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The article proposes a new approach to the use of computer vision when controlling a robot
in a dynamic environment. While moving along an unchanged path to the target point, a robot
can encounter any new object (static or moving). We describe a visual analysis to determine the
detection distance of moving objects to prevent collisions with the robot in a timely manner. An
obstacle detection algorithm in the robot zone was developed based on data from an RGB-D video
camera using computer vision methods. Based on ROS in a Gazebo virtual environment with a
Turtlebot robot kit and an open source library (opencv), we adopted software implementation of the
developed approaches which confirmed their applicability to the detection of objects in the mobile
robot environment.
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NMPUMEHEHUE CUCTEMbI TEXHUYECKOIO 3PEHUA
nPU YNPABJIEHUU MOBWUJIbHbIM POBOTOM
B AJUHAMUYECKOW CPEAE

. [laeep

CaHKT-lMeTepbyprckmii NoAUTEXHUYECKUI yHMBEpcUTeT MeTpa Beankoro,
CaHKT-lMeTepbypr, Poccuitickan dPeaepaums

[IpemroxxeH HOBBIM MOAXO K MIPUMEHEHUIO CHCTEMBI TEXHIMYIECKOTO 3PSHUS TIPH YIIPaBICHUU
MOOWJIBHBIM POOOTOM B IMHAMUUYECKOI cpeie. Bo Bpems nBUKeHUSI IO HEU3MEHHOM TPaeKTOPUH
K 1IeJIEBOI TOUKE Ha MYTH poOOTa MOXKET IMOSIBUThCS JII0OO0I HOBBIN O0OBEKT (CTaTUUECKUIA WU
MOJBMXHBIN). B cTaThe onmucaH BU3yadbHbIM aHAINU3 1JIsI OTIPEeIeHUST pACCTOSIHUS, Ha KOTOPOM
JIOJDKHO  TIPOUCXOIUTh OOHApykKeHHe OO0BEKTOB, [II CBOEBPEMEHHOTO TPEIOTBpAIICHUS
CTOJIKHOBEHUS ¢ POOOTOM. AJITOPUTM OOHApYKEeHUSI TIPEISITCTBUI B 30HE poO0OTa pa3padboTaH Ha
OCHOBE BU3YaJbHBIX TaHHBIX 0T RGB-D Bumeokamepbl ¢ MOMOIIBIO METOTOB KOMITHIOTEPHOTO
3peHusi. Ha ocHoBe ¢peitmBopka ROS B BuptyanbHoii cpene Gazebo, a TakKe MpH ITOMOIIU
komriuiekta Turtlebot m OMONIMOTEKM C OTKPBITHIM MCXOAHBIM KOAOM (Opencv) HamucaHa
MporpaMMHasi peajin3anus pa3paboTaHHBIX MOIXOAOB, MOATBEPAMBINAS WX MPUMEHUMOCTb K
00HapykeHUIO0 00BEKTOB B Cpeiec MOOMIBHOTO poboTa.

KnioueBbie caoBa: MOOWIbHBII po0OT, AMHAMUYECKas Ccpena, HaBMTIalus, CHCTeMa
TEXHUYECKOTro 3peHUsl, 0OHapyXeHNUE 00BEKTOB.
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Introduction

Moving object detection in video streams is an interesting problem with a very wide range of vision-based
application fields, such as action recognition [1], traffic control [2], industrial control [3], identification
of human behavior [4] and intelligent video surveillance [5]. The general idea of detecting moving objects
is to represent a set of related image pixels in a video sequence having a coherent motion in time (time
aspect) and semantic similarity in the image space (spatial aspect) [6].

In this article we try to solve this problem for the purpose of robot navigation. Global path planning algorithm
usually uses priori information to build a complete model of a structured environment, and then tries to find
the best possible solution. But information is scarce in unknown or unstructured environments, so users need
to combine the route planning method with local or reactive navigation using built-in sensors to locally observe
small fragments of the environment at any time. A problem of detecting moving objects and responding to
obstacles arises in this scenario. The most common approaches are: firstly, a proximity sensor belt (ultrasonic,
infrared, ...) mounted on the vehicle, allowing for discrete scanning of the space around the robot; secondly, a
rotating laser beam, often associated with a viewing system, which leads to a continuous assessment of the free
area around the vehicle. The issue of accounting for moving obstacles in the management of a mobile robot
still requires further research. We have a look at different ways to solve the problems presented in a number of
studies. In the papers [7, 8] where laser scanners are used to detect obstacles the approaches described have
limitations on the type of object’s movement and the environment in which the robot can move; laser scanners
are also rather expensive. In other studies, robot navigation is described using an on-board camera and video
data. The purpose of detecting a moving object is to take a video sequence from a fixed / moving camera and
output a binary mask representing moving objects for each frame of the sequence. However, this is not an easy
task due to many problems and difficulties that arise when using a camera to capture a video sequence of moving
objects. We categorize the existing methods to solve the problem in Table 1.

Table 1
Moving object detection from moving camera

Category Positive points Negative points

* Moderately complex

* Goodforrealtimeapplications
* Providing good  object’s
silhouette

* Not good for free camera motion
* Accuracy is highly dependent
on background model

Background modeling [9-11]

» Very sensible to noise

* Providing good object’s| * Does not provide information
Trajectory classification [12, 13] | trajectory over time on object’s silhouette

* Moderately complex * Accuracy is highly dependent
on motion tracker mode

* Does not provide information
on object’s silhouette

* Needs initial good selection
of the object

* Good performance with all
Object tracking [14-16] camera motion
* Moderately complex

» Requires a collection of frames

’ ngh_ly'accurate .., |+ Not suitable for real-time
* Providing good object’s S
applications

silhouette + Highly complex

Low rank and sparse
representation [17-19]
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In this work, we try to solve these problems for navigation of a mobile robot in a dynamic environment
on an unchanged path using the on-board vision system (an RGB-D Camera).

Problem statement

Let’s have a transport robot on a flat underlying surface. There are static obstacles (walls, columns, tables,
chairs, etc.), as well as moving obstacles (people, other robots), which are physical bodies that conform
to the laws of dynamics. Let us also have a planned path for the robot, which cannot be changed during
movement, in order to transfer material to the target point in the coordinates of the room. Such tasks arise
during automation of transport operations in warehouses in which there are mobile objects —robots, people,
etc. As a result, the system must position the robot at the target point, moving along the planned route and
avoiding moving obstacles using high-speed adaptation method. It uses the computer vision system for this
purpose while minimizing the movement time. Such transport robots, as a rule, can move at the maximum
speed V= 1+1.5 m/s and acceleration 4, = 0.1+0.7 m/s. In our task we consider that the maximum
speed and maximum acceleration of therobot V. =1.5m/s, A ~=0.3m/s.

During the task of transportation, the robot should not deviate from the route, and has to avoid collisions
with objects (Fig. 1), which can appear on the way. For this, we need to detect all objects (moving and
static) on the way by using a vision system. In our task, we have no condition on the movement direction of
objects, so objects can move in any direction. At the same time, they are solids with an unchanged shape,
the maximum value of speedis V, = 1.5 m/s.

First of all, we have to calculate the distance for detecting the object, on which we have to slow down,
because this is one of the most important factors for evaluating our work.

RI

Fig. 1. Example of an environment in which a mobile robot moves, containing moving obstacle objects O1—05,
here R1 =S (the distance at which a moving obstacle is to be detected),
R2 = § (distance to the robot full braking)

Suppose we have robot acceleration A , speed V, then the braking distance S is determined by the formula:

V=2 A7, 0
V2

S =—"r 2
T 2)
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In our study the maximum velocity of the robotis ¥/, = 1.5 m/s, the maximum accelerationis 4 = +
0.3 m/s?, by the formula we get S, = 3.75 m. In this paper, we consider a dynamic environment with moving
objects. So, in our case, the formula for determining the distance S, for detecting obstacles moving at a

constant speed, should be:

S, =8, +V,*T,,

where V is the maximum speed of the moving object; 7, — time to stop, which can be calculated:

V

r

z__Ar'

At the maximum acceleration and speed of the robot, the time to stop 7, = 1,5/ 0,3 = 5 s. Thus, the
detection of objects should be at a distance not less than §, = 3,75 + 1,5°5 = 11,25 m, in case the object
moves towards the robot.

Methodology development

Suppose we have a point with coordinates [ X , ¥ , Z | in the world coordinate system. We want to
translate these coordinates into a robot camera coordinate system [ X ,Y , Z | and into image coordinate
system | X,-mg s }f,mg]. To do this we have to build matrix P, to convert the world 3D coordinates to 2D image

coordinates. Since we are using a digital camera, we will use a “pinhole” — a camera with a small hole instead
of a lens or with a lens that simulates this effect. So we can describe the projection matrix in this way:

P=K*[RJt], )

where Kis the internal matrix of transformation of three-dimensional coordinates of the camera into two-
dimensional coordinates of the image (Fig. 2); [ R|¢ ] — the extrinsic matrix transformation of the camera
which describes the camera in the world coordinate system, and the direction of its view.

/K

YA ¥ Image coordinate

S —
Camera coordinate
X /

» A

[RIT]

Fig. 2. Conversion from world coordinates to image coordinates
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Thus, we have a projection from the world coordinate system to the camera coordinate system; therefore,
we can acceptthat Z =X, +Z asthesum X , Z alsofor X , Y.

Since we assume we know the movement characteristics of the robot (position, speed and acceleration),
so we will use the camera coordinate system [ X ,Y ,Z |.

Analysis of the object movement in the camera coordinates

We accept that objects move on a flat surface; therefore, we consider the movement of the objects in
the XY plane in the robot coordinate system. We will try to describe how the real move of the objects in the
robot coordinates system reflected on the image coordinates.

Depth axis movement (object speed on Z axis).To find how the movements of objects along the Z axis
(depth axis) can be reflected in the image from the robot camera, we consider the relationship between the
change in length of the line segment from object and the change in depth of the object. Let’s consider two
points on the image with coordinates ( X \img ? Y”mg ) ( le.mg , Y2I.m'g ), the distance between these two points L, :

(Lt )2 = (X]timg _X2timg )2 +(Ktimg _I]2timg )2.

Using equation (4) we can rewrite as:

2 2
F*X F*X F*Y F*Y,
(Lt)z :( lte _ 2tcj +[ lic _ 2tcj ‘

VA VA VA Z

ltc 2tc ltc 2tc

Suppose that we observe two points belonging to one object, which does not change its shape or rotate
around any of its axes, in other words the object is either static or moving in a straight line, so that Z, = Z,
in the camera coordinate system. Then we can rewrite:

Z Z : . (5)

tc tc tc

(L) - [F*(Xm —sz)]zJ{F*(K,C—IG,C)T (F*Lx) +(F*Ly)

Now, let’s look at the change of the length of this line segment between two frames L , L

2 (F*Lx) +(F*Ly)
L[ Z 2 Z 2
( )2 — > fc > — t+02 ) (6)
(L.) (F*Lx) +(F*Ly) Z.
Z 2

t+c

From this equation (6) we notice that (Z) = (Lf) which means that change in the length of a line
segment from one object is inversely related to the change of the depth of the object. We can calculate a
change of object coordinate in Z axis (depth information), but it is relative to depth value. Thus, we require
information about depth (approximate) to calculate the change. These changes of depth information
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represent the speed of the object along Z axis. For this purpose, we use pixel depth data from the matrix of
a digital RGB-D camera.

Vertical axis movement (object speed on X axis). To demonstrate the way object movement on the
vertical axis is displayed on the image in the robot camera, consider one point with image coordinates

img® " img*

Based on equation (4), we can write X,-mg , X,.mg as follows:

Consider the change in its coordinates between frames:

7 Xa x _w

ct

_ Ko =
F X imgt+1 _% ’

7 Xct+1

ct+l

(7
-w
Ximgt 2 * Zt

ct ¢

Xct+1 Ximgt+1 B % th+1

From this equation we can conclude that there are two factors affecting the movement of points in
the image on axis XW . The first factor is the movement of the point itself in space along X axis. The
second one is its movement along the depth axis in such a way that both approximation and removal
of the image of the controlled point eliminates the effect on the image of its movement along the
depth axis.

The proposed approach

The general concept of our proposed method (detection of moving objects based on featured
fragments) is shown in Fig. 3. As seen, the first step is the initialization of the featured fragments using
the first set of frames. Next, we go in a cycle:

- Find comparisons of the featured fragments on the next frame.

- Then calculate the change in the position and length of each fragment between two frames.

- Update the fragment data.

After every round we send the fragment data to the robot control unit, where changes are analyzed
and decisions are made for control of the robot speed. Color and depth frame sequences from an RGB-D
camera comprise the inputs of the system. The goal is to provide information about the presence of
moving or non-moving objects to the robot controller in order to decide (increase, decrease or not
change) the speed of the robot.

Initialize featured fragments. In our task we propose that we don’t have to find the whole moving object
in the frame but the most interesting part of the object only for our task. We suppose this part is the edges
that separate the body of the object from the background or other objects. That is a very widely studied
problem called edge detection. To solve this kind of problem we use the Canny edge detector' developed in
1986 by John F. Canny. It uses a multi-stage algorithm to detect a wide range of edges in images. As a result
of the Canny algorithm, we get a black and white picture where white pixels form the borders or edges that
separate the objects. For better precision we have to filter the results of edge detection.

! https://en.wikipedia.org/wiki/Canny edge detector
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Initialize featured fragments

Find the best matching
fragment in the next
frame

Update the data on the Calculate changes parameters
featured fragment of the featured fragments

v

Robot controller

Fig. 3. Scheme of the proposed approach

Filtering featured fragments. The task of filtering is to remove false and unused points and fragments
from image results after the edge detection phase. In order to apply such filtering, we need contours which
represent curves connecting all the continuous points (along the boundary of an object) of the same color
or intensity. Filtering is carried out on two bases:

- The length of the fragment itself (using fragments with length starting from 32 pixels).

- The depth of the point (up to 10 m).

Find the best matching fragment in the next frame. For the next step we propose to convert these
fragments of the images into a set of segment lines and represent their by the two points ends segment. We
use two methods for this step:

- The Hough transform to find imperfect instances of objects within a certain class of shapes (segment
line) by a voting procedure.

- We use two ends of the contours that we found earlier as the two ends of a line segment.

As a result, we get a list of pairs of points we track between frames using an optical flow algorithm, based
on the Lucas—Kanade method'.

Calculating changes parameters of the featured fragments
between two frames (determining the speed of objects)

We represent each pair of points (single segment line) as a separated object and try calculating the
change in the length and position of this object (segment line) between two frames to find the speeds on
vertical axis V and depth V.

1. Speed V

We use an RGB-D camera that gives us depth data. For our task it is very important to measure depth
error and how it increases with depth value. Khoshelham [2] studied a model for measuring depth error
in the Kinect model camera (RGB-D) and concluded that the uncertainty of depth measurement is

. 1 . e .
proportional to the square of the depth value 6. =—0 ddz, where d is depth o, standard deviation, fis
the focal length. For Intel® RealSense™ Depth Camera D435i errors increase quadratically from a few

millimeters at a distance of 0.5 m to ~5 cm at the maximum distance of 10 m.
Therefore, we cannot get depth changes between frames from the depth data of the camera, but we can
use the depth data from equation (6) to find the speed of an object:

! https://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade method
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where L is the length of a segment line at frame 7and Z_is the depth of the object from the robot at the
frame 7.

2. Speed V

We can calculate the projection of the velocity of object V relative to the coordinate system of the
mobile robot by the formula:

W
A o Ka _ Xing = o Z.,
oX X —V Z
ct+l imgt+1 2 ct+l

)
I/ox = ASyr /t .

Testing the developed approaches

To test our method, we performed a precision-recall curve. Using virtual implementation in an
environment (ROS), we examined two metrics (precision-recall) for detecting moving objects at the
pixel level and at the object level. The results are shown in Fig. 4.

| 14
14

i, 08 -
=

=
= 2 06
Z 0B £
b 5]
2 - 2 04 -
£ 04 &

02 - 0.2

001 011 021 031 041 051 001 013 025 037 049

Recall Recall

Fig. 4. Quantitative analysis of our approach
Precision-recall curve at the pixel level (left) and at the object level (right)

We also compared our results to a study conducted with the use of lidar [20]. Table 2 shows our result
do not deviate much from lidar results, although we had only an RGB-D camera instead of some very
expensive pieces of equipment.

Table 2
Comparison of the proposed method to lidar detection
Ttigr(c)ibj #C(c)){)lject #Wrong Obj Precision Object Rcl | Sec./frame
Lidar [20] 52 48 0 1 0.9231 0.26
Proposed
method 50 40 2 0.96 0.8 0.3

26



4 F. Daeef, DOI: 10.18721/JCSTCS.13102>

0.8 +

EPE

0.6 -
0.4 +
0.2 -
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Fig. 5. Endpoint error (EPE) and the distance of the object from the robot

sEOmenisviie

-

Fig. 6. Example of application based on ROS in Gazebo virtual environment with a Turtlebot robot kit.
There are a general view of the scene (left), 3D image (center), and the result of the proposed method (right)

To analyze the tracking method, we consider a metric (EPE) that determines the error of the end-to-
end point and how the distance of the object from the robot affects it. The end-point error is calculated
by comparing the calculated optical flow vector V,_ with the true optical flow vector Vgt for each point.
We calculated this metric for each point in the list that we received in the previous step, in a static scene,
because we know how they should move in the image (surface truth). Endpoint error is defined as the
Euclidean distance between the two points: 4= |V, — v, | .

Using a virtual implementation, we were able to calculate the optical flow error EPE as a function of
the distance of the object from the robot. We examined the values of the optical flow of static objects, the
coordinates of which we know in the absolute system. We can calculate their coordinates on the images
in each frame, then we calculate the error of the optical flow. Note in Fig. 5 that the closer is the object
to the robot, the greater the error.

Conclusions

A detailed analysis of the environment of the mobile robot allowed us to solve the problem of
calculating the braking distance and the distance of detection of obstacles to prevent collisions with
them. The developed software implementation of the proposed approaches uses ROS (Robot Operating
System) middleware (Fig. 6), which provides developers with libraries and tools for creating robotic
applications. Our study conducted on a mobile robot with a caterpillar chassis confirms the applicability
of our approach to analysis of a dynamic environment in real conditions when navigating transport
robots in warehouse and workshop premises.
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