interface architectures to automatically use BRAM blocks
for intermediate storage of an array of numbers;
- This allows you to speed up the steps of reading the source data and writing sorted values in some
cases, depending on the features of the algorithm.
» Pipeline directives for both internal and external loops in the description of algorithms:
- Pipelining allows parallelization of both reading the source data, performing individual steps of
data processing, and recording sorted data in certain cases, depending on the features of the algorithm.
» Dataflow directives for pipelining at the level of data flows, that is, in relation to the considered
implementations of the algorithm, at the level of data processing between cycles:

35



4Computing, Telecommunications and Control Vol. 13, No. 1, 2020 >

- Pipelining at the data flow level allows the device to compose an output array during the sorting
procedure in some cases, depending on the features of the algorithm. That can make the device more
adaptive to the features of the input data, for example, for the case if the array is sorted before the algorithm
passes completely.

Research results

As was pointed above, a set of sorting algorithms were considered for hardware implementations
synthesized by HLS tool. There are several limitations imposed by the HLS tool on the description of
the investigated algorithms. These are:

* Programming language must be C or C ++.

» It must be a non-recursive description.

* Dynamic memory allocation should not be used.

As a result of the research, it was found that for the sorting algorithms of comb and gnome sorting, the
optimal hardware implementations, devices obtained as a result of synthesis, have a similar architecture,
the features of which are:

* Using dual port RAM memory for input array.

» Using the DataFlow directive, which provides for “forwarding” of the processed data between the
internal cycles of the algorithm with the implementation of ping-pong mode.

For the merge sorting algorithm, the hardware solution obtained as a result of synthesis and
optimization, a device that implements the specified algorithm, has the following architectural features:

* Dual port RAM memory is used to store the sorted array.

* Implement pipelining of the merge cycle of two arrays.

» During the optimization of this device, the following steps were applied:

- Arrays for storing intermediate data are divided into separate memory blocks, which allows
simultaneous merging of different arrays;

- Merge loop in the main sorting function are unrolled for parallel implementation of all loop
iterations. In addition to the previous paragraph, this allows you to merge different parts of the entire
array of numbers at the same time, that is, to maximize parallelizing of the sorting process.

Table 1 shows the estimates of hardware “cost” for the implementation of optimal hardware
devices (optimality criteria were considered above) for the indicated sorting algorithms: Comb,
Gnome, Merge.

Table 1
Hardware “cost” of synthesized devices
' Algorithm
(ﬁlﬁrri%?rzg £ Comb Gnome Merge
samples) LCELL, BRAM, LCELL, BRAM, LCELL, BRAM,

num. num. num. num. num. num.

128 634 0 340 0 6260 12
1024 688 0 346 0 9032 18
16384 741 0 354 0 12812 277
32768 798 0 356 0 13877 812
65536 813 0 351 0 14626 1740
131072 849 0 353 0 15591 3712

36



4 A.P. Antonoy, D.S. Besedin, A.S. Filippov, DOI: 10.18721/JCSTCS.13103>

Where:

* LCELL —logical blocks (cells) of FPGA part, that contains look-up tables (LUT) used to implement
logical functions, and synchronous triggers (FF) used to store data.

* BRAM - built-in memory blocks that are used to store intermediate data when implementing the
sorting algorithm. These embedded memory blocks are taken into account while estimating hardware
“cost” of the algorithm. The external memory, which is necessary for storing the source and sorted arrays
is not taken into account because this hardware “cost” is a constant for all sorting algorithms.

For clarity, the data shown in Table 1 about the logic blocks used to implement each of the algorithms
(LCELL) are summarized in one graph, shown in Fig. 3.

16000
14000 ===
12000 ===
10000 s
8000 =
6000

4000
2000

LCELL, num

128 512 2048 8192 32768
Array size, number of samples

Fig. 3. Hardware “cost” of LCELL synthesized devices
(—) — Comb; (---) — Gnome; (— -) — Merge

An analysis of the graphs in Fig. 3 shows that the hardware “cost” for implementing sorting algorithms
with comb and gnome sorting are significantly lower than the hardware “cost” for implementing the merge
sorting algorithm. In this case, there is a directly proportional relationship between the size of the sorted
array and the number of logical cells used to implement the merge sort algorithm.

Table 2 shows the performance estimates for the optimal implementation of all synthesized devices
obtained in the framework of the Vivado HLS development environment.

Table 2
Performance assessment of sorting devices
Algorithm
Array size Comb Gnome Merge
(rsl;rr;llgﬁ rs ;) f _ Latency, _ Latency, . Latency,
Period, ns num. of Period, ns num. ofclc;cks Period, ns num. of
clocks clocks

128 4.066 35219 6.229 32770 5.176 916
1024 4.066 2141219 6.229 2097154 5.176 10269
16384 4.066 537575459 6.229 536870914 5.176 229417
32768 4.066 2148892707 6.229 2147483650 5.176 491804
65536 4.066 8592752675 6.229 4294967300 5.176 1048623
131072 4.066 34371665987 6.229 8589934600 5.176 2228274

37



4Computing, Telecommunications and Control Vol. 13, No. 1, 2020 >

Where:

» Latency is the number of clock cycles of the synchronization signal required to obtain a ready, sorted,
array at the device output.
* Period is the minimum possible period of the synchronization signal.

Therefore, you can calculate the time to complete the array sorting, and, therefore, you can determine
the performance of the synthesized hardware implementation of the sorting algorithm by multiplying the
period and the number of delay ticks.

Table 3 shows the estimates obtained in the framework of the study on the execution time of the selected
sorting algorithms on a universal processor and on the basis of synthesized hardware computers.

Table 3
Estimation of sorting time
Array size Algorithm
(number of Comb Gnome Merge
samples) CPU, s FPGA, s CPU, s FPGA, s CPU, s FPGA, s
128 0.000021 0.000157 0.000046 0.0002041 0.00002 0.0000047
1024 0.00102 0.009651 0.00211 0.01306 0.00016 0.0000531
16384 0.3204 2.3895 0.514394 3.3442 0.00252 0.001187
32768 1.3156 9.5581 2.06334 13.3767 0.00496125 | 0.002544
65536 5.4017 38.2324 8.2765 53.5067 0.0099225 0.005427
131072 22.18 152.782 33.1937 214.0268 0.019845 0.01085

For clarity and simplification of the analysis, the data given in Table 3 are summarized in the graphs
presented in Fig. 4 and Fig. 5. All graphs in the figures are presented in a logarithmic scale: base 10 for
the ordinate axis, base 2 for the abscissa axis.

100 / 1.00E+04 P4
= 1.00E+03 P
10 L’ -1
P 1.00E+02 ’
4 4
1 £ ’
- = o 1.OOE+01 S
S 128 1024 92,7 65526 2 .
g 0.1 e g 1.00E+00 -
’ 7

= = 7

= e —* = rnieniiE zo%z 32768 52428
' 5 1.00E-02 e
0.001 s ’ Pl
7 1.00E-03 ’
I’ I’
00008 =2 1.00E-04 [,
'
0.00001 - 1.00E-05 -

Array size, number of samples Array size, number of samples

Fig. 4. Dependence of the sorting time with a comb (left) and a gnome (right) on the size of the array
(---) — CPU; (—) — FPGA

Conclusions

Analysis of the research results allowed us to draw the conclusions below.
The hardware implementation of the algorithm does not always provide greater performance compared
to the execution of the algorithm on a universal processor. So, the graphs in Fig. 4 show that the execution

38



4 A.P. Antonoy, D.S. Besedin, A.S. Filippov, DOI: 10.18721/JCSTCS.13103>

time of sorting algorithms with a comb and gnome on a universal processor is an order of magnitude
shorter than the time achievable with the hardware implementation of these algorithms. These results can
be explained:

» These algorithms involve sequential operations that are difficult to parallelize using high-level
synthesis tools.

» The clock speed of the universal processor is about an order of magnitude higher than the clock
frequency for hardware implementation: the processor used for the study has a clock frequency of
2.5 GHz, and the synthesized device, as it is not difficult to calculate from the data given in Table 2, is
about 250 MHz. Therefore, in the sequential implementation of the algorithm, the universal processor
demonstrates a tenfold gain in the execution time of the algorithm.

128 512 20148 81152 32768 131p72

0.1
0.01 -

0.001 -

0.0001 o=
""'
"
0.00001 /

0.000001

Time, s
\
\

Array size, number of samples

Fig. 5. Dependence of merge sorting time on array size
(---) — CPU; (—) — FPGA

The merge sorting algorithm allows you to parallelize its execution, so the synthesized hardware
calculator allows you to simultaneously perform several sorting stages, stream parallelization, and several
operations of one sorting stage, pipelining, which provides it with an advantage in speed compared to
running the algorithm on a universal processor, see Table 3 and Fig. 5. Moreover, as can be seen from
Table 1 and Fig. 3, while the number of samples of the processed arrays are increasing, the hardware
expenses are growing as well. The limitation for parallelization is the number of logic elements in modern
FPGA circuits.

The further direction of the research is related to the expansion of the number of sorting algorithms
covered and the search for such algorithms that will maximize the capabilities of modern FPGAs and
high-level synthesis tools, providing a significant performance increase in solving sorting problems
in comparison with the best, with the fastest, implementations of sorting algorithms on universal
processors.

REFERENCES

1. Antonov A.P., Zaborovskiy V.S., Kalyayev I.A. Architecture of reconfigurable heterogeneous
distributed supercomputer system for solving problems of intelligent data processing in the era of digital
transformation of the economy. Voprosy Kiberbezopasnosti, 2019, Vol. 33, No. 5, Pp. 2—11. (rus).
DOI:10.21681/2311-3456-2019-5-02-11

39



4Computing, Telecommunications and Control Vol. 13, No. 1, 2020 >

2. Antonov A.P., Zaborovskiy V.S., Kiselev 1.0. The reconfigurable computational modules in
network-centric supercomputer systems. Sistemy vysokoy dostupnosti, 2018, Vol. 14, No. 3, Pp. 57—62. (rus).
DOI:10.18127/j20729472-201803-09

3. Mantovani F., Calore E. Performance and power analysis of HPC workloads on heterogeneous
multi-node clusters. Low Power Electron, 2018, Vol. 2, No. 8, Pp. 1—14. DOI:10.3390/ jlpea8020013

4. Usman A., Fathy A., Aiiad A., Abdullah A. Performance and power efficient massive parallel
computational model for HPC heterogeneous exascale systems. /EEE Access, 2018, No. 6, Pp. 23095—-23107.
DOI:10.1109/ACCESS.2018.2823299

5. Kobayashi R., Oobata Y., Fujita N., Yamaguchi Y., Boku T. OpenCL-ready high speed FPGA
network for reconfigurable high performance computing. Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region, 2018, Pp. 192—201. DOI:10.1145/3149457.3149479

6. Sreda Vivado HLS. Available: https.//www.xilinx.com/video/hardware/vivado-his-tool-overview.html
(Accessed: 30.01.2020).

7. Intel HLS compiler. Available: https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html >wapkw=HLS (Accessed: 30.01.2020).

8. Catapult HLS. Available: https://www.mentor.com/hls-Ip/catapult-high-level-synthesis/ (Accessed:
30.01.2020).

9. Algoritmy sortirovki. Available: https.//en.wikipedia.org/wiki/Sorting algorithm (Accessed: 30.01.2020).

10. Sorting Algorithm — Comb Sort. Available: https://www.ideserve.co.in/learn/comb-sort (Accessed:
31.01.2020).

11. Gnomya sortirovka. Available: https.//ru.wikipedia.org/wiki/Gnomya_sortirovka (Accessed:
30.01.2020). (rus)

12. Sortirovka sliyaniyem. Available: https://ru.wikipedia.org/wiki/Sortirovka_sliyaniyem (Accessed:
06.02.2020). (rus)

13. UltraScale and UltraScale + FPGA. Available: https.//www.xilinx.com/products/silicon-devices/
Jfpga/virtex-ultrascale.html#product Table (Accessed: 31.01.2020).

Received 16.01.2020.

CINMUCOK JIUTEPATYPbI

1. Aaronos A.Il., 3a6oposckuii B.C., KanseB MI.A. ApxutekTypa peKOH(MUTYPHUPYEMOIi FeTepOTEHHO
pacnpeeeHHOM CylepKOMITBIOTEPHOM CUCTEMBI LIS PellieHUs 3a7a4 MHTEJJIEKTYaIbHOM 00pabOTKU TaH-
HBIX B 310Xy MM PoBOI TpaHCchopMauy 3KoHOMUKY // Bormpockl kmbepoezonacHoctu. 2019. T. 33. Ne 5.
C.2-11. DOI:10.21681/2311-3456-2019-5-02-11

2. AnronoB A.I1., 3a6oposckuii B.C., Kuceaes U.0. CrneuvianusnpoBaHHbIE PEKOH(GUTYPHUPYEMbIE BbI-
YUCJIUTENIA B CETELIEHTPUYECKUX CYIIEPKOMITbIOTEPHBIX cucTeMax // CUcTeMbl BEICOKOM mocTyrmHocTH. 2018.
T. 14. Ne 3. C. 57—62. DOI:10.18127/j20729472-201803-09

3. Mantovani F., Calore E. Performance and power analysis of HPC workloads on heterogeneous multi-
node clusters // Low Power Electron. 2018. Vol. 2. No. 8. Pp. 1—-14. DOI:10.3390/ jlpea8020013

4. Usman A., Fathy A., Aiiad A., Abdullah A. Performance and power efficient massive parallel
computational model for HPC heterogeneous exascale systems // IEEE Access. 2018. No. 6. Pp. 23095-23107.
DOI:10.1109/ACCESS.2018.2823299

5. Kobayashi R., Oobata Y., Fujita N., Yamaguchi Y., Boku T. OpenCL-ready high speed FPGA
network for reconfigurable high performance computing // Proc. of the Internat. Conf. on High Performance
Computing in Asia-Pacific Region. 2018. Pp. 192—201. DOI:10.1145/3149457.3149479

40



4 A.P. Antonoy, D.S. Besedin, A.S. Filippov, DOI: 10.18721/JCSTCS.13103>

6. Cpena Vivado HLS // URL: https://www.xilinx.com/video/hardware/vivado-hls-tool-overview.html
(Iarta obopamenusi: 30.01.2020).

7. Intel HLS compiler // URL: https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html?wapkw=HLS (/lata oopamenus: 30.01.2020).

8. Catapult HLS // URL: https://www.mentor.com/hls-1p/catapult-high-level-synthesis/ (1ara oopa-
mweHus: 30.01.2020).

9. Anroputmbl coptupoBku // URL: https://en.wikipedia.org/wiki/Sorting_algorithm ([laTta obparie-
Hus: 30.01.2020).

10. Sorting Algorithm — Comb Sort // URL: https://www.ideserve.co.in/learn/comb-sort (JIata o6pa-
menwus: 31.01.2020).

11. THombs coptupoBka // URL: https://ru.wikipedia.org/wiki/THombst_copTupoBka ([laTta ooparie-
Hust: 30.01.2020).

12. Coptuposka caussaueM // URL: https://ru.wikipedia.org/wiki/CoptupoBka_ciaussHueM (lata 06-
pamenus: 06.02.2020).

13. UltraScale and UltraScale+ FPGA // URL: https://www.xilinx.com/products/silicon-devices/
fpga/virtex-ultrascale.html#productTable ([laTta oopamenus: 31.01.2020).

Cmamuwst nocmynuaa 6 pedaxyuio 16.01.2020.

THE AUTHORS / CBEAEHUA Ob ABTOPAX

Antonov Alexander P.
AnToHoB Anekcanap Ilerposuy
E-mail: antonov@eda-lab.ftk.spbstu.ru

Besedin Denis S.
Bbecenun Jlenuc Cepreesny
E-mail: 1310nero@mail.ru

Filippov Alexey S.
OumunmoB Anekceii CemeHOBIY
E-mail: alexey.s.filippov@gmail.com

© CaHkT-MNeTepbyprckuii NonMTEXHUYECKUI yHuBepcuTeT Metpa Benukoro, 2020

41



