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ON FRACTAL, STATISTICAL AND MORPHOLOGICAL METHODS  
OF DIGITAL IMAGE ANALYSIS IN MEDICAL RESEARCH 

The applicability of some methods of analysis and classification to the images of biomedical preparations is 
discussed. For images of blood, connective tissue and bone tissue fractal characteristics were calculated. When 
researching the images of blood obtained by the sensitive crystallization method, statistical, morphological 
and spectral signs were obtained, which were classified by a software modeled artificial neural network. The 
results of numerical experiments are given.
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О ФРАКТАЛЬНЫХ, СТАТИСТИЧЕСКИХ И МОРФОЛОГИЧЕСКИХ  
МЕТОДАХ АНАЛИЗА ЦИФРОВЫХ ИЗОБРАЖЕНИЙ  

В МЕДИЦИНСКИХ ИССЛЕДОВАНИЯХ

Статья посвящена исследованию применимости методов анализа и классификации к изобра-
жениям биомедицинских препаратов: жидкой крови, соединительной и костной тканей. Для этих 
классов изображений вычислены фрактальные характеристики. Также исследованы изображения 
препаратов крови и экстрактов растений, полученных методом чувствительной кристаллизации. 
Для этих классов вычислены статистические, морфологические и спектральные признаки, которые 
затем классифицированы с помощью программно-моделируемой искусственной нейронной сети. 
Приведены результаты экспериментов.

АНАЛИЗ ИЗОБРАЖЕНИЙ; ФРАКТАЛЬНЫЕ МЕТОДЫ; НЕЙРОННАЯ СЕТЬ; БИОМЕДИ-
ЦИНСКИЕ ПРЕПАРАТЫ.

In biology and medicine the possibility 
of automatic processing large sets of images, 
determining the type of issue analyzed, 
revealing tumors and detecting some foreign 
compositions may have an influence on the 
research and to assist a physician to form a 
diagnosis [1]. 

For complex biological systems we as a rule 
do not have adequate mathematical models, but 
one can register the results of their functioning 
and obtain digital images. Such an approach is 
quite appropriate when studying the action of 
ultralow doses of a medicine on a biological 
system: since it is difficult to describe the 

results of the effect by using only one main 
factor (sign), we register the states of a vital 
functions sign, for example blood. Digital 
images of the registered states may be analyzed 
by mathematical methods. Hence, such an 
image may be considered as the phase portrait 
of the system studied at a point of time.

As a rule such digital images have rather 
complex structure and to analyze it the methods 
of fractal analysis are applied. The computation 
of fractal dimensions allows us to analyze and 
classify images of pharmacological preparations, 
living organism tissue, geological band fractures. 
In practice the images are unions of different 
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fractals (so called multifractals), being every 
fractal has its own fractal dimension and all 
the fractal sets are interpenetrative. Hence the 
methods of multifractal analysis were worked 
out that allows obtaining a multifractal spec-
trum – a set of fractal dimensions.

The results of the research of different 
classes of biomedical preparations that is based 
on the using fractal methods is given in [2]. To 
compute the fractal dimension of an image (the 
Minkovsky dimension) the modified fractal 
signature method was used. 

The concept of fractal signature and the 
method were introduced in [3] to analyze 
and classify textures. The method is based on 
the Mandelbrot idea about the approximate 
calculation of the length of coastline by 
measuring the area of a strip that contains 
the line and has width 2δ, where δ is a fixed 
number. Then the length is approximately the 
area divided by 2δ. It should be noted that the 
length increases as δ decreases. At the same 
time Mandelbrot noted that there is an interval 
for δ in which the value L(δ) becomes stable. 

The authors applied this method to measure 
the area of a gray level surface constructed by a 
digital image. The sequence of special blankets is 
constructed over the surface. For every blanket 
its volume is calculated, the surface area and 
the so called «fractal signature» (the ratio of the 
logarithm of the surface area to the logarithm 
of the scale) is defined. (It should be noted 
that the Minkovsky dimension of the area may 
be easily obtained from the fractal signature.) 
So we have a sequence of areas and signatures 
in accordance with the number of blankets. 
For two images we can compare the obtained 
signature vectors: the closeness between vectors 
shows an adjacency of their textures. In [4] this 
method was applied to the analysis of images of 
bone tissue for different color scales. 

In [5] the authors applied the method to 
calculate the fractal dimension of a document 
image and called it the «modified fractal 
signature method». They used only two 
consecutive blankets and marked out the areas 
corresponding background, text and graphics in 
accordance with the Minkovsky dimension. In 
such a variant the method demonstrated high 
reliability and was successfully used in [2] to 
classify biomedical preparation images. The 

image was divided into small boxes and the 
fractal dimension of both the area and boxes was 
calculated. That allowed us to obtain a «map» 
of the area and the dependence the surface 
area from the box size. The graphic of such a 
dependence was considered as a classification 
sign.

It is interesting to note that the method 
gave good results when classifying (defining 
a focusing degree) SAR (Synthetic Aperture 
Radar) images [6, 7].

As numerous researches show, the systems 
with chaotic behavior are very common in 
nature. Since in such a system one can trace 
a trajectory only on short time intervals, we 
should use an appropriate statistical description 
of the system asymptotic. It is the so called 
multifractal formalism that helps in deciding 
the problem. This technique is based on self-
similarity property for an image, which gives 
a possibility to obtain the distribution of a 
probability measure. Such an approach allows 
us to associate the fractal properties of the image 
with the range of nonuniformity of the measure 
distribution. In the application to digital images 
to obtain such a distribution means to part 
the set of points of an image into subsets in 
which points have close characteristics. For a 
point one can use density defined as the limit 
(when the box size tends to zero) of the ratio 
of the logarithm of the box (containing the 
point) measure to the logarithm of the box side 
length. Thereby the image is a union of subsets 
containing the points with close densities. For 
each subset its fractal dimension is calculated. 
The set of these dimensions is called multifractal 
spectrum, which may be considered as the 
image characteristic. Numerical results showed 
that the multifractal spectrum method may be 
successfully applied to classify both bone tissues 
(health and affected by osteoporosis) and some 
classes of histological preparations [8].

It is reasonable that fractal and multifractal 
methods are applicable to definite classes 
of images. In medical diagnostic the images 
of preparations of blood and plant extracts 
obtained by sensitive crystallization by Pfaiffer 
method (the addition of a small dose of blood 
or plant extract to the solution of cuprum 
chloride) [9] are very important. It is well 
known that structure peculiarities of obtained 
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blood crystals allow revealing both clinical 
presentations of various diseases and existence 
of definite tendencies to their progress. For 
such images fractal methods are not quite 
suitable. When analyzing the described images 
we construct the following feature vectors: 

statistical textural ones obtained by using ••
gray level cooccurence matrix; 

morphological ones (skeleton represen-••
tation);

spectral ones (Gabor filters) [10].••
Then these vectors were classified by a 

software modeled artificial neural network. 
To learn the network the RProp (Resilient 
Propagation) method was applied [11].

The Methods of Solution 

The modified fractal signature method. In 
what follows we use the terminology of [12]. Let 
F be a nonempty bounded subset of ,  nR Ω  –  
a finite ε  – covering of F and ) .(N Fε = Ω  
Then the following number is called capacity 
dimension of F:

2

0
2

log ( )
dim  lim  .

logB

N F
F ε

ε→
=

− ε

This dimension is a kind of so called box-
computing (or box-counting) dimensions (the 
name follows from the definition). In practice 
the formula (1) is rarely applied because to 
calculate ( )N Fε  we have to save data about all 
the elements of the covering, whereas F may 
occupy only a part of it. Hence it is preferable 
to calculate the dimension that really is a box-
counting one, but may be obtained by a more 
economic method.

We define δ-parallel body for F (denoted 
by Fδ ) as the set of points which are on the 
distance no greater than δ from F:

{ : ,  }.nF x R x y y Fδ = ∈ − ≤ δ ∈

Denote n-dimensional volume of Fδ  by 
Vol ( )n Fδ . If for a constant D (when δ→0) the 
limit of the ratio Vol ( ) /n n DF −

δ δ  is positive 
and bounded, then D is called the Minkovsky 
dimension of the set F and denoted by dim .M F  
It is known [12] that the following relation 
holds (for nonempty bounded sets in nR ): 
dim  dim .B MF F=

Now we consider { , 0,1, …, , 0,1, …, }ijF F i K j L= = =
{ , 0,1, …, , 0,1, …, }ijF F i K j L= = =  – the presentation of a gray 

scale image, where Fij is the intensity of the 
pixel with the coordinates (i, j). We redefine F 
in a point with real coordinates (x, y), where  
i < x < i + 1, j < y < j + 1 by the corresponding 
value .ijF  The function F specifies a surface 
in 3-dimensional space and is called the 
surface of gray level function. For brevity 
this surface is also denoted by F. To calculate 
fractal dimension of this surface the so called 
«blanket technique» is used. Construct for the 
surface F the δ-parallel body (blanket) with 
the help of the defined below top surface of 
blanket ( , )u i jδ  and bottom surface ( , ).b i jδ  Set 

0 0( , ) ( , ) iju i j b i j F= =  and define surfaces for  
δ = 1, 2, … by the following recurrent relation:

1 1( , ) ( , ) 1

( , )
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u i j

u i j u m n
δ
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=
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δ
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A point M(x, y) is included in the δ-parallel 
body, if , ( , )( ) ).,(b i j M x y u i jδ δ< <  It should 
be noted that in accordance with (3) and 
(4) the δ-parallel body for a given δ includes  
(δ – 1)-parallel body. The volume of the 
δ-parallel body is computed from uδ  and :bδ

Vol ( ( ) ( ), , ). u i j b i jδ δ δ= −∑
The area Aδ  of the fractal surface (the 

surface of the gray level function) is computed 
as 

1Vol Vol
  , 

2
A δ δ−

δ

−
=

and the fractal dimension of the surface (the 
Minkovsky dimension) is calculated by the 
formula 

2

2

log2    .log
AD δ

δ
≈ −

As it was shown in [15], to estimate D one 
may use only two values of δ, namely δ1 and 
δ2 and the formula (7) is equivalent to the 
following relation:

2 2

2 1 2 2

log log
2    .

log log
A A

D δ δ−
≈ −

δ − δ

When implementing the method we 
compute the area of the surface, areas of cells, 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
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fractal dimension for the surface and fractal 
dimensions of cells. We also construct a «map» 
of the image, where for a given cell size the cell 
areas were shown in a color scale. On Fig. 1 
such maps are obtained for the cell size 90×90 
(image size 270×270). The dependence both the 
surface area and the fractal dimension on cell 
size is shown on Fig. 2. We use such graphics as 
main features to compare the images of different 
classes. Generally speaking, it is sufficient to 
obtain both areas and dimensions only for the 
whole surface, but similar characteristics for the 
parts of the image give more obvious form to 
the results. It is the different fractal dimension 
values for different parts of an image that 
allowed the authors of [5] to distinguish text, 
graphics and background in text documents. 
In our experiments the method demonstrated 
good separability of features for all the classes 
of the preparations classified.

Computing multifractal spectrum. As it was 
mentioned above, we may consider an image 

as the support of some distributed measure. 
Cover this support by nonintersecting boxes 
(cells) { }iM  (with intersections on the box 
boundaries) with the side length l and suppose 
that the box measure is ,il α  where iα  are real 
numbers. Then one may define the point sets 
Eα  (for a given α ) such that iα  are close to 
.α  The set { }iα  is a set of «densities» of the 

image points. For each point its density is 
computed through the box measure and the box 
side length [13]. Hence we collect the points 
with similar densities into the sets .Eα  For all 
such sets we compute their fractal dimensions 

( ).if α  By this means the image is considered 
as the union of interwoven subsets, being each 
of them has own fractal dimension. The set of 
these dimensions forms multifractal spectrum 
(MFS).

We note that locating of sets Eα  means 
some categorization of the image points, and the 
defined measure describes this categorization 
(for digital images measure is naturally defined by 

Fig. 1. Health bone tissue – a; affected bone tissue (osteoporosis) – b 
The source image (right) and its map (left). The image size is 270×270, cell size is 90×90

а) b)

Fig. 2. The dependence the surface area (left) and fractal dimension (right)  
on cell size for health (number 12) and affected bone tissue (number 14)  

The image size is 270×270

а) b)
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pixel intensities [14]). Different categorization 
methods lead to different multifractal spectra. 
The method of MFS direct determination was 
described in [13]. In [8] we applied the method 
to classify the images of mentioned preparation. 
It demonstrated reliable results for bone and 
connective tissues, and was not effective for 
the images of blood. It is the expected result 

because these images do not have any fractal 
structure. The following illustrations show the 
images of health and affected liver preparations 
and the plots of their multifractal spectra  
(Fig. 3). On the OX axis the values α  are mar-
ked, and the fractal dimensions of corresponding 
sets Eα  are shown on OY.

Classification of images obtained by the 

Fig. 3. The health (a) and affected (b) liver preparations and their MFS spectra (c)

а) c)b)

Fig. 4. Patterns of blood crystals obtained by the sensitive crystallization method

а) c)b)

e)d)
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sensitive crystallization method. As it was 
mentioned above, the crystals of blood 
and plant extracts obtained by the sensitive 
crystallization method are very important in 
medical diagnosis. Their crystal structures have 
various forms which may be considered as 
classification features for classes of preparation. 
For blood crystals the star form (typical for 
acute inflammatory process) and the hole 
structure (typical for degenerative processes) 
are the examples of structures. The examples of 
blood crystals are shown on Fig. 4:

crystallization in the star form, which is typical 
for acute inflammatory process (Fig. 4 a);

crystallization in the star form with 
hole structure, which is typical for chronic 
inflammatory process (Fig. 4 b);

hole structure of crystals, which is typical 
for degenerative processes (Fig. 4 c);

hollow crystal form – typical for benign 
tumors (Fig. 4 d);

hollow crystal form with transversal 
structures, typical for malignant tumors  
(Fig. 4 e).

Plant extract crystals have their own 
features. On Fig. 5 typical plant extract crystals 
from the classes of images used in numerical 
experiments are shown.

Statistical textural features. Spatial gray 
level co-occurrence estimates image properties 
related to second-order statistics which 
considers the relationship among pixels or 
groups of pixels (usually pairs of pixels). To 
analyze and classify textures of digital images 

Haralick [15] suggested the use of gray level 
co-occurrence matrices (GLCMs) which have 
become one of the most well-known and 
widely used texture features. This method is 
based on the joint probability distributions of 
pairs of pixels. GLCM shows how often each 
gray level occurs at a pixel located at a fixed 
geometric position relative to each other pixel, 
as a function of the gray level. The (1,3) entry 
in a matrix for right neighbors, for example, 
would show the frequency or probability of 
finding gray level 3 immediately to the right of 
pixel with gray level 1.

GLCM has a parameter – a relative 
position of pixels, which is defined by the angle 
and distance. To form vectors of features for 
an image we use the following statistical texture 
features obtained on a basis of the normalized 
GLCM – Norm

, .i jP

Contrast 
1

Norm 2
,

, 0

( )
N

i j
i j

P i j
−

=

−∑  defines a measure 

of a contrast between a pixel and its neighbours 
or between a pixel and the whole image. 

Homogeneity 
1

Norm 2
,

, 0
( / 1 ( ) )

N

i j
i j

P i j
−

=
+ −∑  des-

cribes the density of distribution of elements in 
Norm
,i jP  relative to its diagonal.

Correlation 
1

Norm 2 2
,

, 0

( )( ) / ( )( )( )
N

i j
i j

P i I j J I J
−

=

− µ − µ σ σ∑
1

Norm 2 2
,

, 0

( )( ) / ( )( )( )
N

i j
i j

P i I j J I J
−

=

− µ − µ σ σ∑  of the GLCM matrix defines 
a correlation degree between a pixel and its 
neighbour or such a degree between a pixel and 
the whole image. Here µI, µJ, 2Iσ  and 2Jσ  

Fig. 5. Patterns of plant extract crystals obtained by the sensitive crystallization method:  
a – orange juice; b – wheat flour solution; c – wheat extract

а) c)b)
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are mathematical expectations and dispersions 
of pixel intensities, which are calculated by 
using a given pixel and its neighbours.

Textural features based on the Gabor filter. 
We define two-dimensional Gabor’s function 
as the following:

2 2

2 2

1
2

21
( , ) .   

2
x y

X Y
i x

x y

g X Y e

  
  − + + π ω
  σ σ  =

πσ σ

Then we construct a Gabor’s wavelet 
basing on the following generating 
functions: ' '( , ) ( , ),m

mng X Y a g X Y−
⋅=  

' cos ),( sinmX a X Y−= θ + θ  ' sin ),( cosmY a X Y−= θ + θ
' sin ),( cosmY a X Y−= θ + θ  , 1.n aN

πθ = >  Here the integers 
m and n define the scale and orientation of the 
wavelet respectively: 0, 1, …, ,   0, 1, …, ,m M n N= =  

0, 1, …, ,   0, 1, …, ,m M n N= =  where M and N are the given numbers 
of scales and orientations.

Let ( , )I x y  be a distribution of gray level 
for a digital image. Define the convolution with 
the Gabor core :mng

*( ), ( , ) ( , ) . mn mnW x y I u v g u x v y dudv= − −∫
In this formula * means complex 

conjugation, mnW  – the result of convolution 
according to the Gabor core with the scale m 
and orientaition n. We suppose that the areas 
with local textures are spatially homogenious, 
then the defined below values mnµ  and mnσ  
may be considered as the area characteristics 
for the classification problem:

( ), . mn mnW x y dxdyµ = ∫∫
2( ( . ), )mn mn mnW x y dxdyσ = − µ∫∫

The feature vector to classify images is formed 
as the following 

00 00 01 01[ ... ].mn mnf = µ σ µ σ µ σ

Morphological features. Mathematical 
morphology is a method of obtaining structure 
components of an image that may be useful 
to represent and describe it. Boundaries, ske- 
letons and convex hulls are examples of such 
structures. In this work for the purpose of re-
cognition we use skeletons. This approach 
leads to reducing the task dimension. To mark 
out the image skeleton the software packages 
are used [16].

The classifier of signs. In this work three-
layered perceptron is used as the classifier. The 
number of neurons in the input layer of net-
work is defined by the size of a vector of fea-
tures (depending on the method of the vector 
construction). The number of neurons in the 
mean (the second) layer is equal to integer part 
of one half of the number of neurons in the 
input layer (an empirical recommendation). In 
our experiment the number of output neurons 
(the third layer) is defined by the number of 
classes of images considered in every group.  
The algorithm RProp (Resilient Propagation) 
accelerating the back propagation of error al-
gorithm (Backprop) is applied to setup the net-
work parameters [17, 11]. 

The classifier testing was performed for 
three groups of images:

images of blood crystals obtained by the 1)	
sensitive crystallization method;

images of plant extracts crystals obtained 2)	
by the sensitive crystallization method;

images of brain tumors.3)	
We considered the following classes of brain 

tumors – astrocytoma, nevrinoma, oligodendro-
glioma. As it was shown in [2], for these classes 
fractal methods give good results. So here we 
use them to verify the classifier work.

Fig. 6. The representatives of three classes of brain tumors

а) c)b)
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On Fig. 6 typical representatives of the 
classes mentioned are shown: a – astrocytoma; 
b – nevrinoma; c – oligodendroglioma.

For every group a vector of features was 
calculated on a basis of one of the methods 

mentioned above (statistical, spectral and 
morphological). Then the vector was input to 
the neural network to construct the classifier. 
On Fig. 7 the graphics of the dependence 
mean-square error on the number of iteration 

Fig. 7. The graphics of dependence mean-square error on the number of iteration:  
a – for statistical texture features; b – for texture features based on Gabor’s filter; c – for morphological features

а)

c)

b)
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in the cycle of weighting coefficients adjusting 
are shown. The digits 1–3 denote the group of 
images described above.

The results of experiments show that the 
model gives good results for images of different 
classes. The best results (minimal time) for the 
classification of blood crystal were obtained 
for morphological signs. For brain tumors 
statistical signs and Gabor’s filters were more 
preferable. This result is in the conformity 
with [2], because both the fractal method and 
statistical characteristics are based on using 
pixel intensities.

Analysis and interpretation of characteris-
tics obtained on a basis of mathematical 

methods are key factors for successful work 
of specialists in biology and medicine. The 
investigations made by the authors demonstrated 
the applicability textural, fractal, spectral and 
morphological methods to a classification of 
biomedical preparation images. These results 
may become a reliable basis to design and 
implement the tools assisting experts in their 
practical activity.
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