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In recent years, with the continuous improvement of theory in artificial intelligence,
artificial neural networks has become novel tools for machine translation. Compared
with traditional Statistical Machine Translation (SMT), neural network based Neural
Machine Translation (NMT) transcends SMT in many aspects such as translation
accuracy, long distance reordering, syntax, tolerance to noisy data et al. In 2014, with
the emergence of sequence-to-sequence (seq2seq) models and attentional mechanisms
introduced into the model, NMT was further refined and its performance was getting
better and better. This article uses the current popular sequence-to-sequence model to
construct a neural machine translation model from English to Chinese. In addition,
this paper uses Long-Short Term Memory (LSTM) to replace the traditional RNN
in order to solve the problem of gradient disappearance and gradient explosion that it
faces in long-distance dependence. The attention mechanism has also been introduced
into this article. It allows neural networks to pay more attention to the relevant parts
of the input sequences and less to the unrelated parts when performing prediction
tasks. In the experimental part, this article uses TensorFlow to build the NMT model
described in the article.
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MOZEJIb SEQUENCE-TO-SEQUENCE
B AHI/10-KUTAMCKOM NEPEBO/AE

TaHv YoxaonuHw, YxaH BatiBau

CaHkT-TetepObyprckumn nonuTexHMuecknm yuuBepcurer lMetpa Benmkoro,
CaHnkr-letepbypr, Poccunckas Pepepaums

B mocienHue roapl, B CBA3U C MOCTOSTHHBIM COBEPILIEHCTBOBAHUEM TEOPHUH HC-
KYCCTBEHHOTO MHTEJJICKTA, HOBBIMM MHCTPYMEHTAMM MAIIMHHOTO TIEPeBOJA CTaJIN
MCKYCCTBEHHbIE HelipoHHBIe ceTU. HelipoHHbI MalHHbINA nepeBoa (NMT) nmeer
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3HAUYNTEJIbHBIC TIPEUMYIIECTBA IT0 CPABHEHUIO ¢ TPATUIIMOHHO MCIIOIh3yeMbIM METO-
JIOM CTaTUCTUYECKOTO MallIMHHOTO repeBosa (SMT) B Takux acrnekrax, Kak TOUHOCTh
TepeBona, N3MEHEeHNE TTOPSIIKA CJIOB B INTMHHBIX TIPEIUIOKEHUSIX, CHHTAKCHC, TTIOME-
XoycTtoiunuBocTh 1 T. 1. [Tocime Toro kak B 2014 romy mosBMIMCh MOJENM TepeBO-
JIa TI0 CXeME «ITOCJIeI0BaTeIbHOCTh-B-TIOCIEAOBATEILHOCTE» (seq2seq) M MeXaHU3MbI
BHMMaHUsI, BBeICHHBIE B MoJeIb, MeToabl NMT mpomosmkanu coBeplIeHCTBOBAThCS,
yIIydIIajlach WX TIPOM3BOIMTENIFHOCTh. B IMaHHOI cTaThe IS MOCTPOCHUS MOICIN
HEMPOHHOIO0 MAIIMHHOTO MEePEeBOJA C AHIJIMMUCKOIO HAa KUTAMCKUIA MCII0Jb30BaHA
TomyJIsIpHasT B HACTOSIIIIee BpeMsI cxeMa TiepeBoja seq2seq. Kpome Toro, BMecTo Tpa-
IULIMOHHO TIPUMEHSIEMOM PEKYPPEHTHOW HEMPOHHOUW CETU B CTAThE IUISI PELICHUS
BO3HUWKAMOIIEH MPoOIeMBl B3phIBa M MCUE3HOBEHUS TPaIWeHTa IS JUIMHHBIX CTPOK
HCITOJIb30BAaH METON HOJIroit kKpaTkocpouHoii mamsatu (LSTM). Paccmorpen mexa-
HU3M, TTO3BOJISIONINIA HEUPOHHBIM CETSIM YIEIATh OOJbIle BHUMAHUS COOTBETCTBY-
IOIIMM YacTSIM BXOIHBIX ITOCJIEIOBATEIbHOCTEHl M MEHBIIIe — HECBSI3aHHBIM YacCTSIM
NP BBITIOJIHEHWHM 3a7ad TPOTHO3MPOBAHMS. B 3KCIepMMEHTAbHOM YacTH CTAaThU
1711 moctpoeHust onucanHoi moaenu NMT ucnonb3oBan TensorFlow.

KmoueBbie ciaoa: NMT, seq2seq, LSTM, MexaHnM3M BHUMAaHUS, KOIUPOBIIMK-
nexkoaep, TensorFlow.

Ccpiika npu mutupoBanum: TsHbp Yxkaonuub, YUkan Boiiait. Mopmens Sequence-
to-Sequence B aHmIO-KWTalickoM TiepeBoae // HaydHo-TexHuveckue BeIOMOCTH
CIIoI'TTY. Nuadopmatuka. TenekommyHmkamuu. Ympasienne. 2018. T. 11. Ne 2.
C. 55—63. DOI: 10.18721/JCSTCS.11205

1. Introduction

Introducing more reforms and implementing
the One Belt One Road strategy, China is
increasingly participating in international
affairs. However, due to the peculiarity of the
Chinese language, it is difficult for non-native
speakers to master Chinese in a short period
of time. In addition, due to the differences
in grammatical logic between Chinese and
western languages such as English and Russian,
traditional statistical machine translation often
fails to achieve satisfactory results. As more and
more Chinese people travel around the world,
and people in other countries are increasingly
interested in China, Chinese, the world’s most
spoken language, and English, the world’s most
widely used language, produce an inevitable
intersection.

Continuous improvement of relevant
theories of artificial intelligence in the field
of machine translation and the continuous
popularization of high-performance hardware
devices in the 21% century have paved the way
for large-scale application of artificial neural
networks in machine translation and created
a rare opportunity for further development
of neural machine translation. In 2013,
Kalchbrenner and Blunsom proposed an end-
to-end encoder-decoder model for machine
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translation. However, the traditional RNN
used in the decoder has a problem of gradient
disappearance and gradient explosion, making
the model difficult to practically handle long-
distance dependences. Also in 2013, Gravse
et al. applied deep bi-directional LSTM to
speech recognition, paving the way for deeper
applications of bi-directional LSTM in Neural
Machine Translation (NMT). In 2014, Cho
et al. proposed a new sequence-to-sequence
model and used LSTM (actually, LSTM is a
variation of RNN) instead of traditional RNN as
encoder and decoder. In the same year, Bengio
et al. introduced the attention mechanism
into NMT so that the neural network can pay
more attention to the relevant part of the input
sequences and pay less attention to the unrelated
part when performing prediction tasks.

This paper uses a mature seq2seq model to
construct a translation model from English to
Chinese. The structure of this paper is roughly
as follows. The second part introduces data
sources and data preprocessing. The third
part introduces the theoretical part of the
encoder, attention mechanism and decoder
in the seq2seq model in detail. The fourth
part introduces the experimental results, the
approximate implementation of the model,
and the evaluation results of the model. The
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fifth section introduces recommendations for
further research in the future.

2. Data Source and Data Preprocessing

The data used in this paper comes from
the United Nations Parallel Corpus [1]. The
English-Chinese parallel corpus contains
almost fifteen million sentences. All these
materials contain content which was produced
and manually translated from 1990 to 2014,
including sentence level alignments.

Before building our seq2seq model, we
need to do some preprocessing with the parallel
corpus.

e Handling training/testing dataset: We
extract 100,000 sentences from the parallel
corpus as the testing dataset and the remains
are the training dataset.

e Handling source sentences: Add “BOS”
in the beginning of sentences and “EOS” in
the end of sentences.

e Handling dictionaries: Generate two
dictionaries for Chinese and English based on
the training dataset.

e Handling unknown words: If some
vocabularies/words from the testing dataset do
not exist in those two dictionaries, use “UNK”
to replace them.

e Handling input sequences: Generate one-
hot vectors based on the original sentence and
two dictionaries. Then combine these one-hot
vectors as input sequences.

3. The Model
Encoder. Assuming the input sequence
x =(xy, -+, xp), the traditional recurrent

neural network (RNN) calculates the hid-
den state vector h=(h, ---, h,) and output

y=(,, -, y;) by iterating the following
equations from =1 to T:

by = HW X, + Wiph_ +b,), (1

Vv, = Whyh, + by, )

where W, denotes the input-hidden weight
matrix, W), denotes the hidden-hidden weight
matrix, W, denotes the hidden-output weight
matrix, b, denotes the hidden bias vector, b,
denotes the output bias vector and H is the
hidden layer function.

However, we found out that the Long-

Short Term Memory [2] has its advantages by
using a gate mechanism in dealing with long
distance dependences. So we use the LSTM
cell proposed by Gers et al. in 2002 [3]. So
here in our model, H is implemented by the
following equations:

iy =oWyx, + Wyh_ + Wac, . +b),  (3)
[ = G(fox, + thh,_l + chc,_l + bf), 4)
¢, = fic,, +itanh(W x, + W, .h_ +b,), (5)
o, =W x, + W, ,h_+W_,c,+b), (6)
h, = o,tanh(c,), (7)

where o denotes the logistic sigmoid function,
and i, f, o, ¢ denote the input gate, the forget
gate, the output gate and the cell activation
vectors respectively, all of which are the same
size as the hidden vector 4.

A disadvantage of the traditional recurrent
neural networks is that they are not able to
take advantage of subsequent context. In this
paper we use a bidirectional recurrent neural
network [4] to process input sequences in both
directions by using two separate hidden layers,
and then feedforward to a same output layer.
The calculation of the forward hidden state 4,
the backward hidden state 4 and the output se-
quence y is shown below:

b= HOW ;x, + W h_ +b), (8)
y, = Wﬁyiz, + Wﬁyﬁt +b,. (10)

Here we can also use LSTM, which is men-
tioned above, to replace the traditional recur-
rent neural network cell [5, 6]. As a result, bi-
directional long-short term memory is the basic
structure of the model in this paper.

Furthermore, it has been proved that the
performance of a deep neural network is always
better than of that with a single layer. In our
case, it is totally possible to stack several lay-
ers of bidirectional RNN to generate a deep
bidirectional RNN [9]. Assuming all the hid-
den layers are sharing the same function, the
calculation of the hidden state in n'" layer is
shown below:

fl,n = H(Wﬁnqﬁn + Wh‘nﬁnilt,i] + bg), (11)
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(12)

If we define 4° = 4° = x, then the output
of network y, is:

y, = W;;"yhtn + W};nyh,” +b,. (13)

Attention Mechanism. In this paper, we
implement a global attention mechanism [7, 8]
in our model. Firstly, we take the hidden state
h, at the top layer of deep LSTM and gener-
ate a probability distribution based on the con-

text vector ¢, to help predict the current target
word y,. The equations are shown below:

h, = tanh(W,[c,; 1),

E[n = H(Wl,;nfl/;n + Wﬁnh“n Et’i] + b,?)

(14)

P,y < t,x) = softmax(W,h,),  (15)

where 4, denotes attentional vector.
The idea of the global attention mechanism
is to consider all hidden states of the encoder
when calculating the context vector ¢,. In this
mechanism, by comparing the current target
hidden state A, with every source hidden state
h,, we may get a variable-length alignment
vector a,, whose size equals the number of
time steps on the source side:
exp(score(h,, }TS )

(16)

a,(s) =

Zs‘exp(score(h, ,hy)) '

v
-

agreement
on

the
European
Economic
Area

was

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

ao(t

1992

<end=>

The score can be calculated in three ways,
all of which are shown below:

lérié dot
score(h, b)) = W' W, h, ~ general (17)

ng;fu concat

In our model, we use the general score (the
second one in Eq. (17)), which has been proved
to be the best one [7], to compute the align-
ment vector a,. Consider the alignment vector
is weights, we use the weighted average over all
the source hidden states to generate the context
vector ¢,. An example of the attentional vector
is shown in Fig. 1 [8].

Decoder. The decoder is trained to predict
the next word y, based on the given context
vector cand all the previously predicted words
{yi, -+, v} [10, 11]. The calculating function
is shown below:

T
p» =] [pG 11 0 yiahio), (18)
t=1

where y =(y, -, yTy). Here, the conditional
probability in the recurrent neural network can
be also defined as:

p(yt|{y19 cey yt_l}ac) = g(yt_l’ htac), (19)
where gdenotes a nonlinear function that

signed
in
August
1992
<end>

Fig. 1. English-French sample alignments found by RNN search-50. (Bahdanau et al., 2014)
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outputs the probability of y,, A denotes the
hidden state of recurrent neural network [12].

In our model, every conditional probability
described in Eq. (18) is defined as

p(ytlyla ceey ytflax) = g(ytflah]:cz)a

where 7,
equation:

(20)
is computed by the following

b= f(h_, yi,¢). (21)

Be advised, the probability here is
conditioned on a distinct context vector ¢, for
each target word y,. The context vector ¢, can
be obtained by the method described in the
previous section.

4. Experiments

Dependency. First our model is running on
Linux. And we need the following tools to be
ready.

e Python >= 3.5

e TensorFlow >= 1.2

e Numpy >= 1.12

It is preferable to have a GPU to help speed
up the training process [25].

Model Structure. Fig. 2. shows a brief
structure of our model. Here in our model, we
have a double-layer bidirectional LSTM as an
encoder and two-layer LSTM as a decoder. The
detailed initial configuration of the encoder and
the decoder is shown below.

Encoder

e Hidden state size: 1024

e Number of layers: 2

e Input keep probability: 1.0

e Output keep probability: 1.0

Decoder

e Hidden state size: 1024

e Number of layers: 2

e Input keep probability: 1.0

e Output keep probability: 1.0

Other configurations

e Learning rate: 0.0005

e Batch size: 128

e Beam size: 5

e Size of attentional vector: 512

Model Evaluation and Result Analysis. First,
we use cross entropy as the loss of our model.
Fig. 3 shows the variation of cross-entropy dur-
ing the iteration: as the training progresses, the

Input Sequence

Encode Source Sentence
via RNN Encoder

Generate Encoded
Representation

Encoder

Generate Attentional
Vector

Attention Mechanism

Query via Attention
Mechanism

Generate Target
Sentence

Decoder
LSTM LSTM

Cell Cell

LSTM LSTM

\\c? Cell

Output Sequence

Fig. 2. The structure of the EN-CH model
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Cross Entropy Loss

o 50000 100000 150000

200000
Global Step

250000 300000 350000 400000

Fig. 3. Cross Entropy Loss

cross entropy decreases gradually and settles at
around 0.5 and between 0.1 and 0.9, showing
that the model is still quite effective.

We also notice that the losses vary in a rela-
tively large range after the model was trained
over 50,000 steps. That’s because the model
performs better with shorter sentences then with
longer ones. When input sentences are short,
the translations by the model are exactly the
same with the standard translation most of the
time, and, therefore, the losses in this moment
may be close to zero. When input sentences are
long, the translations by the model may not be
accurate, but still acceptable, or, compared to

the standard translations, express the idea in
another way. All of this is the reason why the
losses under such circumstances are relatively
larger than those for short sentences.

Table 1 shows some examples of short sen-
tences.

Table 2 shows some examples of long sen-
tences.

Secondly, we use a BLEU score, a kind of
self-evaluation method for a machine transla-
tion model, to evaluate our model. The BLEU
score is computed based on the test dataset.
BLEU score is computed by the following
equations [13]:

Table 1
Example of short sentences
Step/Loss Translations by model Standard Translations
A2 7 p 4k ALy IpFab
229500/ 0.360127 (WFRIHS) (WFRIHES)
KA [ER ez B e WA R etz B RELE
AR AIT WAKIPAIT
277000/ 0.335871 AR E S b MEMHTH
R AL TR R AL 1A
BRI H 40 BRI H 40
283500/0.315215 SRBKIE SwHKE
FLA PN E ML YN AL E SR
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Table 2

Examples of long sentences

Step/Loss Translations by model Standard Translations
ERERUMEER , WAEES | ZRSXUMESESE, IITEEFRE
A TR TS NE BT B A I il e TR B IR ER
AANEREYL ,  WNEEREPESOR | A5 REER , SRR EPESE
276500/0.715091 | ¥, ZEEATH)PRESR TERXNERT] | R, ZAMTAMR wTRER AT TIX—
#

FERR W E ,  BEEERRERFREA
T H A2 B TR

FERIREW L, PRERSRE R — I
A B S LA THIRER 2

277500/0.894594

TEEM SRR S ) M X N BT T3
R RTRrE R, il TR B
SRR PRIRIRAAS QIR R R

fEm M S LR, DT
W T T AT RR RO HE Ok R, IR
i AT AR E B 2R BEIR AR AT B
WAl

T4 IS Kb A O S 51 T 55
WEMES ,  JLEERES B
B BRUEFETHABPEI P B HERA .

H T A b 70 2 A i A T 4 S
FEM S IREME DR , LHAkeR
S 2 BE M PRI SRR L I 7
FHIUERAPE

Z3 DR AT — /> OB n) U Ok IR R
%o, 20014ETE B I — R I TiX — ]
B ERABOF RSN EESLITFRT

R RSP R A — A A ]
FERNREERTA ; 2001485
T8 IX AN [ /8 R 1] 15 J2 2 WIETE

FRTAE, gz,
1 ifesr competitive environment, the NMT technology
BP :{ v/ ; (22) is making significant progress. NMT will also
e ifc<r . ; .
be continuously improved in many aspects,

N
Bleu = BP - exp [an log l’n} (23)

n=l1

N
log Bleu = min (1 _r , 0) + Zm,, log Pn,(24)
¢ n=1

where BP denotes the Brevity Penalty, ¢ denotes
the length of the output sentence, r denotes the
length of the standard translation sentence, N
equals 4 and o, equals 0.25.

In our model, we got a 26.6 bleu score for
the English-Chinese task.

5. Further Development of NMT

In the rapidly developing and highly

including:
e Rare word problem [14, 15]
e Use of single-language data [16, 17]
e Multilingual Translation / Multilingual
NMT [18]
Memory mechanism [19]
Language fusion [20]
Coverage issues [21]
Training process [22]
A priori knowledge fusion [23]
Multi-modal translation [24]
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