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Geological models of Digital oil fields (DoF) require information about structural
properties of subsurface media. 3D models of structural properties of subsurface
media are based on data from field seismic survey. Seismic survey is one of the few
universal geophysical methods of obtaining information of the Earth subsurface. A
reflected signal as a part of seismic data provides information of the properties of
a medium through which it has passed. Reflectivity coefficients are determined by
fluctuation of the medium’s elastic properties and serve as a basis for interpretation
of seismic data as well as for prediction of geological structures. We have developed
a new method of processing seismic data which allows to locate reflecting planes and
compute values of reflectivity coefficients with high degree of precision. To resolve
this problem, we have used the Semi-supervised learning method. The machine
learning method made it possible to develop a mathematical model, optimize its
parameters for synthetic data in order to further use the model for unmarked-
up seismic data. The main novelty is in developing a learning algorithm using
signal convolution and reflectivity coefficients’ regularization. The model we have
developed demonstrated high precision for synthetic seismic data with high density
of reflecting planes (103 planes per a second of trace). The resulting low level of
errors allows significant improving of quantitative understanding of the subsurface
structure based on seismic data and is a firm basis for building geological models.
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NMPUMEHEHUE METOA OB MALLUMHHOIO ObYYEHMUA
ONA PEKOHCTPYKLIUU CBOUCTB OTPAXKAIOLLUX NJIOCKOCTEU
CPEJbl MO CEMCMUYECKUM OAHHbBIM
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l'eonornyeckue MoaeIM MECTOPOXKIECHMS CO3AI0TCsI C MCITOJIb30BaHMEM MH(Op-
MalliM O CTPYKTYPHBIX CBOMCTBax cpeabl. [losyueHre CBOMCTB Cpeabl B TPEXMEPHOM
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BHUJIE OCHOBAHO Ha JAaHHBIX 00 MCCIIeIOBAHNM TIIOIIAIN MECTOPOXKICHUS C TTOMOIIBIO
ceiicmopasBenku. KoshdulmeHTh OTpakeHUsT Cpeabl ONPeaesioTcs] M3MeHeHUEM
VIIPYTUX CBOMCTB CPEIbl M SBIISIOTCS OCHOBOM IJIT MHTEPIIPETAIMU CEMCMUUIECKIX
JIaHHBIX, a TAKXKe MPOTHO3a T€OJIOTUYECKOTO CTpoeHUsI. B cTaThe omucaH HOBBIN Me-
TOH 00pPabOTKM CEMCMMYECKMX NTaHHBIX, KOTOPBIA ITO3BOJISICT OMPEICIUTh ITOJI0XKEe-
HUE OTpaKaloIMX IJI0OCKOCTe M 3HaUeHUs KO3(hGUIIMEHTOB OTPaXKEHUS C BHICOKOM
TOYHOCTBIO. [IJT pelreHns 3amauyn MCITOJb30BaHa METOINKA MAIIMHHOTO OOYUeHUS.
[IprMmeHeHre METOIOB MAIIIMHHOTO OOYYEHMUS TTO3BOJIMIO CO3IaTh MaTEeMAaTUYECKYIO
MOJIeTb, ONITUMM3NPOBATh €€ MapaMeTphl Ha CUHTETUUYECKUX TAHHBIX IJIST JajJbHel-
1Iero MPUMEHEHMS Ha Hepa3MeUeHHBIX ceiCMUYeCKUX JaHHBIX. OCHOBHBIM HOBIIIE-
CTBOM CTaJla pa3paboTKa ajlropuTMa OOydyeHUsI, UCTIOJIB3YIOIIETO CBEPTKY CUTHAIA 1
perynsipu3aiuio KoahhUuneHToB oTpaxkeHus. [TorydyeHHass MoaeIb TToKa3aia BhICO-
KyI0 TOYHOCTh Ha CMHTETMYECKMX CEMCMUUYECKMX TAHHBIX C BBICOKOI IJIOTHOCTBIO
OTPaXAIOIINX JIOCKOCTEIH.

KmoueBble ciioBa: ceiicMU4yecKre JaHHBIC; METOIBI MAIIMHHOTO OOYYCHMS; OITUMM--
3allMOHHAsT 3aJa4a; MOJOXEHUE OTPaKaIoIIMX IUIOCKOCTEl; 00paboTKa CUTHAJIOB.
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Introduction

Modern methods of retrieving decomposi-
tion coefficients for signal with known com-
ponents are based on the Matching Pursuit
approach which is proposed in the work [1],
such as Batch Orthogonal Matching Pursuit
[2], Stabilized Orthogonal Matching Pursuit
[3] and Hierarchical Matching Pursuit [4].

Let us take a closer look at Matching Pur-
suit based algorithms for purposes of seismic
surveys data. The OMP algorithm [2] solves the
problem of finding decomposition coefficients
for a reference signal based on a dictionary (for
example with wavelets [5, 6]). Whereby the

OMP algorithm is based on a concept of re-
sidual decomposition error.

The result of OMP algorithm’s functioning
in Fig. 1 leads to achieving a very high precision
of signal decomposition into sparse coefficients
for a preset dictionary. To demonstrate the
advantages and disadvantages of the OMP
algorithm for purposes of seismic data, let
us make a dictionary D of one 30 Hz Ricker
wavelet. The resulting dictionary is shown in
Fig. 2.

It should be noted that this dictionary has
been made for 250 samples long traces with
2 ms sample rate. Using the OMP algorithm
and such a dictionary, we can find same shape

End

Data: Dictionary D, signal 7, target sparsity K

Result: Sparse representation y suchas T~ T = D -y
Initial: Set /=9, r =T, y=
While required sparsity not reached do:

| k = argmax, (d; -r)

| [=(1,k)
| Yl=(D;r'T)

0

Fig. 1. OMP algorithm based on [2]
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Fig. 2. Dictionary of 30 Hz wavelets.
One wavelet of the dictionary component No. 50 is shown on the right side

wavelets on each of 250 samples of a trace.
The OMP algorithm determines the spare
coefficient for each wavelet of the dictionary
for a particular seismic trace (signal).

Let us have a closer look at the particulars
of the resulting OMP decomposition based on
the dictionary D (Fig. 2) on one seismic trace’s
example.

Fig. 3 shows one seismic trace resulted
from convolution of the medium reflection
coefficients and the 30 Hz Ricker wavelet.
Further, a condition of nonzero coefficients [7]
of decomposition was used for decomposition
of the synthetic trace by OMP method and the
root-mean-square error (RMSE) was measured.
As we can see the decomposition error is
quite significant (145.07) for five coefficients
(Fig. 3 b), although initially the synthetic trace
has been built based on these five reflection
coefficients.

In this work [2] it is recommended to use
the number of decomposition coefficients equal
to 10 % of a signal length. If the trace is 250
samples long it means 25 coefficients. As the
number of decomposition coefficientsisincreased
to 25 (Fig. 3 ¢), the trace reconstruction error
becomes more admissible (10.67); however,
decomposition coefficients and synthetic
reflection coefficients still do not match.
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In the result of decomposition into 50
nonzero coefficients (Fig. 3 d) within the OMP
algorithm, there are many small coefficients,
which decrease the RMSE but do not change
the already selected coefficients.

Insufficient precision and emergence of
fake reflecting planes make decomposition
into coefficients based on the dictionary with
the OMP unacceptable for the purposes of
retrieving reflectivity coefficients. Thus, we
can make a preliminary conclusion of the non-
physical nature of decomposition coefficients
resulting from using the OMP algorithm.

This study is focused on searching a wavelet
composition which would minimize trace
reconstruction error with preset position of
coefficients.

We have come up with the following
research hypothesis:

Hypothesis

There is an algorithm of seismic trace
decomposition into decomposition coefficients,
which quite precisely match medium reflectivity
coefficients in terms of quantity, amplitude and
position on a trace.

Further, we have explored the feasibility
of building algorithms using machine learning
methods, have developed the learning method
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Fig. 3. The figure a shows a synthetic trace. Figs b, ¢, d show the coefficients resulting
from the OMP decomposition and the traces reconstructed based on these coefficients
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with consideration to a medium’s physical
properties and have performed several digital
experiments on synthetic seismic traces.

This article is composed of introduction,
methodological part, experiment outcome and
conclusion.

Method

According to [8], the problem we are going
to solve in this study falls into the category of
inverse coefficient problems. Suppose a process
studied through experiment can be modeled by
the problem’s solution:

Lylu] = g(x,0), x e Xc R¥ (D
with additional settings
ly[u] = h(x,0), x € 8X. )

Here is the set of so-called controllable variables
X ={xX,Xy, ..., X}, 0e€Q a set of certain
parameters, Ly[-] is the determined differential
operator depending on 6, R¥ is the Euclidean
space with K dimensions, 8X is the boundary
of a set X.

In practice variables © are unknown
which leads to the following inverse problem:
to evaluate initial parameters 6 and response
u = (x,0) function for the equations (1), (2)
based on experimental data if the experiment
produces some functional b[u] of response u.

In this study only seismic traces and a wavelet
are available as experimental data based on which
it is necessary to find a medium’s reflectivity
coefficients with acceptable degree of precision.

To solve this problem we have used the
machine learning method. Machine learning
approach for geophysics tasks was used in our
previous study [8].

A synthetic trace constructed based on the
preset synthetic reflection coefficients is used
as marked up data. The algorithm learns to
select decomposition coefficients matching
synthetic coefficients based on which synthetic
trace is constructed. An algorithm, named .40,
learns to select reflection coefficients based on
seismic trace. Labeled data in this case are the
synthetic reflection coefficients based on which
trace was created.

Formally the inverse problem is defined
as follows: there is a discrete synthetic signal
(trace) shown as a vector TeR". Trace T
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is constructed using the Ricker wavelet W
and K reflecting planes through convolution
function. Each reflecting plane k is defined
by a discrete number 7 e N¥ and a certain
reflection coefficient e RX. Then the process
of constructing a trace can be described by the
following equation:

K
T=SW)*n. 3)

Based on the trace 7 data only it is required
to develop an algorithm .40 which would de-
termine that reflection coefficients 1 € N¥ and
p € RM meet the following criteria:

v M
~T, tne T=YW(x)*p,;

Let us have a closer look at criteria 1-4 from
the point of view of quantitative evaluation of
errors E, ,. Error E, is the degree of mismatch
of two traces and is computed as Root-mean-

square deviation, RMSE| T, YV“ j Deviation in

the number of initial and resulting reflection
planes (E,) is measured as a module of their
difference, abs (K-M). Wiggle of the reflecting
planes’ positions (E,) is determined through
F1-score metrics. Differences in amplitudes of
reflection coefficients (E,) are computed only
for the reflecting planes fitting the positions

RMSE (T[t — 1], Tt ==T]J.

Errors E, , are quantitative evaluations of the
algorithm’s functioning but cannot be applied to
optimization ones. In order to find an optimal
solution it is necessary to vary the reflection
coefficients to minimize the E, error.

In addition to the condition of the E, error
minimization, we also include the following
physical criteria in the optimization process:

e Reflecting planes should not be too close
to each other (U));

e Number of reflecting planes should be
minimal (U,).

Physical criteria U and U, are quantified
as penalty functions F (U)), F, (U) in the
appraisal of optimization progress. Thus, a meta-
algorithm of optimization can be described as
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While Loss — min do:

End

Data: Select initial values for reflecting planes p, t
Result: Reflection coefficients of trace T

Hyperparameter: Learning Rate / = /inspace(1072,1)

Loss =

v M
T :ZW(Ti) *p;

b, =p; +1*Grad (TT]

[

2

F(U,)
dim(7) " RU,)),

Fig. 4. Meta-algorithm of optimization A0

follows (Fig. 4).

The algorithm AO uses the information
of traces mistie to determine direction and
scope of reflecting planes’ modulation. For this
reason A0 can fall into the category of variable
optimization algorithms aimed at searching for
a global minimum. The heuristic approaches to
the optimization problem based on the work
[6] and tested by us have proven less efficient.

Experiment outcome

traces of various density of reflecting planes. Based
on the outcome of the experimentsm optimal
values of learning rate, gravity of penalties from
U, and U, have been determined.

Initialization of a vector of reflecting planes
has been studied separately. Three types of
initialization have been tested:

e Initialization by random numbers in
normal distribution;

e Initialization by trace amplitude values
with a scale factor;

To check the above-mentioned method ¢ Initialization by trace’s extremes
we have performed experiments with synthetic ~ amplitudes.
103 . ' .
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Fig. 5. Loss functions depending on various learning rates
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The fastest convergence was achieved in the
initialization by trace’s extremes amplitudes.
Fig. 5 shows the loss function’s dependence on
various values of the learning rate parameter.

The dependences in Fig. 5 show a standard
pattern: increasing learning rate leads to faster
convergence. Applied regularization by the
number of reflecting planes (U,) is shown
in Fig. 5 as excursions in transition to fewer
reflecting planes. This effect is shown in more
detail in Fig. 6.

It can be seen from Fig. 6 that the number
of reflecting planes stops changing at a certain
number of iterations. Achievement of a
minimum constant is one of the signs that the
algorithm should be stopped, along with the
decreasing RMSE.

Wiggle of reflecting planes’ positions (E,)
is determined through the F1-score metrics.
Fig. 7 shows dependence of the F1-score metrics
on various learning rates of the algorithm.

Dependence of the Fl-score metrics on
various rates of the .40 algorithm’s learning
rates. We have separately examined the
dependences for errors E, (Fig. 5), E, (Fig. 6),
E, (Fig. 7). Table 1 shows comparison of the
E, , errors for the OMP algorithm and .A0.

It is significant that using the algorithm
A0 allows making significantly fewer errors
for traces with five reflecting planes. Table 2
shows comparison of errors for the OMP and
A0 for the trace with 103 reflection planes
(500 samples with 2 ms sampling rate).

As we can see from Table 2, the algorithm
A0 allows minimizing errors of decomposition
below the OMP level. However, the algorithm
A0  maintains physical significance of
decomposition coefficients.

Conclusion

We have developed an algorithm that allows
incorporating physical laws into machine
learning methods. To compare efficiency of the
proposed algorithm the authors have developed
a complex precision metrics containing four
components:

e E is the degree of two traces’ mistie
computed as a normalized sum of squared

residuals, RMSE (T, Tj

e Difference in numbers of initial and
resulting reflecting planes as a result of the
algorithm’s application (E,).

o Wiggle of reflecting planes’ positions (E,)

Table 1
Comparison of the E, , errors for the OMP algorithm
and AOQ for the trace with five reflecting planes
Algorithm / OMP, OMP, OMP, A0
Error 5 coefficients | 25 coefficients | 50 coefficients
E, 145.07 10.67 1.61 0.59
E, 0 20 45 0
E, 0.2 0.06 0.04 0.38
E, 829.43 788.61 752.37 | 10.03
Table 2
Comparison of the E1-4 errors for the OMP algorithm
and AQ for the trace with 103 reflecting planes
Algorithm / OMP, OMP, OMP,
Error 50 coefficients | 103 coefficients = 150 coefficients A0
E, 39.84 9.40 0.92 0.87
E, 53 0 47 2
E, 0.23 0.25 0.24 0.33
E 1644.11 1562.16 1517.16 | 100.23
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is determined through the F1-score metrics.

e Differences in reflection coefficients
amplitudes (E,).

The performed experiments have shown
that the trained algorithm allows making lower
value errors than the OMP [2] and maintaining

physical significance of resulting decomposition
coefficients.

It is worthwhile to continue further studies
in this direction on real data instead of synthetic
ones, for a particular deposit with sufficient
number of investigated wells.
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